
Okeanos: Fast and Reliable Stream Storage
Through Differential Data Journaling

Andromachi Hatzieleftheriou Stergios V. Anastasiadis
Department of Computer Science
University of Ioannina, GREECE

Technical Report DCS 2008-08
November 10, 2008

Abstract
Real-time storage of massive stream data is emerging as
a critical component in modern computing infrastructures
used for continuous monitoring purposes. Traditional file
and database systems are not designed for such operation en-
vironments and incur excessive resource requirements when
handling high-volume streaming traffic. In the present pa-
per, we examine the possibility of employing data journaling
in order to combine sequential throughput with low latency
during synchronous writes. Experimentally we demonstrate
that low-rate streams incur remarkably high data journaling
traffic in a commonly-used production file system. In order
to alleviate the problem, we designed and implemented dif-
ferential data journaling in the kernel of the above system.
Through extensive experimentation we show substantial re-
duction in the required disk throughput combined with very
low write latency.

Categories and Subject Descriptors D.4.3 [Operating Sys-
tems]: File Systems Management

General Terms Design, Performance, Experimentation,
Reliability

Keywords Journaled File System, Linux, Ext3, Small Write
Performance Improvement, Streaming

1. Introduction
Continuous monitoring processes are prevalent today for
a wide range of purposes such as network administration,
autonomic systems management and physical site safety.
Such important applications make stream-oriented function-
ality highly relevant in modern computing infrastructures.
For instance, recently proposed stream management engines
demonstrate the feasibility of flexibly applying time-series
operators on high-rate streams (Balakrishnan et al. 2004;
Iannaccone et al. 2004). Existing stream processing envi-
ronments store stream data either temporarily before ap-

plying real-time operators within time windows (Carney
et al. 2002), or permanently in order to support retrospec-
tive query processing (Desnoyers and Shenoy 2007).

Prior research has made the case that traditional data
management approaches, such as relational databases and
general-purpose file systems, are not engineered to effi-
ciently store continuous stream data that are automatically
generated from sensors in real time (Carney et al. 2002;
Desnoyers and Shenoy 2007). For instance, sensors may
generate high-resolution video and audio streams at high
rates (Esteve and Palau 2006), or send intermittent varia-
tions of environmental conditions at much lower rates (Long
et al. 1995). A monitoring system receives messages from
high-volume links or large numbers of sensors and stores the
received data for a time period that depends on whether the
applied processing occurs in real time or retroactively.

Across all types of heterogeneous streams, it would be de-
sirable to store the received data reliably on the same facility
without compromising the sequential playback performance
required for statistical processing or effective visualization.
Thus, a stream storage facility could serve as a building
block for a variety of applications in the entire range from
network packet processing to urban traffic control or envi-
ronmental monitoring with the appropriate indexing func-
tionality built separately at a higher level, when support for
query processing is required.

Existing general-purpose file systems use journaling in
order to synchronously move data or metadata from memory
to disk in a sequential manner. Thus they postpone the more
costly transfer of data or metadata to the final disk location
without penalizing the write latency perceived by the appli-
cation user. Indeed, previous research has used trace-based
emulation to experimentally demonstrate that data journal-
ing can serve random writes with high sequential through-
put, but actually makes throughput lower at high data vol-
umes due to the extra disk traffic generated (Prabhakaran
et al. 2005). The study made the reasonable conclusion that

1 2008/11/10



data journaling should only be enabled with random writes,
but disabled with large sequential writes. Instead, we focus
on the efficient and reliable storage of multiple concurrent
streams whose aggregate workload demonstrates random-
access behavior even though appends corresponding to indi-
vidual streams may be perfectly sequential. To a large extent,
in such environments it remains unclear what is the most ap-
propriate way to handle the incoming data.

In the present paper, we investigate the performance char-
acteristics of data journaling in the context of synchronous
writes that would be required among several situations in-
cluding the reliable storage of incoming streaming data. In
order to lower the cost of data journaling we implemented a
differential version of it in the default file system of a widely
used operating system. We find that depending on the rate
of the streams we can reduce up to several factors the re-
quired journaling throughput by only journaling the bytes
actually written rather than the entire blocks that contain
them. As a side-effect of the sequential writes to the journal-
ing device, we also reduce substantially the response time of
synchronous writes. Thus, we can use data journaling to re-
duce the latency of writes at a reduced cost of required disk
throughput.

In the rest of the paper, we first describe the existing
journaling techniques in Section 2. Then, in Section 3 we
present one existing data journaling method that is widely
available, and in Section 4 we introduce the differential data
journaling technique that we designed and implemented for
a commonly used operating system. In Section 5, we explain
the experimentation environment that we used in our study,
while in Section 6 we present our measurements across
different workloads. In Section 7 we summarize previous
related work, while in Section 8 we outline our conclusions.

2. Background
In general, file system operations are either data operations
that update user data, or metadata operations that modify
the structure of the file system itself. Consistent recovery of
the metadata after a crash, due to operating system failure
or power outage for instance, requires the system metadata
to be written on disk in a specific order. The system can
achieve consistency simply by updating the system metadata
synchronously. Similarly one can recover recently written
data after a crash by writing them synchronously to disk.
Synchronous data writes are typically applied in database
systems that store critical data (Wang et al. 1999; Chen
et al. 1996). In the rest of the present section, we describe
techniques that have been previously proposed to achieve
high performance in file systems during data and metadata
updates.

2.1 Log-structured file systems

A log-structured file system writes all data and metadata
modifications into a log (Rosenblum and Ousterhout 1992).

