
Efficient Encoding of Watermark Numbers as
Reducible Permutation Graphs

Maria Chroni and Stavros D. Nikolopoulos

Department of Computer Science, University of Ioannina,
GR-45110, Ioannina, Greece.

{mchroni,stavros}@cs.uoi.gr

Abstract. In a software watermarking environment, several graph the-
oretic watermark methods use numbers as watermark values, where some
of these methods encode the watermark numbers as graph structures. In
this paper we extended the class of error correcting graphs by proposing
an efficient and easily implemented codec system for encoding water-
mark numbers as reducible permutation flow-graphs. More precisely, we
first present an efficient algorithm which encodes a watermark number w
as self-inverting permutation π∗ and, then, an algorithm which encodes
the self-inverting permutation π∗ as a reducible permutation flow-graph
F [π∗] by exploiting domination relations on the elements of π∗ and us-
ing an efficient DAG representation of π∗. The whole encoding process
takes O(n) time and space, where n is the binary size of the number
w or, equivalently, the number of elements of the permutation π∗. We
also propose efficient decoding algorithms which extract the number w
from the reducible permutation flow-graph F [π∗] within the same time
and space complexity. The two main components of our proposed codec
system, i.e., the self-inverting permutation π∗ and the reducible permu-
tation graph F [π∗], incorporate important structural properties which
cause them resilience to attacks.

1 Introduction

Software Watermarking is a technique that is currently being studied to prevent
or discourage software piracy and copyright infringement. The idea is similar
to digital (or, media) watermarking where a unique identifier is embedded in
image, audio, or video data through the introduction of errors not detectable by
human perception [12]. The software watermarking problem can be described as
the problem of embeding a structure w into a program P such that w can be
reliably located and extracted from P even after P has been subjected to code
transformations such as translation, optimization and obfuscation [21]. More
precisely, given a program P , a watermark w, and a key k, the software wa-
termarking problem can be formally described by the following two functions:
embed(P,w, k) → P ′ and extract(P ′, k) → w.

Although digital watermarking has made considerable progress and become a
popular technique for copyright protection of multimedia information [12, 28], re-
search on software watermarking has recently received sufficient attention. The

2

patent by Davidson and Myhrvold [13] presented the first published software
watermarking algorithm. The preliminary concepts of software watermarking
also appeared in paper [16] and patents [19, 26]. Collberg et al. [7, 8] presented
detailed definitions for software watermarking. Authors of papers [30, 31] have
given brief surveys of software watermarking research.

Static and Dynamic Watermarking Algorithms: There are two general
categories of watermarking algorithms namely static and the dynamic algorithms
[7]. A static watermark is stored inside program code in a certain format, and it
does not change during the program execution. A dynamic watermark is built
during program execution, perhaps only after a particular sequence of input.
It might be retrieved by analyzing the data structures built when watermarked
program is running. In other cases, tracing the program execution may be re-
quired. Further discussion of static and/or dynamic watermarking issues can be
found in [13, 19, 29].

Algorithms and Techniques for Software Watermarking: A lot of research
has been done on software watermarking. The major software watermarking
algorithms currently available are based on several techniques, among which the
register allocation, spread-spectrum, opaque predicate, abstract interpretation,
dynamic path techniques (see, [2, 4, 10, 11, 20, 22, 24, 27]).

Recently, several software watermarking algorithms have been appeared in
the literature that encode watermarks as graph structures. In general, such en-
codings make use of an encoding function encode which converts a watermark-
ing number w into a graph G, encode(w) → G, and also of a decoding function
decode that converts the graph G into the number w, decode(G) → w; we usu-
ally call the pair (encode, decode) as graph codec [5]. From a graph-theoretic
point of view, we are looking for a class of graphs G and a corresponding codec
(encode, decode)G with the following properties:

• Appropriate Graph Types: Graphs in G should be directed having such proper-
ties, i.e., nodes with small outdegree, so that matching real program graphs;

• High Resiliency: The function decode(G) should be insensitive to small changes
of G, i.e., insertions or deletions of a constant number of nodes or/and edges;
that is, if G ∈ G and decode(G) → w then decode(G′) → w with G′ ≈ G;

• Small Size: The size |Pw| − |P | of the embedded watermark should be small;

• Efficient Codecs: The functions encode and decode should be computed in
polynomial time.

In 1996, Davidson and Myhrvold [13] proposed the first software watermark-
ing algorithm which is static and embeds the watermark by reordering the ba-
sic blocks of a control flow-graph. Based on this idea, Venkatesan, Vazirani and
Sinha [29] proposed the first graph-based software watermarking algorithm which
embeds the watermark by extending a method’s control flow-graph through the
insertion of a directed subgraph; it is a static algorithm and is called VVS or GTW.
In [29] the construction of a directed graph G (or, watermark graph G) is not

3

discussed. Collberg et al. [6] proposed an implementation of GTW, which they call
GTWsm, and it is the first publicly available implementation of the algorithm GTW.
In GTWsm the watermark is encoded as a reducible permutation graph (RPG)
[5], which is a reducible control flow-graph with maximum out-degree of two,
mimicking real code. Note that, for encoding integers the GTWsm method uses
only those permutations that are self-inverting. The first dynamic watermarking
algorithm (CT) was proposed by Collberg and Thomborson [7]; it embeds the
watermark through a graph structure which is built on a heap at runtime.

Attacks: A successful attack against the watermarked program Pw prevents
the recognizer from extracting the watermark while not seriously harming the
performances or correctness of the program Pw. It is generally assumed that the
attacker has access to the algorithm used by the embedder and recognizer. There
are four main ways to attack a watermark in a software.

