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Abstract: A distinguishing feature of today’s large-scale platforms for distributed com-
putation and communication, such as the Internet, is their heterogeneity, manifested in
particular by the fact that a wide variety of communication protocols are simultaneously
running over different distributed hosts. A fundamental question that naturally arises in
such heterogeneous distributed systems pertains to the stability of a large network in which
a composition of protocols is employed.

A packet-switched network is stable under a greedy protocol (or a composition of protocols)
if, for any adversary of injection rate less than 1, the number of packets in the network
remains bounded at all times. We focus on a basic adversarial model for packet arrival and
path determination in which the time-averaged arrival rate of packets requiring a single edge
is no more than 1. Within this framework, we study the property of stability under vari-
ous compositions of contention-resolution protocols (such as LIS (Longest-in-System), FIFO
(First-In-First-Out), FFS (Furthest-from-Source), and NTG (Nearest-to-Go)) and different
packet trajectories (simple and non-simple paths); we provide appropriate adversarial traf-
fic patterns and we obtain instability results for families of network topologies under these
compositions of protocols. Additionally, we describe optimal algorithms for detecting these
families of topologies; they run in time and space linear on the number of network nodes
and links. As these families of topologies characterize the universal stability (stability a-
gainst any adversary and any protocol), our algorithms can also be used to decide universal
stability.
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1 Introduction

Motivation-Objective. A lot of research has been done in the field of packet-switched communication
networks for the specification of their behavior. In such networks, packets arrive dynamically at the
nodes and they are routed in discrete time steps across the links (edges). A major issue that arises in
such a setting is that of network stability — will the number of packets in the network remain bounded
at all times against any adversary under a single contention-resolution protocol (or a composition of
protocols)? The stability of a network depends on the network structure, the traffic pattern defined by
the adversary and the composition of protocols employed to resolve packet conflicts; the traffic pattern
controls where and how packets are injected into the network, and defines their path (trajectory).
Deciding the stability of a network may seem at first glance intractable as it is quantified over all
adversaries; yet, Alvarez et al. [2] showed that the universal stability of networks can be decided in
polynomial time and Blesa [5] shows that stability of FIFO networks can also be decided in polynomial
time. Deciding the stability under a protocol is usually based on a characterization in terms of network
topologies; such a characterization provides us with the family of network topologies that can be made
unstable by some adversarial traffic pattern. Such a family of network topologies is the set of forbidden
subgraphs for network stability.

The underlying goal of our work is two-fold: First, to study the stability of networks when a com-
position of protocols is employed for contention-resolution on the network queues; by composition of
contention-resolution protocols, we mean the simultaneous use of different such protocols at different
queues of the network. Secondly, to describe efficient algorithms for the detection of forbidden subgraphs
in a given network, which will give us information on its stability.

Adversarial Queueing Theory. We consider a packet-switched communication network in which packets
arrive dynamically at the nodes with predetermined paths, and they are routed at discrete time steps
across the edges. We focus on a basic adversarial model for packet arrival and path determination that
has been introduced in a pioneering work by Borodin et al. [6] under the name “Adversarial Queueing
Theory.” Roughly speaking, this model views the time evolution of a packet-switched communication
network as a game between an adversary and a protocol. At each time step, the adversary may inject
a set of packets into some nodes. For each packet, the adversary specifies a path that the packet must
traverse; when the packet arrives to its destination, it is absorbed by the system. When more than
one packets wish to cross an edge at a given time step, a contention-resolution protocol is employed to
resolve the conflict. A crucial parameter of the adversary is its injection rate r, where 0 < r < 1: among
the packets that the adversary injects in any time interval I, at most [7|I|] can have paths that contain
any particular edge. Such a model allows for adversarial injection of packets, rather than for injection
according to a randomized, oblivious process (cf. [7]).

Stability. Roughly speaking, a protocol (or a composition of protocols) is stable [6] on a network G
against an adversary A of rate r if there is a constant B (which may depend on G and A) such that
the number of packets in the system is bounded at all times by B. On the other hand, a protocol (or a
composition of protocols) is universally stable [6] if it is stable against every adversary of rate less than 1
and on every network. We also say that a network (graph) G is universally stable [6] if every protocol is
stable against every adversary of rate less than 1 on G. Moreover, the property of network stability can
be viewed under two different approaches; we refer to simple-path stability when packets follow simple
paths (paths do not contain repeated edges and vertices), while we refer to stability when packets follow
non-simple paths (paths do not contain repeated edges, but they may contain repeated vertices) [2].