The log is the only structure on disk and consists of segments
that facilitate the removal of deleted areas. This approach
takes advantage of sequential writes to improve the update
performance. Periodically, the system writes the complete
and consistent file structures safely at a fixed position of the
log called checkpoint region. After a crash, the file system
uses the checkpoint for its initialization and the recent por-
tion of the log to quickly recover recently written data.

A modified version of the log-structured file system has
been recently used for the storage of high-volume streams
(Desnoyers and Shenoy 2007). StreamFS has incoming
stream data written to a frontier that moves in a circular
fashion along the disk space and selectively overwrites the
expired data. However, StreamFS has been specifically de-
signed for high-rate streams typically generated in network
monitoring systems; it is unclear how it would behave in
heterogeneous environments where high-rate and low-rate
streams co-exist. Additionally, an aggregate high-rate stream
typically contains a large volume of information that makes
necessary to build an index structure online during data stor-
age and scan entire segments of the stored data during ret-
rospective query processing. Instead, demultiplexing of the
incoming data into separate files according to some criterion
would possibly facilitate and reduce the load of the subse-
quent selective retrieval and processing.

2.2 Soft updates

Soft updates is a mechanism that delays writes of metadata
and explicitly maintains dependency information to specify
the order in which data must be written to disk. Thus, it
eliminates the need for a log or most synchronous writes
related to metadata. The system maintains for each disk
block a list of all the metadata dependencies associated with
the block. When the system selects to write a block which
requires other blocks to be written first, the system rolls back
the affected parts of the selected block to their earlier state.
After the write has completed, the system deletes all the
fulfilled dependencies and restores the block to its current
value. Thus, applications see the most recent version of
the metadata blocks and the system keeps disk contents
consistent.

The method improves system performance because it ag-
gregates multiple metadata updates into a reduced number of
disk writes and postpones time-consuming operations, such
as deletes, to a background process. After system crashes
the system can be mounted and used immediately, since the
only remaining inconsistencies are non-fatal errors that can
be corrected in the background during normal operation.

2.3 Journaling file systems

Journaling file systems use an auxiliary log to record all
metadata operations. Additionally, some implementations
also support logging of data modifications. The log is main-
tained as a preallocated file in the same file system or
as a standalone separate file system. Write-ahead logging

2 2008/11/10



guarantees that the log is updated on the disk before the
pages corresponding to the modified blocks. Thus, the sys-
tem performs additional disk operations, which are efficient
since they are sequential. Batching of log writes originating
from different concurrent applications provides additional
throughput improvements.

File system journaling allows synchronous writes to com-
plete faster, because they return as soon as the sequential
log update completes. Thus, costly disk operations at the
final locations of the modified blocks can be deferred and
completed periodically and asynchronously. Journaling of
file data helps further in that direction, but incurs significant
extra throughput on the journaling device. The cost of data
journaling can be high for large writes due to the significant
volume of data sent to the log. Unfortunately, current im-
plementations incur considerable logging activity even with
small writes. In order to simplify the implementation, they
log the entire blocks being modified rather than just their
modified part. However, journaling reduces write latency in
both small and large writes, since it allows the synchronous
log updates to be completed sequentially.

2.4 Summary

In summary, current file systems mostly care to maintain
their integrity across crashes without compromising their
performance. They achieve this goal by flushing metadata
updates at sequential disk throughput or by avoiding the vio-
lation of the dependencies across the block updates. Existing
techniques that complete the data updates synchronously re-
quire significant extra throughput in order to achieve that at
relatively low latency. In the rest of the paper, we demon-
strate that it is possible to reduce substantially the through-
put overhead of synchronous data writes while maintaining
low latencies, as well.

3. Journaling in the Ext3 File System
As disk capacities grow faster than disk access speeds over
time, modern file systems use journaling to support fast re-
covery after a crash (Tweedie 1998; Galli 2001; Bovet and
Cesati 2005; Prabhakaran et al. 2005). Journaling reduces
possible downtime of several hours to a few seconds by con-
sidering the most recent disk writes rather than making con-
sistency checks over the entire capacity of the file system.
Ext3 implements journaling by performing each high-level
change to the file system in two steps. First, it copies the
modified blocks into the journal. Second, it transfers the
modified blocks into their final disk location. When the file
system update completes, ext3 discards the copies of the
blocks in the journal.

3.1 Journal

Ext3 handles the journal through a special kernel layer called
journaling block device. It implements the journal as either
a hidden file within the root directory of the file system

or a separate disk partition. Each log record in the journal
corresponds to one low-level operation in the file system that
updates one disk block. The journal represents with a log
record the entire modified block of the file system rather than
the range of block bytes actually modified. Thus, the journal
is wasteful in terms of disk throughput and space, but simple
in terms of processing complexity because it uses the buffers
of the modified blocks directly. Additionally, each log record
is associated with auxiliary information that contains the
number of the corresponding block in the file system and
several status flags.

3.2 Transactions

Each high-level operation of the file system (e.g. a system
call) consists of multiple low-level operations that manipu-
late disk data structures. The atomic operation handle refers
to a set of low-level operations. When the system recovers
from a failure, it ensures that either an atomic operation han-
dle occurs completely or all the low-level operations of the
handle are discarded. In order to improve efficiency, the sys-
tem groups into a single transaction the records of multiple
atomic operation handles. All the log records of a handle
belong to one transaction. After its creation, the transaction
accepts log records of new handles for a fixed period of time.
The system stores all the log records of a transaction consec-
utively on the journal. After the log records have been com-
mitted to the file system, the system reclaims all the blocks
of the transaction.