• Additive attacks: Embed a new watermark into the watermarked software, so
the original copyright owners of the software cannot prove their ownership
by their original watermark inserted in the software;

• Subtractive attacks: Remove the watermark of the watermarked software
without affecting the functionality of the watermarked software;

• Distortive attacks: Modify watermark to prevent it from being extracted by
the copyright owners and still keep the usability of the software;

• Recognition attacks: Modify or disable the watermark detector, or its inputs,
so that it gives a misleading result. For example, an adversary may assert that
“his” watermark detector is the one that should be used to prove ownership
in a courtroom test.

Attacks against graph-based software watermarking algorithms can mainly
occur in the following three ways: (i) Edge-flip attacks, (ii) Edges-addition/deletion
attacks, and (iii) Node-addition/deletion attacks.

Our Contribution: In this paper we present an efficient and easily implemented
algorithm for encoding numbers as reducible permutation flow-graphs through
the use of self-inverting permutations (or, for short, SIP).

More precisely, we first present an efficient algorithm which encodes a num-
ber (integer) w as self-inverting permutation π∗. Our algorithm, which we call
Encode W-to-SIP, takes as input an integer w, computes first its binary repre-
sentation b1b2 · · · bn, then constructs a bitonic permutation on 2n+ 1 numbers,
and finally produces a self-inverting permutation π∗ of length 2n+1 in O(n) time
and space. We also present a decode algorithm which extracts the integer w from
the self-inverting permutation π∗ within the same time and space complexity;
we call the decode algorithm Decode SIP-to-W.

Having designed an efficient method for encoding integers as self-inverting
permutations, we next describe an algorithm for encoding a self-inverting permu-
tation into a directed graph structure having properties capable to match real
program graphs. In particular, we propose the algorithm Encode SIP-to-RPG

4

which encodes the self-inverting permutation π∗ as a reducible permutation flow-
graph F [π∗] by exploiting domination relations on the elements of π∗ and using
an efficient DAG representation of π∗. The whole encoding process takes O(n)
time and requires O(n) space, where n is the length of the permutation π∗.
We also propose an efficient and easily implemented algorithm, the algorithm
Decode RPG-to-SIP, which extract the self-inverting permutation π∗ from the
reducible permutation flow-graph F [π∗] by converting first the graph F [π∗] into
a directed tree T [π∗] and then applying DFS-search on T [π∗]. The decoding pro-
cess takes time and space linear in the size of the flow-graph F [π∗], that is, the
algorithm Decode RPG-to-SIP takes O(n) time and space. We point out that
the only operations used by the decoding algorithm are edge modifications on
F [π∗] and DFS-search on trees.

It is worth noting that our codec (encode, decode)F [π∗] system incorporates
several important properties which characterize it as an efficient and easily im-
plemented software watermarking component. In particular, the reducible per-
mutation flow-graph F [π∗] does not differ from the graph data structures built
by real programs since its maximum outdegree does not exceed two and it has a
unique root node so the program can reach other nodes from the root node. The
function Decode RPG-to-SIP is high insensitive to small edge-changes and quite
insensitive to small node-changes of F [π∗], and the graph F [π∗] unable us to
correct such edge changes. Moreover, the self-inverting permutation π∗ captures
important structural properties, due to bitonic property used in the construction
of π∗, which cause them resilience to attacks.

Finally, we point out that our codec (encode, decode)F [π∗] system has very
low time and space complexity which is O(n) where n is the number of bits
in a binary representation of the watermark integer w. Indeed, both functions
Encode W-to-SIP and Decode SIP-to-W are computed in time and space lin-
ear in the binary size of the watermark integer w. Moreover, the functions
Encode SIP-to-RPG and Decode RPG-to-SIP are also computed in linear time
and space; in particular, the function Encode SIP-to-RPG is computed in time
and space linear in the length of the self-inverting permutation π∗ which is O(n),
while the function Decode RPG-to-SIP is computed in time and space linear in
the size of the flow-graph F [π∗] which is also O(n).

2 Preliminaries

We consider finite graphs with no multiple edges. For a graph G, we denote by
V (G) and E(G) the vertex set and edge set of G, respectively. The neighbor-
hood N(x) of a vertex x of the graph G is the set of all the vertices of G which
are adjacent to x. The degree of a vertex x in the graph G, denoted deg(x),
is the number of edges incident on x; thus, d(x) = |N(x)|. For a node x of a
directed graph G, the number of head-endpoints of the directed edges adjacent
to x is called the indegree of the node x, denoted indeg(x), and the number of
tail-endpoints is its outdegree, denoted outdeg(x).

5

A path in a graph G of length k is a sequence of vertices (v0, v1, . . . , vk) such
that (vi−1, vi) ∈ E(G) for i = 1, 2, . . . , k. A path is called simple if none of its
vertices occurs more than once. A path (simple path) (v0, v1, . . . , vk) is a cycle
(simple cycle) of length k + 1 if (v0, vk) ∈ E(G).

Next, we introduce some definitions that are key-objects in our algorithms
for encoding numbers as graphs. Let π be a permutation over the set Nn =
{1, 2, . . . , n}. We think of permutation π as a sequence (π1, π2, . . . , πn), so, for
example, the permutation π = (1, 4, 2, 7, 5, 3, 6) has π1 = 1, π2 = 4, ect. No-
tice that π−1

i is the position in the sequence of the number i; in our example,
π−1
4 = 2, π−1

7 = 4, π−1
3 = 6, ect [15].

Definition 1: The inverse of a permutation (π1, π2, . . . , πn) is the permutation
(q1, q2, . . . , qn) with qπi

= πqi = i. A self-inverting permutation (or, involution)
is a permutation that is its own inverse: ππi = i.

By definition, every permutation has a unique inverse, and the inverse of the
inverse is the original permutation. Clearly, a permutation is a self-inverting per-
mutation if and only if all its cycles are of length 1 or 2; hereafter, we shall denote
a 2-cycle as c = (x, y) and an 1-cycle as c = (x), or, equivalently, c = (x, x).

