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Abstract. In a software watermarking environment, several graph the-
oretic watermark methods encode the watermark values as graph struc-
tures and embed them in application programs. In this paper we ex-
tended the class of graphs which can be efficiently used in a software
watermarking system by proposing an efficient codec system, i.e., en-
coding and decoding algorithms that emendextract watermark values
intofrom cographs through the use of self-inverting permutations. More
precisely, we present a codec system which takes as input an integer w
as watermark value, converts it into a self-inverting permutation π∗, and
then encodes the permutation π∗ as a cograph. The main property of
our codec system is its ability to encode the same integer w, using a
self-inverting permutation π∗, into more than one cograph. This prop-
erty cause our system resilience to attacks since it can embed multiple
copies of the same watermark number w into an application program.
Moreover, the proposed codec system has low time complexity and can
be easily implemented.
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1 Introduction

Software watermarking is a technique for protecting the intellectual property of
an application program. The software watermarking can be viewed as the prob-
lem of embedding a structure w into a program P such that w can be reliably
located and extracted from P even after P has been subjected to code transfor-
mations such as translation, optimization and obfuscation [16]. More formally,
given a program P , a watermark w, and a key k, the software watermarking prob-
lem can be formally described by the following two functions: embed(P,w, k) →
P ′ and extract(P ′, k) → w.

A lot of research has been done on software watermarking. The major soft-
ware watermarking algorithms currently available are based on several tech-
niques, among which the register allocation, spread-spectrum, opaque predicate,
abstract interpretation, dynamic path techniques (see, [1, 5, 10, 11, 15, 17, 18]).

In the last decade, several software watermarking algorithms have been ap-
peared in the literature that encode watermarks as graph structures. In general,
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such encodings make use of an encoding function encode which converts a water-
marking number w into a graph G, encode(w) → G, and also of a decoding func-
tion decode that converts the graph G into the number w, decode(G) → w; we
usually call the pair (encode, decode) as graph codec [6]. From a graph-theoretic
point of view, we are looking for a class of graphs G and a corresponding codec
(encode, decode)G with such properties which cause them resilience to attacks.

In 1996, Davidson and Myhrvold [12] proposed the first static software water-
marking algorithm which embeds the watermark into an application program by
reordering the basic blocks of a control flow-graph. Based on this idea, Venkate-
san, Vazirani and Sinha [19] proposed the first graph-based software watermark-
ing algorithm which embeds the watermark by extending a method’s control
flow-graph through the insertion of a directed subgraph; it is a static algorithm
and is called VVS or GTW.

In [19] the construction of a directed graph G (or, watermark graph G) is not
discussed. Collberg et al. [7] proposed an implementation of GTW, which they call
GTWsm, and it is the first publicly available implementation of the algorithm GTW.
In GTWsm the watermark is encoded as a reducible permutation graph (RPG)
[6], which is a reducible control flow-graph with maximum out-degree of two,
mimicking real code. Note that, for encoding integers the GTWsm method uses
self-inverting permutations.

Recently, Chroni and Nikolopoulos [3, 4] extended the class of software wa-
termarking algorithms and graph structures by proposing an efficient and easily
implemented codec system for encoding watermark numbers as reducible per-
mutation flow-graphs. They presented an efficient algorithm which encodes a
watermark number w as self-inverting permutation π∗ and, also, an algorithm
which encodes the permutation π∗ as a reducible permutation flow-graph F [π∗]
by exploiting domination relations on the elements of π∗ and using an efficient
DAG representation of π∗; in the same paper, the authors also proposed efficient
decoding algorithms. The two main components of their proposed codec sys-
tem, i.e., the self-inverting permutation π∗ and the reducible permutation graph
F [π∗], incorporate important structural properties which cause them resilience
to attacks.