A transaction is considered complete (equivalently in
state T FINISHED), if all its log records are fully residing
in the journal including the commit block. It is incomplete, if
at least one log record of the transaction is not in the journal.
An incomplete transaction can be in one of the following
states

T RUNNING It still accepts new atomic operation handles.

T LOCKED It does not accept new handles, but waits for
the accepted handles to finish.

T FLUSH The accepted handles are still in the process of
writing log records to the journal.

T COMMIT All the log records have been written to the
journal except for the commit block of the transaction.

When recovering from a failure, the system skips all incom-
plete transactions and transfers the blocks of the complete
transactions to the file system.

If the file system is mounted in journal mode, then both
data and metadata blocks are copied to the journal, before
they update the file system. This mode minimizes the chance
of losing file updates, but incurs additional disk accesses. In
the rest of the present document, we prefer to use the term
data journaling when we refer to the journal mode in order
to stress out the fact that it journals data in addition to meta-
data. The ordered mode only copies the metadata blocks
to the journal. Additionally, metadata blocks update the file

3 2008/11/10



HEADER

TAG

Journal Descriptor
Block

...

TAG

TAG

Full Blocks

- block # of final
location on disk

TAG

TAG

...Buffer Page

Block Buffer
New Data

Unmodified Data

(a)

HEADER

TAG

Journal Descriptor
Block

Partial Blocks

...

TAG

TAG

..
.

DATA DIFF

DATA DIFF

DATA DIFF

Full Blocks

- block # of final
location on disk

- offset inside page
- length in bytes

TAG

DATA DIFF

...

TAG

Buffer Page

Block Buffer
New Data

Unmodified Data

(b)

Figure 1. (a). In the original design of the ext3 data journaling, there is a full block for each write operation. (b) In the differential data journaling that
we introduce, we use partial blocks to accumulate the data modifications from multiple writes. Thus, we can reduce considerably the traffic to the journaling
device when the write operations only modify part of a block.

system after the associated data blocks, which reduces the
risk of corrupting data inside a file. Finally, in writeback
mode, only metadata blocks are copied to the journal, and
there are no requirements in the order at which data and
metadata blocks update the file system. It is considered the
fastest method, but also the weakest in terms of consistency.

Figure 2 depicts the difference in the amount of traffic
sent to the journal device across the three mount options
of ext3. It is noticeable that data journaling incurs only
slightly varying traffic for write requests smaller than 4KB.
Essentially, data journaling sends a large amount of traffic to
the journal for small writes regardless of the actual size of
the write requests.

3.3 Buffers

The Linux kernel uses the page cache to temporarily keep
page copies from recently accessed disk files in memory. A
block buffer is the buffer of an individual disk block in mem-
ory. A buffer head descriptor specifies for each block buffer
the necessary handling information required by the kernel.
Generally, the page cache does not allocate the block buffers
individually, but in units of pages called buffer pages. The
kernel addresses individual blocks using the buffer heads
pointed to by the corresponding buffer page. A number of
pdflush kernel threads flush dirty pages to their final location
on disk through two separate mechanisms:

• Systematically scan the page cache every writeback pe-
riod.

• Implement a timeout mechanism on each page according
to a configurable expiration period.

A user can also use the fsync system call to synchronously
flush all the data and metadata dirty buffers of the specified
file descriptor to disk. Actually, fsync moves the blocks to

the journal or the final disk location depending on the mount
mode.

3.4 Commit

Each invocation of the write system call creates a new atomic
operation handle that is added to the current active transac-
tion. When the transaction moves to commit state, the ker-
nel acquires a journal descriptor block. This block contains
tags that map block buffers to their final location on disk
of the file system. When a journal descriptor block fills up
with tags, the kernel moves it to the journal together with the
corresponding block buffers. The kernel allocates additional
journal descriptor blocks as needed for each transaction.

For each block buffer that will be journaled, the kernel
allocates a separate buffer head specifically for the I/O needs
of journaling (Figure 1(a)). Additionally, the kernel creates
an auxiliary structure called journal head that associates the
block buffer with the respective transaction (Figure 2). In
general, the buffer head of a journaled block buffer points
to the original copy of the block buffer. However, if this
block buffer is going to be used concurrently by another
transaction, then the kernel creates in memory a new copy
of the block buffer for the journal I/O transfer needs. When
all the log records of a transaction have been safely written
to the journal, the system allocates and synchronously writes
to the journal a final commit block that states the transaction
has committed successfully.

3.5 Recovery

The transaction committing completes when a transaction
has flushed all its records to the journal and has been marked
as finished. This is done for each running transaction within
a specified time period by the kjournald kernel thread. Sub-
sequently, the transaction checkpointing completes when all
the blocks of a committed transaction have been moved to

4 2008/11/10



Journal Head

Buffer Head

Buffer Page

offset in page

Disk

block number
...

...

Figure 2. For each journal block buffer there is (i) a buffer head that
specifies the respective block number in the journal and, (ii) a journal head
that points to the corresponding transaction.

their final location on disk and the corresponding transaction
records are removed from the journal.

If the system finds log records in the journal after a crash,
it assumes that the unmount was unsuccessful and initiates a
recovery procedure in three phases.

PASS SCAN In the first phase, it finds the last record of the
journal. The system only considers committed transac-
tions for replaying.

PASS REVOKE During the second phase, the kernel builds
a hash table from the revoked blocks. These are blocks of
committed transactions that should not be written to their
final disk location, because they are obsoleted by later
operations.

PASS REPLAY In the third phase, the recovery process
writes to their final disk location the newest version of
all the blocks that occur in committed transactions, and
are not present in the hash table of revoked blocks.

If the system crashes again before the recovery finishes, the
same journal can be reused to complete the recovery.