Definition 2: Let C1,2 = {c1 = (x1, y1), c2 = (x2, y2), . . . , ck = (xk, yk)} be
the set of all the cycles of a self-inverting permutation π such that xi < yi
(1 ≤ i ≤ k), and let ≺ be a linear order on C1,2 such that ci ≺ cj if xi < xj ,
1 ≤ i, j ≤ k. A sequence C = (c1, c2, . . . , ck) of all the cycles of a self-inverting
permutation π is called increasing cycle representation of π if c1 ≺ c2 ≺ · · · ≺ ck.
The cycle c1 is the minimum element of the sequence C.

Let π be a permutation on N = {1, 2, . . . , n}. We say that an element i of
the permutation π dominates the element j if i > j and π−1

i < π−1
j . An element

i directly dominates (or, for short, didominates) the element j if i dominates j
and there exists no element k in π such that i dominates k and k dominates j
[23]. For example, in the permutation π = (8, 3, 2, 7, 1, 9, 6, 5, 4), the element 7
dominates the elements 1, 6, 5, 4 and it directly dominates the elements 1, 6.

Definition 3: The domination (resp. didomination) set dom(i) (resp. didom(i))
of the element i of a permutation π is the set of all the elements of π that dom-
inate (resp. didominate) the element i.

Definition 4: An undirected graph G with vertices numbered from 1 to n;
that is, V (G) = {1, 2, . . . , n}, is called a permutation graph if there exists a
permutation π = (π1, π2, . . . , πn) on Nn such that, (i, j) ∈ E(G) if and only if
(i− j)(π−1

i − π−1
j) < 0.

A flow-graph is a directed graph F with an initial node s from which all other
nodes are reachable. A directed graph G is strongly connected when there is a

6

path x → y for all nodes x, y in V (G). A node u is an entry for a subgraph H
of the graph G when there is a path p = (y1, y2, . . . , yk, x) such that p∩H = {x}.

Definition 5: A flow-graph is reducible when it does not have a strongly con-
nected subgraph with two (or more) entries.

3 Encode Watermark Numbers as Self-inverting
Permutations

In this section, we first introduce the notion of Bitonic Permutations and then
we present two algorithms, namely Encode W-to-SIP and Decode SIP-to-W, for
encoding an integer w into an self-inverting permutation π∗ and extracting it
from π∗. Both algorithms run in O(n) time, where n is the length of the binary
representation of the integer w [3].

3.1 Bitonic Permutations

The key-object in our algorithm for encoding integers as self-inverting permu-
tations is the bitonic permutation: a permutation π = (π1, π2, . . . , πn) over the
set Nn is called bitonic if either monotonically increases and then monotonically
decreases, or else monotonically decreases and then monotonically increases. For
example, the permutations π1 = (1, 4, 6, 7, 5, 3, 2) and π2 = (6, 4, 3, 1, 2, 5, 7) are
both bitonic [3].

In this paper, we consider only bitonic permutations that monotonically in-
creases and then monotonically decreases. Let π = (π1, π2, . . . , πi, πi+1, . . . , πn)
be such a bitonic permutation over the setNn and let πi, πi+1 be the two consecu-
tive elements of π such that πi > πi+1. Then, the sequenceX = (π1, π2, . . . , πi) is
called first increasing subsequence of π and the sequence Y = (πi+1, πi+2, . . . , πn)
is called first decreasing subsequence of π.

We next give some notations and terminology we shall use throughout the
paper. Let w be an integer number. We denote by B = b1b2 · · · bn the binary rep-
resentation of w. If B1 = b1b2 · · · bn and B2 = d1d2 · · · dm be two binary numbers,
then the number B1||B2 is the binary number b1b2 · · · bnd1d2 · · · dm. The binary
sequence of the number B = b1b2 · · · bn is the sequence B∗ = (b1, b2, . . . , bn) of
length n.

Let B = b1b2 · · · bn be a binary number. Then, flip(B) = b′1b
′
2 · · · b′n is the

binary number such that b′i = 0 (1 resp.) if and only if bi = 1(0resp.), 1 ≤ i ≤ n.

3.2 Algorithm Encode W-to-SIP

In this section, we present an algorithm for encoding an integer as self-inverting
permutation. In particular, our algorithm takes as input an integer w, computes

7

the binary representation b1b2 · · · bn of w, and then produces a self-inverting
permutation π∗ in O(n) time. We next describe the proposed algorithm:

Algorithm Encode W-to-SIP

1. Compute the binary representation B = b1b2 · · · bn of w;

2. Construct the binary number B′ = 00 · · · 0||B||1 of length 2n+ 1, and then
the binary sequence B∗ = (b1, b2, . . . , bn′) of flip(B′);

3. Find the sequence X = (x1, x2, . . . , xk) of the 0
′s positions and the sequence

Y = (y1, y2, . . . , ym) of the 1′s positions in B∗ from left-to-right;

4. Construct the bitonic permutation πb = X||Y R on n′ = 2n+ 1 numbers;
let πb = (x1, x2, . . . , xk, ym, ym−1, . . . , y1)

5. Set (π1, π2, . . . , πk, πk+1, πk+2, . . . , πn′) = (x1, x2, . . . , xk, ym, ym−1, . . . , y1),
i = 1 and j = n′;

while i < j do the following:
construct the 2-cycle ci = (πi, πj), and set i = i+ 1 and j = j − 1;

end-while;
if i = j then construct the 1-cycle ci = (πi);