Greedy Contention-Resolution Protocols. We consider only greedy protocols, i.e., protocols that always
advance a packet across a queue (one packet at each discrete time step) whenever there is at least one
packet in the queue. The protocol specifies which packet will be chosen. We study four greedy protocols
(all of which enjoy simple implementations); see Table 1. The protocol LIS is universally stable [3,



H Protocol name ‘ Which packet it advances:

Longest-in-System (LIS) The one that was least recently injected into the network
Nearest-to-Go (NTG) The one that is nearest to its destination
Furthest-from-Source (FFS) | The one that its furthest from its origin
First-In-First-Out (FIFO) The one that arrived earliest at the queue

Table 1: Contention-resolution protocols considered in this paper.

Section 2.1]. In contrast, FIFO (one of the most popular queueing disciplines, because of its simplicity)
is not universally stable [3, Theorem 2.10]; FFS and NTG are also not universally stable. All these
contention-resolution protocols require some tie-breaking rule in order to be unambiguously defined;
here, we assume FIFO as a tie-breaking rule.

Contribution. In this work, we study the property of stability under composition of contention-resolution
protocols. Our results are summarized as follows:

1. We present adversarial constructions that lead the networks Uy, Us (Figure 1) and Si, 52, Ss, Sy
(Figure 3) to instability when the following combinations of contention-resolution protocols are
employed: (NTG, LIS), (NTG, FFS), (NTG, FFS, LIS), and (NTG, FIFO).

2. We present algorithms that detect whether a network contains as a subgraph the extensions of
the networks Uy, Us, S, 52, 53, S4 obtained by replacing any edge by a disjoint directed path; any
such network is unstable under the investigated compositions of protocols.

Our instability results have the following important consequences: Protocols which are universally
stable may lead to instability when combined with other protocols; for example, the LIS protocol which
is universally stable leads to instability when combined with NTG. Additionally, networks that have been
shown stable for a protocol may become unstable when this protocol is combined with other protocols;
for example, the network U; which has been proved stable for FIFO [19] becomes unstable under the
composition (FIFO, NTG). These results together suggest that composing two protocols may turn out
to exhibit more unstable behavior than a single protocol that is already known not to be universally
stable (such as FIFO). Finally, our algorithms provide optimal ways to decide universal stability and
simple-path universal stability, thus improving over the results by Alvarez et al. [2].

Related Work. The issue of composing distributed protocols (resp., objects) to obtain other protocols
(resp., objects), and the properties of the resulting composed protocols (resp., objects), has a rich record
in Distributed Computing Theory (see, e.g., [18]). For example, Fernandez et al. [10] study techniques
for the composition of (identical) causal DSM systems from smaller modules each individually satisfying
causality. Herlihy and Wing [11] establish that a composition of linearizable memory objects (possibly
distinct), each managed by its own protocols, preserves linearizability.

Adversarial Queueing Theory [6] received a lot of interest in the study of stability and instability
issues (see, e.g., [3, 2, 9, 14, 15, 16, 17]). The universal stability of various natural greedy protocols such
as LIS was established by Andrews et al. [3]. Also, several greedy protocols such as NTG and FFS have
been proved unstable [3]. The instability of FIFO at arbitrarily low rates of injection has been proved
by Bhattacharjee et al. [4]. The subfield of study of the stability properties of compositions of protocols
was introduced by Koukopoulos et al. in [14, 15, 16], where the compositions of LIS with any of SIS,
NTS and FTG protocols have been proved unstable, while any composition of any pair among SIS, NTS
and FTG protocols have been proved stable.

The subfield of charactering universal stability in terms of forbidden subgraphs was first initiated
by Andrews et al. [3], where a finite set of forbidden subgraphs was provided. This result implies that
stability is decidable in polynomial time (however a constructive proof was not presented); the result



was significantly improved in [12, 13, 2]. Recently, Blesa [5] presented a polynomial-time algorithm for
both FIFO stability and FIFO simple-path stability of directed multi-graphs.

2 Theoretical Framework

The model definitions follow those in [6, Section 3]. A network is modeled by a finite multi-digraph
G on n vertices and m edges; the term multi-digraph is used when multiple edges are allowed in a
digraph. Each vertex z € V(G) represents a communication switch, and each edge e € E(G) represents
a link between two switches. In each vertex, there is a queue associated with each outgoing edge. Time
proceeds in discrete time steps. A packet is an atomic entity that resides at a queue at the end of any
step. It must travel along paths in the network from its source to its destination, both of which are
nodes in the network. When a packet is injected, it is placed in the queue of the first link on its route.
When a packet reaches its destination, it is absorbed. At each step, a packet may traverse the edge in
whose queue it is waiting. Any packets that wish to travel along an edge e at a particular time step,
but they are not sent, they wait in the queue of the edge e. We say that the adversary generates a set of
packets when it generates a set of requested paths. The only restriction on how the adversary chooses
its requests is that for each edge e and each interval I, no more than r|I| packets are introduced during
I with an assigned path containing e. We will restrict our study to the case of non-adaptive routing.