4. Differential Data Journaling
Typically, journaled file systems care for the metadata con-
sistency and only log metadata modifications in the journal.
Ext3 and ReiserFS are two file systems that additionally sup-
port data journaling as an option. Past research investigated
the related performance and reported that data journaling
improves the throughput of random I/O operations, but in-
curs much higher disk throughput than metadata journaling
(Prabhakaran et al. 2005). Thus, when the journal fills up
with log records, data journaling leads to reduced applica-
tion performance due to the checkpointing delay.

In Figure 3, we verify that data journaling incurs signifi-
cant journal traffic in comparison to the other two modes of
ext3. In the rest of the present section, we describe the ap-
proach that we follow in order to keep low the overhead of
data journaling and at the same time retain its substantial per-
formance benefits. Even though we consider our approach
quite general, in our description we use the previously intro-
duced terminology of ext3, over which we implemented our
prototype.

0 1 10 100

Request Size (KB)

0

1

10

100

1000

T
ot

al
 J

ou
rn

al
 T

ra
ff

ic
 (

M
B

)

Requirements

Data Journaling
Writeback
Ordered

Figure 3. We examine the three mount options of ext3 using periodic
writes of varying request sizes. We measure the total write traffic to the
journal during a time period of 5 min. The total journal traffic of data
journaling is substantially higher in comparison to the other two modes.
Additionally, at request sizes lower than 4KB, data journaling incurs traffic
that changes sublinearly as a function of the write rate. This is reasonable
since data journaling sends to the journal entire blocks rather than only the
part that is modified by each write operation.

4.1 Partial blocks

The original journaling process of ext3 transfers a full copy
of each modified block buffer from memory to journal. This
is true for both data and metadata blocks, when they are jour-
naled according to the mount options of the file system. In
the case of small data writes that only modify partially a
block buffer, full block journaling can have a multiplier ef-
fect in the throughput required by the journal device (Figure
3). The actual waste in journal device throughput depends on
the fraction of the block buffer that is left unmodified by each
write operation. Practically, we should only send to the jour-
nal the modified part of the block. At the uncommon case
that a recovery is initiated, we can read the original block
from the final location on disk, and write it back after apply-
ing the difference that we retrieve from the corresponding
journal record.

In order to implement differential data journaling, we in-
troduce a new type of journal block that we use to accumu-
late the data updates from multiple write operations. We call
this block partial in order to differentiate it from full blocks,
which are fully modified by a single write operation (Fig-
ure 1). We only use partial blocks to journal data rather than
metadata modifications. Thus, if a write updates part of a
data block, we copy the modified part of the block to the
current partial block buffer of the transaction. When a par-
tial block has not sufficient space for the current write, we
allocate a new partial block and copy there the data of the
write. If the write modifies a metadata or a full data block,
we use the corresponding full block instead. We might still
need to create a copy of the full block in order to freeze the
version that we send to the journal, if the block is going to
be modified shortly by another transaction.

5 2008/11/10



0 2000 4000 6000 8000

Number of Streams

0

5

10

15

20

25
Jo

ur
na

l T
hr

ou
gh

pu
t 

(M
B

/s
)

1 Kbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

0 500 1000 1500

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t 
(M

B
/s

)

10 Kbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

0 20 40 60 80 100

Number of Streams

0

5

10

15

20

25

Jo
ur

na
l T

hr
ou

gh
pu

t 
(M

B
/s

)

1 Mbps/stream
Data Journaling
Diff Data Jrn
Writeback
Ordered

Figure 4. We measure the journal device throughput across different numbers of streams and rates of 1Kbps, 10Kbps and 1Mbps. At low rates, the journal
throughput of differential data journaling is close to that of ordered and writeback modes, unlike the default data journaling mode which is several factors
higher. Therefore, we can reliably store the data of low-rate streams without excessive journaling cost. However, at high rates, differential data journaling
overlaps with the default data journaling mode in terms of journaling throughput.

4.2 Journal heads

As we already explained, for each journal block buffer there
is a corresponding journal head that associates the block
with a transaction. The journal head points to a buffer head
that links the buffer to a buffer page and other information
required for the transfer to the journal device. For writes that
only modify part of a block, we expanded the journal head
with two extra fields, the offset and the length, respectively,
of the partial block pointed to by the buffer head. As we see
below, we make use of the journal head in order to prepare
the blocks that we actually send to the journal.

4.3 Tags

When we start a new transaction, we allocate a buffer for the
journal descriptor block. In data journaling, the transaction
logs both data and metadata modifications. The journal de-
scriptor block contains a list of fixed-length tags, where each
tag corresponds to one write. Originally, each tag contains
two fields:

• The final disk location of the modified block.

• Four flags for journal-specific properties of the block.

In our design, we introduce three new fields in each tag:

• A flag to indicate the use of a partial block.

• The length of the write in the partial block.

• The starting offset in the data block of the final disk
location.

When the tags fill up a journal descriptor block, we write the
descriptor block and all the corresponding data and metadata
blocks to the journal. We allocate additional journal descrip-
tor blocks as required by the transaction.

4.4 Recovery

During the recovery process, we retrieve the data modifica-
tions from the journal and subsequently apply them to the
blocks corresponding to the final disk location. Since the
data of consecutive writes are placed next to each other in
the partial block, we can deduce their corresponding start-
ing offsets from the length field in the tags. When the length
field of a tag exceeds the end of the current partial block,
then we read the next block from the journal and treat it as
another partial block from the same transaction.

We use the starting offset tag field to read into a kernel
buffer the disk block that we will modify. However, if the
partial block flag is not set, then we read the next block
of the journal and treat it as a metadata or full data block.
Obviously, we write a full block directly to the final disk
location without reading first the previous version from the
disk.