6. Construct the permutation π∗ = (π1, π2, . . . , πn′) on n′ = 2n + 1 numbers
such that πi = i, 1 ≤ i ≤ n′;

7. Let C be the set of all cycles computed at step 5;
for each 2-cycle (πi, πj) ∈ C set ππi = πj and ππj = πi;

8. Return the self-inverting permutation π∗;

Example 1: Let w = 12 be the input watermark integer in the algorithm
Encode W-to-SIP. We first compute the binary representation B = 1100 of the
number 12; then we construct the binary number B′ = 000011001 and the bi-
nary sequence B∗ = (1, 1, 1, 1, 0, 0, 1, 1, 0) of flip(B′); we compute the sequences
X = (5, 6, 9) and Y = (1, 2, 3, 4, 7, 8), and then construct the bitonic permuta-
tion π = (5, 6, 9, 8, 7, 4, 3, 2, 1) on n′ = 9 numbers; since n′ = 9 odd, we select
4 pairs (5, 1), (6, 2), (9, 3), (8, 4) and the number 7 and then construct the self-
inverting permutation π∗ = (5, 6, 9, 8, 1, 2, 7, 4, 3).

Time and Space Complexity. The encoding algorithm Encode W-to-SIP performs
basic operations on sequences of lengths O(n), where n is the number of bits in
the binary representation of w (see Figure 1); hereafter, for the number n we
shall call the term binary size of the integer w. Moreover, all the operations
are executed in place, i.e., the algorithm uses no additional space except of a
constant number of variables. It is easy to see that the whole encoding process
requires O(n) time and space. Thus, the following theorem holds:

Theorem 1. Let w be an integer and let b1b2 · · · bn be the binary representation
of w. The algorithm Encode W-to-SIP encodes the number w in a self-inverting
permutation π∗ of length 2n+ 1 in O(n) time and space.

8

3.3 Algorithm Decode SIP-to-W

Next, we present an extraction algorithm, that is, an algorithm for decoding a
self-inverting permutation. More precisely, our extraction algorithm, which we
call Decode SIP-to-W, takes as input a self-inverting permutation π∗ produced
by Algorithm Encode W-to-SIP and returns its corresponding integer w. The
time complexity of the decode algorithm is also O(n), where n is the length of
the permutation π∗. We next describe the proposed algorithm:

Algorithm Decode SIP-to-W

1. Compute the increasing cycle representation C = (c1, c2, . . . , ck) of the self-
inverting permutation π∗ = (π1, π2, . . . , πn′), where n′ = 2n + 1, that is,
c1 ≺ c2 ≺ · · · ≺ ck;

2. Set i = 1 and j = n′:

3. Construct the permutation πb of length n′ as follows:

while the set C is not empty, do the following:

Select the minimum element c of the sequence C;
Case 1: the selected cycle c has length 2 and let c = (a, b):

πi = b and πj = a;
i = i+ 1 and j = j − 1;

Case 2: the selected cycle c has length 1 and let c = (a):
πi = a and i = i+ 1;

Remove the cycle c from C;

4. Find the first increasing subsequence X = (π1, π2, . . . , πk) and then the
decreasing subsequence Y = (πk+1, πk+2, . . . , πk′) of π;

5. Construct the binary sequence B∗ = (b1, b2, . . . , bn′) as follows:
set 0’s in positions π1, π2, . . . , πk and 1’s in positions πk+1, πk+2, . . . , πk′ ;

6. Compute B′ = flip(B∗) = (b1, b2, . . . , bn, bn+1, . . . , bn′−1, bn′);

7. Return the integer w of the binary number B = bn+1bn+2 · · · bn′−1;

Example 2: Let π∗ = (5, 6, 9, 8, 1, 2, 7, 4, 3) be a self-inverting permutation pro-
duced by the algorithm Encode W-to-SIP. The cycle representation of π∗ is the
following: (1, 5), (2, 6), (3, 9), (4, 8), (7); from the cycles we construct the permu-
tation π = (5, 6, 9, 8, 7, 4, 3, 2, 1); then, we compute first increasing subsequence
X = (5, 6, 9) and the first decreasing subsequence Y = (8, 7, 4, 3, 2, 1); we then
construct the binary sequence B∗ = (1, 1, 1, 1, 0, 0, 1, 1, 0) of length 9; we flip
the elements of B∗ and construct the sequence B′ = (0, 0, 0, 0, 1, 1, 0, 0, 1); the
binary number 1100 is the integer w = 12.

Time and Space Complexity. It is easy to see that the decoding algorithm
Decode SIP-to-W performs the same basic operations on sequences of lengths
O(n) as the encoding algorithm (see Figure 1). Thus, we obtain the following
result:

9

B: binary representation B: binary number of the 2nd block of B′

b1b2 · · · bn of the integer w b1b2 · · · bn = b′
n+1b

′

n+2 · · · b
′

n′
−1

B′: binary number B′: binary number of sequence flip(B∗)
b′1b

′

2 · · · b
′

n
||b1b2 · · · bn||b

′′

1 b′1b
′

2 · · · b
′

n
b′
n+1b

′

n+2 · · · b
′

n′
−1b

′′

n′

B∗: sequence of 0s and 1s of flip(B′) B∗: binary sequence with 0s (1s) at the
(b′1, b

′

2, . . . , b
′

n
, b1, b2, . . . bn, b

′′

1) positions corresp. to X’s (Y ’s) elements

X: sequence of indeces of 0s in B∗ X: first increasing subsequence of πb

Y : sequence of indeces of 1s in B∗ Y : remaining subsequence of πb

πb: bitonic permutation constructed πb: bitonic permutation constructed from
by X and Y R, i.e., X||Y R the increasing cycle representation

C: set of 2-cycles and 1-cycle C: increasing cycle representation of π∗

constructed from πb

w: watermarking integer

π∗: self-inverting permutation

Fig. 1. The main data components used by the algorithms Encode W-to-SIP and
Decode SIP-to-W

Theorem 2. Let π∗ be a self-inverting permutation of length n which encodes an
integer w using the algorithm Encode W-to-SIP. The algorithm Decode SIP-to-W

correctly decodes the permutation π∗ in O(n) time and space.