In this paper, we extended the class of graphs which can be efficiently used
in a software watermarking system by proposing efficient encoding and de-
coding algorithms that emend watermark values into cographs through the
use of self-inverting permutations (or, for short, SIP) and extract them from
the graph structures. More precisely, we present an encoding algorithm, we
call it Encode SIP-to-Cograph, which takes as input a self-inverting permu-
tation π∗ corresponding to watermark integer w [3, 4], and encodes the permu-
tation π∗ into a cograph. We also present a decoding algorithm which we call
Decode Cograph-to-SIP; it takes as input a cograph G produced by our encod-
ing algorithm and extracts the self-inverting permutation π∗ from G. The main
property of our encoding algorithm is its ability to encode the same integer w,
through the use of a self-inverting permutation π∗, into more than one cograph.
This property cause our codec system resilience to attacks since it can embed
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multiple copies of the same watermark number w into an application program.
Moreover, the proposed codec system has low time complexity and can be easily
implemented.

The paper is organized as follows: In Section 2 we give the definition and
properties on the structure of self-inverting permutations. In Section 3 we de-
fine the class of cographs and describe its tree representation. In Section 4 we
present the codec algorithms of our codec system, i.e., the encoding algorithm
Encode SIP-to-Cograph and decoding algorithm Decode-Cograph-to-SIP. Fi-
nally, Section 5 concludes the paper and gives futures research directions.

2 Watermark Numbers and Self-inverting Permutations

In this section, we give some definitions that are key-objects in our algorithms
for encoding watermark numbers as complement reducible graphs, also known
as cographs [13].

Let π be a permutation over the set Nn = {1, 2, . . . , n}. We think of per-
mutation π as a sequence (π1, π2, . . . , πn), so, for example, the permutation
π = (1, 4, 2, 7, 5, 3, 6) has π1 = 1, π2 = 4, ect. Notice that π−1

i is the position
in the sequence of the number i; in our example, π−1

4 = 2, π−1
7 = 4, π−1

3 = 6, ect.

Definition 1: The inverse of a permutation (π1, π2, . . . , πn) is the permutation
(q1, q2, . . . , qn) with qπi = πqi = i. A self-inverting permutation (or, involution)
is a permutation that is its own inverse: ππi = i.

By definition, every permutation has a unique inverse, and the inverse of
the inverse is the original permutation. Clearly, a permutation is a self-inverting
permutation if and only if all its cycles are of length 1 or 2.

For encoding integers some recently proposed watermarking methods uses
only those permutations that are self-inverting. Collberg et al. [8, 6] based on
the fact that there is a one-to-one correspondence between self-inverting permu-
tations and isomorphism classes of RPGs, Collberg et al. [6] proposed a poly-
nomial algorithm for encoding any integer w as the RPG corresponding to the
wth self-inverting permutation π in this correspondence. This encoding exploits
only the fact that a self-inverting permutation is its own inverse.

In [3] Chroni and Nikolopoulos proposed an efficient algorithm which encodes
an integer w as self-inverting permutation π∗ thought the use of bitonic permu-
tations; recall that a permutation π = (π1, π2, . . . , πn) over the set Nn is called
bitonic if either monotonically increases and then monotonically decreases, or
else monotonically decreases and then monotonically increases. In this encod-
ing the self-inverting permutation incorporates important structural properties
which cause it resilience to attacks.

3 Cographs and Cotrees

The complement reducible graphs, also known as cographs, are defined as the
class of graphs formed from a single vertex under the closure of the operations
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of union and complement [14]. More precisely, the class of cographs is defined
recursively as follows:

(i) a single-vertex graph is a cograph;
(ii) the disjoint union of cographs is a cograph;
(iii) the complement of a cograph is a cograph.

Cographs have arisen in many disparate areas of applied mathematics and
computer science and have been independently rediscovered by various researchers
under various. Cographs are perfect graphs and in fact form a proper subclass
of permutation graphs and distance hereditary graphs; they contain the class
of quasi-threshold graphs and, thus, the class of threshold graphs [17, 18]. Fur-
thermore, cographs are precisely the graphs which contain no induced subgraph
isomorphic to a P4 (i.e., a chordless path on four vertices).
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Fig. 1. (a) A cograph on 7 vertices, and (b) the corresponding cotree.