5. Experimentation Environment
We implemented the differential data journaling in the Linux
kernel version 2.6.18. As we already described, we modified
the transaction commit and recovery procedures of ext3 so
that we only journal and replay the data differences from
partial block writes. We evaluated our prototype implemen-
tation using x86-based server nodes running the Debian
Linux distribution. For most of the experiments we used
nodes with a quad-core 2.66GHz processor, 2GB RAM,
and two SAS 15KRPM disks, each of 300GB storage ca-
pacity and 16MB internal buffer. We also did one exper-
iment with 2.33GHz quad-core processor and two SATA
7.5KRPM disks of 250GB and 16MB on-disk cache.

We have the journal and the data partition on the two
separate disks except for one case that we explain in our
evaluation, and also use the default file system parameters
of Linux that set page and block sizes equal to 4KB. In

6 2008/11/10



0 2000 4000 6000 8000

Number of Streams

0

5

10
F

ile
 S

ys
te

m
 T

hr
ou

gh
pu

t 
(M

B
/s

) 1 Kbps/stream
Writeback
Ordered
Data Journaling
Diff Data Jrn

0 500 1000 1500

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t 

(M
B

/s
) 10 Kbps/stream

Writeback
Ordered
Data Journaling
Diff Data Jrn

0 20 40 60 80 100

Number of Streams

0

5

10

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t 

(M
B

/s
) 1 Mbps/stream

Writeback
Ordered
Data Jrn
Diff Data

Figure 5. We examine the throughput of the file system device across different numbers of streams and rates. Especially at low rates, the writeback and
ordered modes tend to require up to several factors higher throughput than the two data journaling modes. We attribute this benefit of the two data journaling
modes to the aggregation of multiple writes that update the same block. Since journaling keeps each update safe on disk, dirty pages can remain for a
configurable time period in memory before they are flushed to the file system disk.

our measurements, we assume write operations followed
by the fsync call for synchronous completion. We keep the
default journal size of 128MB, but manually tune for best
performance the writeback period and expiration period of
the dirty page flush process.

Past work reports that by default a disk returns a write
request when the data reaches the on-disk write cache rather
than the media. This behavior makes the system unreli-
able unless somebody disables the on-disk buffers or uses
controllers with battery-backed cache (Nightingale et al.
2006). In most of our experiments, we kept enabled the
disk write cache, which essentially emulates devices with
battery-backed memory. However, in our evaluation we also
experimented with the write caches disabled. As we explain,
the disk write cache adds no benefit to streaming workloads
but leads to significant performance advantages in traditional
applications.

Our prototype implementation of differential data jour-
naling was the working environment of the one coauthor for
a period of over two months. The system demonstrated a sta-
ble behavior during the entire this period. Additionally, we
did extensive performance evaluation to study the character-
istics of the system. One benchmark that we use consists of
multiple threads periodically writing data at a specific rate.
In our evaluation, we examine the disk throughput require-
ments and the average latency of each write. Additionally,
we use the Postmark benchmark to measure performance
in an environment of temporary small files that is typical
for electronic mail, newsgroups and web-based commerce
(Katcher 1997). Thus, we investigate the benefit of data jour-
naling in applications other that streaming.

6. Performance Evaluation
In this section, we study the requirements and performance
of our differential data journaling implementation with re-

spect to the ordered, writeback and the default data journal-
ing mode of ext3.

6.1 Streams

In our first set of experiments, we evaluate the benefits and
requirements of differential data journaling in a file sys-
tem, where we store synchronously the incoming data from
a large number of concurrent streams. Even though each
stream simply appends data to the end of a separate file, the
aggregate traffic is random. However, data journaling safely
stores data on the journal at sequential throughput and lazily
transfers it to the final location at a rate that we can control.

In Figure 4(a), we observe that when the number of
streams reaches several thousands, data journaling sends
close to 30MB/s of log records to the journal. Instead, dif-
ferential data journaling keeps the traffic lower than 5MB/s.
This behavior is less intense as the stream rate increases
from 1Kbps to 10Kbps (Figure 4(b)), and in fact the two
data journaling modes overlap for streams of 1Mbps. Thus,
differential data journaling accumulates multiple log records
into a single block and thus manages to reduce the journal-
ing throughput. Even though a corresponding increase in
memcopy activity is likely, this is hardly a problem as we
see later in this section.

Additionally, we measure the disk throughput for the up-
date of the final location on the file system (in Figure 5).
We notice that the ordered and writeback methods that only
journal metadata incur consistently higher throughput to the
final disk location, especially at low-rate streams. Instead,
the two data journaling modes move the data updates syn-
chronously to the journal, but keep the corresponding data
blocks in memory for some time. There, the blocks have the
chance to receive the updates from multiple writes, before
they are transferred to their final location on disk.

The benefits of the two data journaling modes are even
more impressive, when we consider the average latency of

7 2008/11/10



0 2000 4000 6000 8000

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data Jrn

0 500 1000 1500

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

10 Kbps/stream

Ordered
Writeback
Data Jrn
Diff Data

0 20 40 60 80 100

Number of Streams

1

10

100

1000

10000

W
ri

te
 L

at
en

cy
 (

m
s)

1 Mbps/stream
Ordered
Data Journaling
Diff Data Jrn
Writeback

Figure 6. Synchronous writes are usually avoided because they are known to incur high latency in typical file systems. This is true even when the write
cache of the disk is enabled. In the above figures, we see the average write latency at different rates and streams. In order to demonstrate the differences across
the different modes, we use logarithmic scale at the y axis. As we move from higher to lower rates, the write latency of the ordered and writeback modes
appears from several factors up to orders of magnitude higher than those of the two data journaling modes. Thus, the sequential throughput of the journal has
a considerable impact to the ability of the system to store safely the incoming data in a short period of time.

the synchronous writes (Figure 6). In Figure 6(a), we see
that the ordered and writeback modes incur almost two or-
ders of magnitude higher latency with respect to the other
two modes, when serving large numbers of low-rate streams.
Thus, a write operation that completes in tens of millisec-
onds with data journaling, takes as high as 10 seconds with
ordered mode. Such high write latency in the ordered mode
raises issues about the ability of the system to quickly and
safely store incoming measurements. This is crucial, espe-
cially at critical time periods before physical catastrophes,
when the arriving data matter the most.