4 Encode Self-inverting Permutations as Reducible
Permutation Graphs

Having proposed an efficient method for encoding integers as self-inverting per-
mutations, we next describe an algorithm for encoding a self-inverting permuta-
tion π∗ into a directed graph F [π∗]. We also describe a decoding algorithm for
extracting the permutation π∗ from the graph F [π∗].

10

4.1 Algorithm Encode SIP-to-RPG

We next propose the algorithm Encode SIP-to-RPG which takes as input the
self-inverting permutation π∗ produced by the algorithm Encode W-to-SIP and
constructs a reducible permutation flow-graph F [π∗] by using an efficient DAG
representation of the self-inverting permutation π∗. The whole encoding process
takes O(n) time and requires O(n) space, where n is the length of the input
permutation π∗.

Given a self-inverting permutation π∗ of length n our decoding algorithm
works on two phases:

I. it first uses a strategy to transform the permutation π∗ into a directed acyclic
graph D[π∗] using certain combinatorial properties of the elements of π∗;

II. then, it constructs a directed graph F [π∗] on n+2 nodes using the adjacency
relation of the nodes of the dag D[π∗].

Next, we first describe the main ideas behind the two phases and then we
present in details the whole algorithm.

Construction of the DAG D[π∗] from the permutation π∗: We construct
the directed acyclic graph D[π∗] by exploiting the didomination relation of the
elements of π∗, as follows:

(i) for every element i of π∗, create a vertex vi and add it to the vertex set
V (D[π∗]);

(ii) compute the didomination relation of each element i of π∗; recall that the
didomination set didom(i) of the element i contains all the elements j of π∗

that are didominated by the element i (see Definition 3);

(iii) for every pair of vertices (vi, vj) of the set V (D[π∗]) do the following: add
the edge (vi, vj) in E(D[π∗]) if the element i didominates the element j in
π∗;

(iv) create two dummy vertices s and t and add both in V (D[π∗]); then, add the
edge (s, vi) in E(D[π∗]), for every vi with indeg(vi) = 0, and the edge (vi, t)
in E(D[π∗]), for every vi with outdeg(vi) = 0.

Construction of the RPG F [π∗] from the graph D[π∗]: We construct the
directed graph F [π∗] by exploiting the adjacency relation of the nodes of the
dag D[π∗], as follows:

(i) for every vertex vi of D[π∗], 1 ≤ i ≤ n, create a node ui and add it to
V (F [π∗]); create the nodes un+1 and u0 and add them to V (F [π∗]); note
that, the nodes un+1 and u0 correspond to s and t, respectively;

(ii) for every pair of nodes (ui, ui−1) of the set V (F [π∗]) add the directed edge
(ui, ui−1) in E(F [π∗]), 1 ≤ i ≤ n+ 1;

(iii) add the directed edge (ui, uj) in E(F [π∗]) if (vi, vj) ∈ E(D[π∗]), 1 ≤ i ≤ n+
1, and vi is the maximum-labeled element of the set {vi1 , vi2 , . . . , viindeg(i)

},
where (vik , vj) ∈ E(D[π∗]), 1 ≤ k ≤ indeg(i).

11

Algorithm Encode SIP-to-RPG

1. Construct a directed acyclic graph (dag) D[π∗] on n vertices as follows:
◦ V (D[π∗]) = {v1, v2, . . . , vn};
◦ compute the set didom(i) of each element i in π∗, 1 ≤ i ≤ n− 1;
◦ for each j ∈ didom(i), add the edge (vi, vj) in E(D[π∗]);
◦ add two dummy vertices s = vn+1 and t = v0 in V (D[π∗]);
◦ add (s, vi) ∈ E(D[π∗]), for every vi with indeg(vi) = 0;
◦ add (vi, t) ∈ E(D[π∗]), for every vi with outdeg(vi) = 0;

2. For each vertex vi ∈ V (D[π∗]), 1 ≤ i ≤ n, do
◦ compute the set P (vi) = {vj ∈ V (D[π∗])|(vj , vi) ∈ E(D[π∗])};
◦ select the maximum-labeled vertex vm from P (vi);
◦ set p(vi) = vm;

3. Construct a directed graph F [π∗] on n+ 2 vertices, as follows:
◦ V (F [π∗]) = {t = u0, u1, . . . , un, un+1 = s};
◦ for i = n downto 0 do

add the edge (ui+1, ui) in E(F [π∗]); we call it list pointer;

4. For each vertex ui ∈ V (F [π∗]), 1 ≤ i ≤ n, do
◦ add the edge (ui, um) in E(F [π∗]) if vm = p(vi);

we call it max-didomitation pointer;

5. Return the graph F [π∗];

Time and Space Complexity. The most time- and space-consuming steps of the
algorithm are the construction of the directed graph D[π∗] (Step 1) and the
computation of the function p for each vertex vi ∈ V (D[π∗]), 1 ≤ i ≤ n (Step 2;
recall that p(vi) equals the maximum-labeled vertex vm of the set P (vi) contain-
ing all the vertices of D[π∗] which didominate vertex vi). On the other hand,
the construction of the reducible permutation flow-graph F [π∗] (Steps 3 and 4)
requires only the list pointers, which can be trivially computed, and the max-
didomitation pointers, which can be computed using the function p.