Cographs were introduced in the early 1970s by Lerchs [14] who studied their
structural and algorithmic properties. Along with other properties, Lerchs has
shown that the cographs admit a unique tree representation, up to isomorphism,
called a cotree. The cotree of a cograph G is a rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;
(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the inter-

nal nodes that are children of a 1-node (0-node resp.) are 0-nodes (1-nodes
resp.), i.e., 1-nodes and 0-nodes alternate along every path from the root to
any (internal) node of the cotree;

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices of
G, and two vertices vi, vj are adjacent in G if and only if the least common
ancestor of the leaves corresponding to vi and vj is a 1-node.

Lerchs’ definition required that the root of a cotree be a 1-node; if however
we relax this condition and allow the root to be a 0-node as well, then we obtain
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cotrees whose internal nodes all have at least two children, and whose root is a
1-node if and only if the corresponding cograph is connected.

The study of cographs led naturally to constructive characterizations that
implied several linear-time recognition algorithms that also enabled the con-
struction of the corresponding tree representation (cotree) in linear time [13].
The first linear-time recognition and cotree-construction algorithm was proposed
by Corneil, Perl, and Stewart in 1985 [9]. Recently, Bretscher et. al [2] presented
a simple linear-time recognition algorithm which uses a multisweep LexBFS ap-
proach; their algorithm either produces the cotree of the input graph or identifies
an induced P4.

4 Encoding Self-inverting Permutations as Cographs

In this section, we present an algorithm for encoding a self-inverting permuta-
tion as a cograph. In particular, our algorithm takes as input a self-inverting
permutation π∗ of length 2n + 1 produced by algorithm Encode W-to-SIP (see
[3, 4]), and then constructs an arbitrary cograph C[π∗] on 2n + 1 vertices by
preserving the cycle relation of permutation π∗; recall that, by construction π∗

has length 2n+1 and contains one 1-cycle (x, x) and n 2-cycles (x1, y1), (x2, y2),
. . ., (xn, yn). We next describe the proposed algorithm:

Algorithm Encode SIP-to-Cograph

Input: a self-inverting permutation π∗ = (π1, π2, . . . , πn);

Output: the cograph C[π∗];

1. Construct a graph H such that:
V (H) = {π1, π2, . . . , πn};
E(H) = {(πi, πj) is an edge if (πi, πj) is a 2-cycle in π∗};

2. Compute the connected components H1, H2, . . . , Hk of the graph H;

3. S = {H1,H2, . . . , Hk}; the graphs in S are connected cographs

4. While |S| > 1 do
Select two arbitrary cographs Hi, Hj from S;
Remove Hi and Hj from the set, i.e., S = S − {Hi,Hj};
Compute the complements Hi and Hj of the connected cographs

Hi and Hj, and set Hi = Hi and Hj = Hj ;
the cographs Hi and Hj are now disconnected;

Compute the disjoint union Hi +Hj of the disconnected cographs
Hi and Hj , and set Hi = Hi +Hj ;

Add the cograph Hi in the set S, i.e., S = S ∪Hi;
end-while;

5. Return the cograph G = Hi, where Hi is the only cograph in S;

Encode Example: Let π∗ = (3, 5, 1, 7, 2, 6, 4) be the input self-inverting per-
mutation in the algorithm Encode SIP-to-Cograph which corresponds to water-
mark number w. The algorithm first constructs the graph H having V (H) = {v1,
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v2, v3, v4, v5, v6, v7} and E(H) = {(v1, v3), (v2, v5), (v4, v7)} and then computes
its connected components H1 = H[v1, v3], H2 = H[v2, v5], H3 = H[v4, v7] and
H4 = H[v6]; note that H1 = H[v1, v3] is the subgraph of H induced by the nodes
v1 and v3.