Finally, we evaluate the impact of the journaling modes to
the total cpu utilization of the system (Figure 7). We see that
the system utilization always remains less than 10%. This
observation implies that the accumulation of multiple write
updates to one block in differential data journaling does
not create for memcopy an overhead that is much higher
than the other modes. Experimentation with workloads that
consist of mixed set of streams with different rates lead
to measurements similar to the above. The results of the
mixed workload tend to approach respectively the behavior
of streams with low or high rate depending on the prevalence
of the corresponding type of stream in the workload.

6.2 Postmark

Given the very encouraging results that we obtained for
workloads with low-rate streams, here we evaluate data
journaling with Postmark. This is a benchmark typically
used to study the performance of small writes (Hildebrand
et al. 2006). We measure the achieved transaction rate with
a workload of 10000 transactions over 500 files, and a mix
of read, append, create and delete file operations. The ac-
tual duration of the experiment varies depending on the ef-
ficiency of the requested operations. We run the benchmark
in a range of block sizes from 128 bytes to 16KB (Fig-

20

40

60

80

100

U
ti

liz
at

io
n 

(%
)

Total CPU

Ordered

W
riteback

Data Jrn

Diff Data

1Kbps

Ordered

W
riteback

Data Jrn

Diff Data

1Mbps

Idle

Idle Wait

System

User

Figure 7. At both low and high rates, we observe that the cpu remains
mostly idle, whether doing nothing or waiting for the I/O operations to
finish. Therefore, the processing cost of differential data journaling is less
than 10%, and comparable to that of the other three mount modes.

ure 8). Our main observation is that the two data journaling
modes perform several factors better from the metadata-only
journaling modes. The performance improvement is higher
for small blocks. However, even with the block size equal
to 16KB, the data journaling modes double the measured
transaction rate. Therefore, if somebody uses differential
data journaling to keep low the extra journaling throughput,
one can improve substantially the performance of applica-
tions that need synchronous small writes.

8 2008/11/10



0 5000 10000 15000

Request Size (Bytes)

0

100

200

300

400

500

T
ra

ns
ac

ti
on

s/
s

Postmark
Diff Data Jrn
Data Journaling
Writeback
Ordered

Figure 8. We run Postmark with 100 threads and file ranges from half
kilobyte to a hundred kilobyte. The x axis refers to the request size of the
read and write operations. We notice that the two data journaling modes
almost double the transaction rate with respect to the ordered mode that is
commonly used by default.

6.3 Recovery Time

In a different experiment, we evaluate the ability of the sys-
tem to recover quickly after a system crash that leads to log
records appearing in the journal during the reboot. In this
setting, we have 100 threads that call write 100 times with
request size 125 bytes. We also disable the writeback and ex-
piration time periods of the pdflush kernel thread in order to
ensure that the transactions commit to the journal, but don’t
checkpoint the updates to the final location on disk. Then we
cut the power to the system. During the reboot, we measure
within the kernel the time period of the file system recovery.
In Figure 9, we breakdown the total recovery across the three
passes that scan the transactions, revoke blocks, and replay
the committed transactions. We note that the scanning pe-
riod for differential data journaling is much lower than that
of data journaling and actually similar to those of ordered
and writeback. Despite the extra block reads involved in the
replay of differential data journaling, the time it takes ends
up comparable to that of the default data journaling.

6.4 Other Issues

Since the ordered mode does not take full advantage of the
separate journal device, we also investigate the case where
we use the two SAS disks in RAID0 configuration with hard-
ware controller support. For the differential data journaling,
we use as journal a normal file rather than a separate de-
vice. From our measurements (not shown) we observe that
the write latency drops to half in the ordered mode, when
compared to the case where we dedicate one disk to the
journal. After the change, the write latency of differential
data journaling remains about the same as before. The rel-
ative difference between the latencies of the two modes is
still high across the different streams rates and in excess of a
magnitude order for 1Kbps streams.

100

200

300

400

500

600

700

M
ill

is
ec

on
ds

Recovery Time

Ordered

W
riteback

Data Jrn

Diff Data

Replay
Revoke
Scan

Figure 9. We have 100 threads doing 100 writes each of size 125 bytes
with disabled the timer-based flushing of the dirty pages. We cut the power
to the system, and during the reboot we measure the recovery time across
the four mount modes. We observe that differential data journaling requires
much lower time for the scan pass than the default data journaling mode,
while the replay pass takes comparable time across the two modes.

0 5 10 15

Request Size (Bytes)

0

50

100

150

T
ra

ns
ac

ti
on

s/
s

Postmark

Diff Data
Ordered

(Disabled cache/SATA)

(a)

0 5 10 15

Request Size (Bytes)

0

100

200

300

400

500

Postmark

Diff Data
Ordered

(Enabled cache/SATA)

(b)

Figure 10. We run Postmark with 5000 transactions over a system with
two 250GB SATA disks. (a) We disable the on-disk write cache to ensure
that the writes only return after they reach the media. The advantage of
differential data journaling is evident especially with small read and write
requests. (b) When we enable the on-disk write cache, performance scales
similarly for the ordered mode and differential data journaling, while the
relative difference remains.