Looking at the permutation π∗, we observe that the element m which cor-
responds to vertex vm of D[π∗] is the max-indexed element on the left of the
element i in π∗ that is greater than i. Thus, the function p can be alternatively
computed using the input permutation as follows:

(i) insert the element s with value n+ 1 into a stack S;
top S is the element on the top of the stack;

(ii) for each element πi ∈ π∗, i = 1, 2, . . . , n, do the following:
while top S < πi do

remove the top S from S;
p(ui) = top S;
insert πi in stack S;

Since each element of the input permutation π∗ is inserted once in the stack
S and is compered once with each new element the whole computation of the

12

π∗ = (6, 3, 2, 9, 8, 1, 11, 5, 4, 10, 7)

s6

93

82

5

7

1

4

t

1011 9 8 7 6 5 4 3 2 1 t

6 9 11

3 8 5 10

2 1 4

SI
P-
to
-D
AG

D
A
G
-to-R

PG
R
PG

-to
-T
re
e

Tree-to-SIP
D[π∗]

F [π∗]

T [π∗]

10

7

s

11

s

Fig. 2. The main structures used or constructed by the algorithms Encode SIP-to-RPG

and Decode RPG-to-SIP; that is, the self-inverting permutation π∗, the dag D[π∗], the
reducible graph F [π∗], and the tree T [π∗]

function p takes O(n) time and space, where n is the length of the permutation
π. Thus, we obtain the following result:

Theorem 3. Let π∗ be a self-inverting permutation of length n. The algorithm
Encode SIP-to-RPG for encoding the permutation π∗ as a reducible permutation
flow-graph F [π∗] requires O(n) time and space.

4.2 Algorithm Decode RPG-to-SIP

The algorithm Encode SIP-to-RPG produces reducible permutation flow-graph
F [π∗] in which it encodes a self-inverting permutation π∗. Thus, we are interested
in designing an efficient and easily implemented algorithm for extracting the
permutation π∗ from the graph F [π∗].

Next, we present such a decoding algorithm, we call it Decode RPG-to-SIP,
which is efficient: it takes time and space linear, i.e., O(n), in the size of the flow-
graph F [π∗], and easily implemented: the only operations used by the algorithm
are edge modifications on F [π∗] and DFS-search on trees.

13

The algorithm takes as input a reducible permutation flow-graph F [π∗] on
n + 2 nodes and produces a self-inverting permutation π∗ of length n; it works
as follows:

Algorithm Decode RPG-to-SIP

1. Delete the directed edges (vi+1, vi) from the edge set E(F [π∗]), 1 ≤ i ≤ n,
and the node t = v0 from V (F [π∗]);

2. Flip all the remaining directed edges of the graph F [π∗]; the resulting graph
is a tree T [π∗];

3. Perform DFS-search on tree T [π∗] starting at node s by always proceeding
to the minimum-labeled child node;

4. Order the nodes s, v1, v2, . . . , vn of the tree T [π∗] by their DFS discovery
time d[] and let π = (vd[0], vd[1], vd[2], . . . , vd[n]), where vd[0] = s and d[0] <
d[1] < . . . < d[n];

5. Delete node s from the order π;

6. Return π∗ = π;

Time and Space Complexity. The size of the reducible permutation graph F [π∗]
constructed by the algorithm Encode SIP-to-RPG is O(n), where n is the length
of the permutation π∗, and thus the size of the resulting tree T [π∗] is also O(n).
It is well known that the DFS-search on the tree T [π∗] takes time linear in the
size of T [π∗]. Thus, the decoding algorithm is executed in O(n) time using O(n)
space. Thus, the following theorem holds:

Theorem 4. Let F [π∗] be a reducible permutation flow-graph of size O(n) pro-
duced by the algorithm Encode SIP-to-RPG. The algorithm Decode RPG-to-SIP

decodes the flow-graph F [π∗] in O(n) time and space.

5 Properties and Attacks

In this section, we analyze the structures of the two main components of our
proposed codec, that is, the self-inverting permutation π∗ produced by the al-
gorithm Encode W-to-SIP and the reducible permutation graph F [π∗] produced
by the algorithm Encode SIP-to-RPG, and discuss their properties with respect
to resilience to attacks.

5.1 Properties of permutation π∗

Collberg et al. [7, 5] describe several techniques for encoding watermark integers
in graph structures. Based on the fact that there is a one-to-one correspondence
between self-inverting permutations and isomorphism classes of RPGs, Collberg
et al. [5] proposed a polynomial algorithm for encoding any integer w as the RPG
corresponding to the wth self-inverting permutation π in this correspondence. In

14

this encoding the self-inverting permutation has no any other property except
that it is its own inverse.

In our codec system proposed in this paper an integer w is encoded as self-
inverting permutation π∗ using a particular construction technique which cap-
tures into π∗ important structural properties. These properties unable us to
identify any single change (in some cases, multiple changes) made by an attacker
to π∗.

The main structural properties of our self-inverting permutation π∗ produced
by the algorithm Encode W-to-SIP can be summarized into the following three
categories:

• Length property: By construction the self-inverting permutation π∗ has
always odd length. Thus, any single node-modification, i.e., adding an ele-
ment in π∗ or deleting an element from π∗, can be easily identified;

• Bitonic property: Algorithm Decode SIP-to-W decodes the self-inverting
permutation π∗ to obtain the encoded integer w. During the decoding pro-
cess two sequences are constructed, that is, the increasing subsequence X
and the decreasing subsequence Y (see Step 4), which incorporate the bitonic
property of the encoding process. If the permutation π∗ has not been pro-
duced by our encoding algorithm Encode W-to-SIP then subsequence Y may
not be increasing. Thus, an appropriate change to SIP π∗ that keeps the SIP
property may be identified by checking the subsequence Y ;

• Block property: The algorithm Encode W-to-SIP takes the binary repre-
sentation of the integer w and constructs the number B′ (see Step 2). The
binary representation of B′ consists of three parts (or, blocks): (i) the first
part contains the first n bits with 0s values, (ii) the second part contains
the next n bits which forms the binary representation of the integer w, and
(iii) the third part of length one contains a bit 1. This property is encapsu-
lated in the structure of π∗ in such a way that during the decoding process
the binary sequence B′ constructed in Step 6 of the decoding algorithm
Decode SIP-to-W is identical to the sequence B′ constructed by the encod-
ing algorithm Encode W-to-SIP. If an attacker make appropriate changes to
SIP π∗ so that the resulting permutation π∗ still has the SIP property, then
the first block of the binary sequence B′ may contain one or more 1s or the
third block may be 0.