Construction of the cograph of Figure 2(a): 1st iteration of step 4: the al-
gorithm takes H1 and H2, computes the disjoint union U(1, 2) of H1 and H2,
and then sets H1 = U(1, 2) and removes subgraph H2; 2nd iteration of step 4: it
takes H1 and H4, computes the disjoint union U(1, 4) of H1 and H4, and then
sets H1 = U(1, 4) and removes subgraph H4; 3rd iteration of step 4: it takes
H1 and H3, computes the disjoint union U(1, 3) of H1 and H3, and then sets
H1 = U(1, 3) and removes subgraph H3; it returns H1 which is the cograph of
Figure 2(a).

Construction of the cograph of Figure 2(b): in a similar way, the algorithm
constructs the graph of Figure 2(b) by taking first the subgraphs H1 and H2,
then the subgraphs H3 and H4, and finally the subgraphs H1 and H3;
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Fig. 2. (a) & (b): Two cographs on 7 vertices which encode the same watermark number
w.

Next, we present a decoding algorithm for extracting a self-inverting permu-
tation from a cograph. Our algorithm, which we call Decode Cograph-to-SIP,
takes as input a cograph C[π∗] produced by algorithm Encode SIP-to-Cograph

and extracts the self-inverting permutation π∗ from C[π∗] by constructing first
its cotree T [π∗] and then finding the pairs of nodes (x1, y1), (x2, y2), . . ., (xn, yn)
such that the nodes xi and yi, 1 ≤ i ≤ n, have the same internal node (0-node
or 1-node) as parent; these pairs correspond to 2-cycles of the permutation π∗.
We next describe the decoding algorithm:

Algorithm Decode Cograph-to-SIP

Input: a cographG = C[π∗] constructed from Algorithm Encode-SIP-to-Cograph;

Output: a self-inverting permutation π∗ = (π1, π2, . . . , πn);
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1. Compute the cotree T (G) of the input cograph G;
Let V = {v1, v2, . . . , vn} be the set of its terminal vertices;

2. While |V | > 0 do
Select a vertex v from the set V and remove it from V , i.e., V = V −{v};
Find the child u ̸= v of the parent p(v) of the vertex v;
If u is a vertex of V then

construct a 2-cycle (v, u) and V = V − {v, u};
else

construct a 1-cycle (v) and V = V − {v};
end-while;

3. Construct the identity permutation π∗ = (π1, π2, . . . , πn), i.e., π−1
i = i,

1 ≤ i ≤ n;
4. For each 2-cycle (v, u) do the following:

πv = u and πu = v;
5. Return the self-inverting permutation π∗;

Decode Example: Let Ca[π
∗] and Cb[π

∗] be two cographs produced by the en-
coding algorithm Encode SIP-to-Cograph. The decoding algorithm constructs
first the corresoding cotrees Ta[π

∗] and Tb[π
∗], and then computes the pairs of

nodes (v4, v7), (v1, v3) and (v2, v5) (see Figure 3). Then it constructs the identity
permutation π∗ = (1, 2, 3, 4, 5, 6, 7), which maps every element of the set Nn to
itself, and changes the positions of element 4 and 7, 1 and 3, and 2 and 5; it
returns the self-inverting permutation π∗ = (3, 5, 1, 7, 2, 6, 4) which corresponds
to watermark number w.
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Fig. 3. (a) & (b): The corresponding cotrees of the cographs of figure 2.

5 Concluding Remarks

In this paper we presented an efficient codec system for encoding self-inverting
permutations as cographs. The main property of our codec system is its ability
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to encode the same self-inverting permutation π∗, which corresponds to integer
w, into more than one cograph. This property causes our system resilience to
attacks. Moreover, the proposing codec system has low time complexity and can
be easily implemented.

In light of our codec system’s encoding algorithm Encode SIP-to-Cograph

which can encode the self-inverting permutation π∗ of a watermark integer w into
several different cographs it would be very interesting to study the possibility
of finding an efficient transformation of a cograph into a reducible permutation
graph [3, 4]; we leave it as an open question.
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