The behavior of a network G under the adversarial queueing theory model is fully determined by the
strategy of the adversary A and the set P of protocols on the network queues; thus, we use the triple
(G, A, P) which defines a system.

Let G be a graph with no loops that models a routing network. A directed (resp. undirected) edge
from z to y is denoted xy. The multiplicity of an edge xy, denoted by A(xy), is the number of edges
joining the vertex z to y in G. For a set C C V(G), the subgraph of G induced by C' is denoted G[C];
for a set S C E(G) of edges, the subgraph of G spanned by S is denoted G(S).

A connected component (or component) of an undirected graph G is a maximal set of vertices, say,
C C V(G), such that for every pair of vertices z,y € C, there exists an z—y path in the subgraph G|[C].
A biconnected component (or bicomponent) of an undirected graph G is a maximal set of edges such
that any two edges in the set lie on a simple cycle of G [8]; G is called biconnected if it is connected
and contains only one biconnected component. A strongly connected component (or scc) of a directed
graph G is a maximal set of vertices C C V(G) such that for every pair of vertices x and y in the set
C, there exists both a directed x—y path and a directed y—x path in the subgraph of G induced by the
vertices in C'; the graph G is called strongly connected if it is connected and contains only one scc. The
underlined graph G, of the digraph G is an undirected graph which results after making all the edges
of G undirected and consolidating any duplicate edges.

Based on the above, we define a strongly biconnected component (or bi-scc) of a directed graph G
to be a maximal set of edges S C E(G) such that the subgraph G(S) is strongly connected and the
underlined graph G(S). is biconnected; the graph G is called strongly biconnected if its edge set E(G)
forms a single bi-scc. The graph U; of Figure 1 is strongly biconnected, whereas the graph Us contains
two bi-scc.

The subdivision operation on an edge zy of a digraph G consists of the addition of a new vertex
w and the replacement of xy by the two edges xw and wy; hereafter, we shall call it edge-subdivision
operation. Given a digraph G on n vertices and m edges, £(G) denotes the family of digraphs which
contains the digraph G and all the digraphs obtained from G by successive edge-subdivisions.

Our stability study will involve the digraphs U; and Us depicted in Figure 1; these are of special
interest as they are the minimum forbidden subgraphs characterizing universal stability. Moreover,
the family of digraphs obtained from U; and Us by successive edge-subdivisions (i.e., the digraphs in
E(Uy) U E(Us) [2] — see Figure 2) are also not universally stable. The following result holds:
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Figure 1: Not universally stable digraphs.
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Figure 2: Family of digraphs formed by extensions of U; and Us, where a > 1,b>1,d >0, £ > 0, and
k > 0. (a) a digraph in £(U;); (b) a digraph in £(Us).

Lemma 2.1. (Alvarez, Blesa, and Serna [2]): A digraph G is universally stable if and only if G does
not contain as a subgraph any of the digraphs in E(Uy) U E(Us).

As our algorithms will need to detect whether a network contains a subgraph belonging to £(U;) U
E(Uz), we give below an important property of the structure of these graphs.

Observation 2.1. Let G be a directed graph of the family £(U;) U £(Us). Then, the graph G has the
following structure: it contains

(a) acycle C = (xo,21,22,...,2Z¢,20), £ > 1 and
(b) apath P= (z;,91,Y2,---,Yk, x;) such that y1,y2,...,yx ¢ C, z;,z; € C and k > 0.

It is easy to see that, if P is an open path, i.e, z; # z;, then G € £(U1), whereas if P is a closed path,
ie, z; = z;, then G € £(U).

The graphs in the family £(U;) U £(Uz) are multi-graphs, which makes it more difficult to handle.
In order to avoid working with multi-graphs, we define the one-subdivided graph of a given graph. For
a digraph G, the one-subdivided graph G* of G is the element of £(G) which is obtained from G by
applying one edge-subdivision operation on each edge of G. If G has n vertices and m edges, then
clearly G* has n+m vertices and 2m edges. Moreover, G* does not contain 2-cycles (cycle of length 2);
in particular, every cycle in G* has length greater than or equal to 4. Then, we can show:

Lemma 2.2. Let G be a directed graph and let G* be its one-subdivided graph. The graph G contains
no subgraph in £(U1) U E(Uz) if and only if G* contains no subgraph in E(Uy) U E(Us).