In a different experiment, we examine the effects from
disabling the write cache of the disks. For these measure-
ments, we use a server with two 250GB SATA disks. We
find that the disabled write cache of the disks makes no dif-
ference to the streaming workload measurements in compar-
ison to the case that the cache is enabled. However, in the
case of the Postmark benchmark, disabling the write cache
scales down the performance of the different mount modes,
as shown in Figure 10. Overall, differential data journaling
still maintains a significant advantage with respect to the or-
dered mode, especially at low stream rates.

9 2008/11/10



7. Related Work
Digital streaming infrastructures replace traditional closed-
circuit television systems in urban traffic-control applica-
tions to store large numbers of video feeds (Esteve and Palau
2006). Previously, environmental, oceanographic and mete-
orological conditions have been measured and stored over
distributed relational databases (Long et al. 1995). Aurora is
a stream processing engine that has been developed to sup-
port primitives for streaming applications, handle query pro-
cessing on incoming messages in real time and gracefully
deal with spikes in message load (Carney et al. 2002; Bal-
akrishnan et al. 2004). The CoMo is a passive monitoring
system that can be used as a building block for a network
monitoring infrastructure that processes and shares network
traffic statistics over multiple sites (Iannaccone et al. 2004).
Como includes a storage process that is data agnostic and
treats all data blocks equally. Also, load shedding techniques
were developed to maintain the accuracy of traffic queries
within acceptable levels at extreme traffic conditions (Barlet-
Ros et al. 2007).

The Hyperion Stream File System has been specifi-
cally designed to reliably store multiple high-rate streams
(Desnoyers and Shenoy 2007). It employs a log-structured
write allocation that appends data to the end of each written
file. It takes advantage of streaming writes to overwrite old
data and avoid data copying for cleaning. It also maintains
an index at high speed to efficiently support queries. yFS is a
recently proposed file system for general purposes that only
uses journal transactions for metadata modifications (Zhang
and Ghose 2003). Xsyncfs introduces the idea of externally
synchronous I/O that guarantees durability not to the appli-
cation, but to the external entity that observes application
output (Nightingale et al. 2006). However, in the case of ap-
plications that do not produce any output, xsyncfs commits
data periodically similarly to an asynchronously mounted
ext3.

Prabhakaran et al. introduced the semantic block-level
analysis technique to trace and analyze file systems, and the
semantic trace playback technique to evaluate file system
modifications (Prabhakaran et al. 2005). Evaluation of ext3
over Linux showed that data journaling incurs substantial
traffic to the journal but with sequential throughput, unlike
the ordered mode that mainly writes data to the final loca-
tion. The authors conclude that sequential workloads should
better be served in ordered mode, while random workloads
can benefit from data journaling. Using trace-based emula-
tion, the authors show that differential data journaling can
reduce substantially the amount of traffic to the journal in
database applications.

Hildebrand et al. highlight the prevalance of small and se-
quential data requests in scientific applications (Hildebrand
et al. 2006). They show that it is possible to improve the
overall write performance of parallel file systems by using
parallel I/O for large write requests and a distributed file sys-

tem for small write requests. DualFS uses two separates de-
vices for the data and metadata, respectively; it employs a
log-structured file system for the metadata and treats data as
in typical Unix systems (Piernas et al. 2002). Kulkarni et al.
proposed the use of compression, duplicate block suppres-
sion and delta encoding to eliminate redundancy of stored
data in a scalable and efficient way (Kulkarni et al. 2004).

The log-structured file system tries to solve the syn-
chronous metadata update problem and the small-write prob-
lem by coalescing data writes sequentially to a segmented
log (Rosenblum and Ousterhout 1992). However, the ap-
proach requires a garbage collection process to run in the
background that incurs cleaning overheads. The virtual log is
another effort to minimize the latency of small synchronous
writes by building the log-structured file system over a log
with entries that are not necessarily physically contiguous
(Wang et al. 1999). Soft updates track and enforce metadata
update dependencies so that the file system can safely delay
writes for most file operations (Ganger et al. 2000). As a
result the file system achieves improved performance with
strong integrity and security guarantees at frequent metadata
modifications.

The Write Anywhere File Layout improves write perfor-
mance by writing file system blocks to any location on disk
and in any order, while deferring disk space allocation with
the help of non-volatile RAM (Hitz et al. 1994). The Google
File System handles large files typically mutated by append-
ing new data sequentially rather than overwriting existing
data at random file locations (Ghemawat et al. 2003). The
data and metadata journaling of the ext2 file system has been
documented (Tweedie 1998; Galli 2001). Earlier, Hagmann
described metadata update logging in the Cedar File System
to improve performance and achieve consistency (Hagmann
1987). Also, the Echo distributed file system used a journal
to record disk storage updates thus improving performance
and availability (Birrell et al. 1993).

8. Conclusions and Future Work
Motivated from the emerging need to reliably store and han-
dle large numbers of streams for real-time or retrospective
processing, we take a fresh look at file systems that sup-
port data journaling. We use a commonly used file system
with synchronous writes to find out that the journal device
throughput is high because the journal log records store en-
tire blocks rather than their modified part. Then, we intro-
duce the differential data journaling mode, where we accu-
mulate the updates from multiple writes into a single journal
block. Additionally, we tune the timing of dirty page flush-
ing to complete in the background rather than synchronously
with the write operations. Using streaming workloads, we
find that differential data journaling reduces the journal traf-
fic substantially in comparison to the default data journaling
mode, especially for streams with low rates. The sequen-
tial throughput of the journal reduces the write latency up

10 2008/11/10



to orders of magnitude for the data journaling modes with
respect to metadata-only journaling. Finally, we experiment
with a typical small-write workload and measure substantial
improvement in the supported transaction rate. Overall, dif-
ferential data journaling offers fast storage across streaming
and traditional workloads at relatively low disk throughput
requirements.