5.2 Properties of graph F [π∗]

The reducible permutation graph F [π∗] consists of the following three compo-
nents:

(1) A header node: it is a root node with outdegree one from which every other
node in the graph F [π∗] is reachable. Note that, every control flow-graph has
such a node. In the graph F [π∗] the header node is denoted by s;

15

(2) A footer node: it is a node with outdegree zero that is reachable from
every other node of the graph. Every control flow-graph has such a node,
representing the method exit. In the graph F [π∗] the footer node is denoted
by t;

(3) A linked list: it consists of n nodes u1, u2, . . . , un each with outdegree
two. In particular, each node ui (1 ≤ i ≤ n) has exactly two outpointers:
one points to node ui−1, which we call list pointer, and the other points to
node um, which we call max-didomination pointer, where m > i; note that,
um > ui > ui−1.

For graph-based algorithms, the watermark is encoded into a graph G in some
special kind of graphs. Generally, the watermark graph G should not differ from
the graph data structures built by real programs. Important conditions are that
the maximum outdegree of G should not exceed two or three, and that the
graph G have a unique root node so the program can reach other nodes from
the root node. Moreover, G should be resilient to attacks against edge and/or
node modifications. Finally, G should be efficiently constructed.

The proposed reducible permutation graph F [π∗] and a corresponding codec
(encode, decode)F [π∗] have all the above properties; in particular, the graph
F [π∗] and the corresponding codec have the following properties:

• Appropriate graph types: The graph F [π∗] is directed on n + 2 nodes
with outdegree exactly two; that is, it has low max-outdegree, and, thus, it
matches real program graphs;

• High resiliency: Since each node in the reducible permutation graph F [π∗]
has exactly one list outpointer and exactly one max-didom outpointer, any
single edge modification, i.e., edge-flip, edge-addition, or edge-deletion, will
violate the outpointer condition of some nodes, and thus the modified edge
can be easily identified and corrected. Thus, the graph F [π∗] unable us to
correct single edge changes;

• Small size: The size |Pw| − |P | of the embedded watermark is small;

• Efficient codecs: The codec (encode, decode)F [π∗] has low time and space
complexity; more precisely, we have showed (see Theorem 3 and Theorem 4)
that the algorithm Encode SIP-to-RPG for encoding the permutation π∗

in F [π∗] requires O(n2) time and O(n) space, where n is the size of the
input permutation π∗, while the algorithm Decode RPG-to-SIP decodes the
flowgraph F [π∗] in O(n) time and space, where n is the size of F [π∗].

It is worth noting that our encoding and decoding algorithms use basic data
structures and code operations, and, thus, they are easily implemented.

6 Concluding Remarks

In this paper we extended the class of error correcting graphs by proposing
efficient and easy to implement graph encodings. In particular, we proposed an

16

efficient and easily implemented codec system for encoding watermark numbers
as graph structures.

More precisely, we first presented the algorithm Encode W-to-SIP which en-
code an integer w as SIP (self-inverting permutation) π∗ in O(n) time and space,
where n is the number of bits in the binary representation of w, and the cor-
responding decoding algorithm Decode SIP-to-W which extracts the watermark
number w from the SIP π∗ also in O(n) time and space.

We next presented the algorithm Encode SIP-to-RPG which encodes the SIP
π∗ as a reducible flow-graph F [π∗] in O(n) time and space by exploiting didomi-
nation relations on the elements of π∗, and the corresponding decoding algorithm
Decode RPG-to-SIP which extracts the SIP π∗ from the graph F [π∗] in O(n)
time and space by converting first the graph F [π∗] into a directed tree T [π∗] and
then applying DFS-search on T [π∗].

The main features of our proposed encoding and decoding algorithms can be
summarized as follows:

• Algorithms Encode W-to-SIP and Decode SIP-to-W: use basic data struc-
tures; apply elementary operations on sequences; have low time and space
complexity; have an easy implementation;

• Algorithms Encode SIP-to-RPG and Decode RPG-to-SIP: use domination
relations on permutations; construct dags and lists; use DFS-search on di-
rected trees; have low time and space complexity; have an easy implementa-
tion;

An interesting property of our encoding approach is that of enabling us to encode
the integer w = b1b2 · · · bn as self-inverting permutation π∗ of any length; indeed,
π∗ can be constructed over the set Nn′ = {1, 2, . . . , n′}, where the smallest value
of n′ is O(log n).

It is worth noting that the two main components of our proposed codec sys-
tem, i.e., the self-inverting permutation π∗ and the reducible permutation graph
F [π∗], incorporate important structural properties, due to bitonic property en-
capsulated in π∗ and the reducible property of F [π∗], which cause them resilience
to attacks. In particular, these properties unable us to identify any single change
(in some cases, multiple changes) made by an attacker to π∗ and F [π∗].

Thus, in light of our two codec components π∗ and F [π∗] proposed in this
paper it would be very interesting to come up with new efficient codec algorithms
and structures having “better” properties with respect to resilience to attacks;
we leave it as an open question. Another interesting open question with practical
value is whether the class of reducible permutation graphs can be extended so
that it includes other classes of graphs with structural properties capable to
efficiently encode watermark numbers.

Finally, we leave as an open problem the evaluation of our codec algorithms
and structures in a simulation environment in order to obtain detailed infor-
mation about their practical behaviour. For future investigation, we also leave
as an open problem the analysis of our codec algorithms under other software
watermarking measurements.

17

References

1. A.V. Aho, R. Sethi, and J.D. Ullman: Compilers, Principles, Techniques, and Tools.
Addison-Wesley, (1986)

2. G. Arboit: A method for watermarking Java programs via opaque predicates. 5th
International Conference on Electronic Commerce Research(ICECR-5) (2002)

3. M. Chroni and S.D. Nikolopoulos: Encoding watermark integers as self-inverting
permutations. International Conference on Computer Systems and Technologies
(CompSysTech’10), ACM ICPS 471, 125–130, (2010)

4. C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn and
M. Stepp: Dynamic path-based software watermarking. Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation, ACM SIG-
PLAN 39, 107–118 (2004)

5. C. Collberg, E. Carter, S. Kobourov, and C. Thomborson: Error-correcting graphs
for software watermarking. Proc. 29th Workshop on Graphs in Computer Science
(WG’03), LNCS 2880, 156–167 (2003)

6. C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp: More on graph
theoretic software watermarks: Implementation, analysis, and attacks. Information
and Software Technology 51, 56–67 (2009)

7. C. Collberg and C. Thomborson: Software watermarking: models and dynamic
embeddings. Proc. 26th ACM SIGPLAN-SIGACT on Principles of Programming
Languages (POPL’99), 311–324 (1999)

8. C. Collberg, C. Thomborson, and D. Low: On the limits of software watermarking.
Department of Computer Science, The University of Auckland, Technical Report
No 164 (1998)

9. C.S. Collberg, C. Thomborson, and G.M. Townsend: Dynamic graph-based soft-
ware fingerprinting. ACM Transactions on Programming Languages and Sys-
tems 29, 35:1-67 (2007)

10. P. Cousot and R. Cousot: An abstract interpretation-based framework for software
watermarking. Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’04), 173–185 (2004)

11. D. Curran, N. Hurley and M. Cinneide: Securing Java through software sater-
marking, Proc. Int’l Conference on Principles and Practice of Programming in
Java (PPPJ’07), 145–148 (2003)

12. I. Cox, J. Kilian, T. Leighton, and T. Shamoon: A secure, robust watermark for
multimedia. Proc. 1st Int’l Workshop on Information Hiding, LNCS 1174, 317–333
(1996)

13. R.L. Davidson and N. Myhrvold: Method and system for generating and auditing
a signature for a computer program. US Patent 5.559.884, Microsoft Corporation
(1996)

14. R. Ghiya and L.J. Hendren: Is it a tree, a DAG, or a cyclic graph? a shape analysis
for heapdirected pointers in c. Proc. 23rd ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages (POPL’96), 1–15 (1996)

15. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York (1980). Second edition, Annals of Discrete Math. 57, Elsevier (2004)

16. D. Grover: The Protection of Computer Software - Its Technology and Applica-
tions. Cambridge University Press, New York (1997)

17. M.S. Hecht and J.D. Ullman: Flow graph reducibilit. SIAM J. Computing 1, 188–
202 (1972)

18

18. M.S. Hecht and J.D. Ullman: Characterizations of reducible flow graphs. Journal
of the ACM 21, 367–375 (1974)

19. S.A. Moskowitz and M. Cooperman: Method for stegacipher protection of computer
code. US Patent 5.745.569 (1996)

20. A. Monden, H. Iida, K. Matsumoto, K. Inoue and K. Torii: A practical method
for watermarking Java programs, Proc. 24th Computer Software and Applications
Conference (COMPSAC’00), 191–197 (2000)

21. G. Myles and C. Collberg: Software watermarking via opaque predicates: Imple-
mentation, analysis, and attacks. Electronic Commerce Research 6, 155–171 (2006)

22. J. Nagra and C. Thomborson: Threading software watermarks. Proc. 6th Int’l
Workshop on Information Hiding (IH’04), LNCS 3200, 208-223 (2004)

23. S.D. Nikolopoulos: Coloring permutation graphs in parallel. Discrete Applied
Mathematics 120, 165–195 (2002)

24. G. Qu and M. Potkonjak: Analysis of watermarking techniques for graph color-
ing problem. Proc. IEEE/ACM Int’l Conference on Computer-aided Design (IC-
CAD’98), ACM Press, 190–193 (1998)

25. G. Ramalingam: The undecidability of aliasing. ACM Transactions on Program-
ming Languages and Systems 16, 1467–1471 (1994)

26. P. Samson: Apparatus and method for serializing and validating copies of computer
software. US Patent 5.287.408 (1994)

27. J. Stern, G. Hachez, F. Koeune, and J. Quisquater: Robust object watermarking:
Application to code. Proc. 3rd Int’l Workshop on Information Hiding (IH’99),
LNCS 1768, 368–378 (1999)

28. H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto: Design and evalua-
tion of birthmarks for detecting theft of Java programs. Proc. Int’l Conference on
Software Engineering (IASTED SE’04), 569–575 (2004)

29. R. Venkatesan, V. Vazirani, and S. Sinha: A graph theoretic approach to soft-
ware watermarking. Proc. 4th Int’l Workshop on Information Hiding (IH’01),
LNCS 2137, 157–168 (2001)

30. L. Zhang, Y. Yang, X. Niu, and S. Niu: A survey on software watermarking. Journal
of Software 14, 268–277 (2003)

31. W. Zhu, C. Thomborson, and F.Y. Wang: A survey of software watermarking.
Proc. IEEE Int’l Conference on Intelligence and Security Informatics (ISI’05),
LNCS 3495, 454–458 (2005)