In the future, we plan to investigate the automatic tuning
of system parameters related to the timing of dirty page
flushes. Additionally, we plan to examine the behavior of
differential data journaling in the context of a distributed
file system that we are currently building for the needs of
streaming data storage.

9. Acknowledgements
In part supported by project INTERSAFE with approval
number 303090/YD7631 of the INTERREG IIIA Greece-
Albania 2000-20006 neighboring program.

References
Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur

Cetintemel, Mitch Cherniack, Christian Convey, Eddie Galvez,
Jon Salz, Michael Stonebraker, Nesime Tatbul, Richard Tibbetts,
and Stan Zdonik. Retrospective on aurora. The VLDB Journal,
13(4):370–383, 2004.

Pere Barlet-Ros, Gianluca Iannaccone, Josep Snjuas-Cuxart, Diego
Amores-Lopez, and Josep Sole-Pareta. Load shedding in net-
work monitoring applications. In USENIX Annual Technical
Conference, pages 59–72, Santa Clara, CA, 2007.

Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann,
and Garret Swart. The echo distributed file system. Technical
Report TR-111, DEC Systems Research Center, Palo Alto, CA,
September 1993.

Daniel P. Bovet and Marco Cesati. Understanding the Linux Ker-
nel. O’Reilly Media, Sebastopol, CA, third edition, November
2005.

Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tat-
bul, and Stan Zdonik. Monitoring streams - a new class of data
management applications. In International Conference on Very
Large Data Bases, pages 215–226, Hong Kong, China, 2002.

Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher
Aycock, Gurushankar Rajamani, and David Lowell. The rio file
cache: Surviving operating system crashes. In Interlational Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 74–83, Cambridge, MA, 1996.

Peter J. Desnoyers and Prashant Shenoy. Hyperion: High vol-
ume stream archival for retrospective querying. In USENIX An-
nual Technical Conference, pages 45–58, Santa Clara, CA, June
2007.

Manuel Esteve and Carlos E. Palau. A flexible video streaming
system for urban traffic control. IEEE Multimedia, 13(1):78–83,
January 2006.

Ricardo Galli. Journal file systems in linux. Upgrade, 2(6):50–56,
December 2001.

Gregory R. Ganger, Marshall K. McKusick, Craig A. N. Soules,
and Yale N. Patt. Soft updates: a solution to the metadata
update problem in file systems. ACM Transactions on Computer
Systems, 18(1):127–153, February 2000.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In ACM Symposium on Operating Systems
Principles, pages 29–43, Bolton Landing, NY, October 2003.

Robert Hagmann. Reimplementing the cedar file system using
logging and group commit. In ACM Symposium on Operating
Systems Principles, pages 155–162, Austin, TX, 1987.

Dean Hildebrand, Lee Ward, and Peter Honeyman. Large files,
small writes, and pnfs. In ACM International Conference on
Supercomputing, pages 116–124, Cairns, Australia, June 2006.

Dave Hitz, James Lau, and Michael Malcolm. File system design
for an nfs file server appliance. In Usenix Winter Technical
Conference, pages 235–246, San Francisco, CA, January 1994.

Gianluca Iannaccone, Christophe Diot, Derek McAuley, Andrew
Moore, Ian Pratt, and Luigi Rizzo. The como white paper. Tech-
nical Report Technical Report IRC-TR-04-17, Intel Research,
2004.

Jeffrey Katcher. Postmark: A new file system benchmark. Techni-
cal Report TR-3022, NetApp, 1997.

Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M.
Tracey. Redundancy elimination within large collections of files.
In USENIX Annual Technical Conference, pages 59–72, Boston,
MA, 2004.

Darrel D. E. Long, Patrick E. Mantey, Craig M. Wittenbrink,
Theodore R. Haining, and Bruce R. Montague. Reinas: the real-
time environmental information network and analysis system. In
IEEE COMPCON, pages 482–487, March 1995.

Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen,
and Jason Flinn. Rethink the sync. In Usenix Symposium
on Operating Systems Design and Implementation, pages 1–14,
Seattle, WA, 2006.

Juan Piernas, Toni Cortes, and Jose M. Garcia. Dualfs: A new
journaling file system without meta-data duplication. In ACM
International Conference on Supercomputing, pages 137–146,
New York, NY, 2002.

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Analysis and evolution of journaling file sys-
tems. In USENIX Annual Technical Conference, pages 105–120,
Anaheim, CA, 2005.

Mended Rosenblum and John K. Ousterhout. The design and im-
plementation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, February 1992.

Stephen C. Tweedie. Journaling the linux ext2fs filesystem. In
LinuxExpo, pages 25–29, Durham, NC, 1998.

Randolph Y. Wang, Thomas E. Anderson, and David A. Patter-
son. Virtual log based file systems for a programmable disk.
In USENIX Symposium on Operating Systems Design and Im-
plementation, pages 29–43, New Orleans, LA, 1999.

Zhihui Zhang and Kanad Ghose. yfs: A journaling file system
design for handling large data sets with reduced seeking. In
USENIX Conference on File and Storage Technologies, pages
59–72, San Francisco, CA, 2003.

11 2008/11/10