Lemma 2.3. Let G be a directed graph and let G* be its one-subdivided graph. Let C1,Cs,...,Cy be
the strongly connected components of G* and let n; and m; be the number of vertices and edges of the
strong component C;, respectively. Then, G contains no subgraph in E(U1)UE(Us) if and only if G* has
a strong component C; such that m; >n;, 1 <i <k.

Our stability study will also involve the digraphs S1,.S2, 53, S4 depicted in Figure 3; these are of spe-
cial interest as well, as they are the minimum forbidden subgraphs characterizing simple-path universal
stability. It has been showed that all the digraphs in £(S1) U £(S2) U E(S3) U E(Sy) (see Figure 4) are
not simple-path universally stable [2].

Lemma 2.4. (Alvarez, Blesa, and Serna [2]): A digraph G is simple-path universally stable if and only
if G does not contain as a subgraph any of the digraphs in £(S1) U E(S2) UE(S3) UE(Sy).
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Figure 3: Not simple-path universally stable digraphs.
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Figure 4: Family of digraphs formed by extensions of Sy, S, S3, and Sy, where a > 1,6 > 1, d > 0,
§>0,t>0,¢>1,and k > 1. (a) a digraph in £(S51); (b) a digraph in £(Ss2); (¢) a digraph in £(Ss);
(d) a digraph in &£(S4).

In order to be able to detect whether a multi-digraph G contains a graph in £(S1)UE(S2) UE(Ss) U
E(S4), we will consider the digraph G obtained from G by setting the multiplicity of each edge of G to
1; we call G the reduced graph of G. Obviously, Gis a simple digraph and for a multi-digraph G on
n vertices and m edges, G has n vertices and m’/ < m edges. Below we present a result on which our
algorithm for detecting subgraphs in £(S1) U E(S2) U E(S3) U E(Sy) relies.

Lemma 2.5. Let G be a directed graph, G be the reduced graph of G, and C1,Cs,...,Cy be the scc of
G. Let Ci1,Cip,...,Cik, be the bi-scc of the scc C; and let n; ; and m; ; be the number of vertices and
edges of the bi-scc C; j, respectively. Then, G contains no subgraph in £(S1) U E(S2) UE(S3) UE(Ss) if
and only if G has a strong component C; which satisfies one of the following conditions:

(1) Ci contains a bi-scc C;j such that: n;; > 3, G(C; j)ue is a cycle, and there exists an edge xy in
G(C;,j) such that N(zy) > 2;

(i7) C; contains a bi-scc C; ; such that: n;; > 3 and G(C; j)ue is not a cycle;

(i7) C; contains two bi-scc C;p and C; 4 such that: n;p, > 3, n; 4 > 3, and both graphs G(C; p)ue and
G(Ci q)ue are cycles;

where 1 <i<kand1 <jp,q<k;.

3 Stability Under Compositions of Protocols

In this section, we show that the networks Uy, Us, S1, S2,S3, 54 (Figures 1 and 3) are unstable under
specific compositions of the NTG protocol with the LIS, FFS, and FIFO protocols. In order to establish the
instability of a given network G under a composition of protocols, we first specify an initial configuration
of G (i.e., the paths to be followed by the packets in ), and we construct a strategy for an adversary
which results in a configuration identical to the initial configuration except with an increased number
of packets. Then, if the strategy is repeatedly applied, the number of packets will exceed any bound,
which will imply the lack of stability of G under the studied composition of protocols. Additionally,



thanks to the work of Andrews et al. [3, Lemma 2.9], our results also imply lack of stability for networks
with an empty initial configuration.

For simplicity, and in a way similar to that in [3] and in works following it, we omit floors and ceilings
from our analysis, and we, sometimes, count time steps and packets only roughly. This may result in
the loss of small additive constants, whereas it implies a gain in clarity.

3.1 Instability under Compositions of NTG with FFS and LIS

In this section we consider all combinations of the NTG protocol with the LIS and FFS protocols when
packets are injected with non-simple and simple paths.

We start with the network U; for the composition of NTG with LIS protocol where packets are
injected with non-simple paths. We have:

Theorem 3.1.1 For the network Uy, there is an adversary A of rate r > 0.841 such that the system
(U1, A, (NTG, LIS)) is unstable.

Proof. Consider that the edge f uses the LIS protocol, and that the edges e, g use the NTG protocol.
We assume that at a given time, the network U; contains a set S of packets waiting in the queues of the
edges e, f in order to traverse the edges e, g and f, g, respectively. We will construct a strategy for an
adversary A such that after the application of this strategy, the network U; will be in a configuration
similar to the starting configuration described above, for a set S’ of packets, where |S’| > |S|. Then, if
the strategy is repeatedly applied, the number of packets will exceed any bound, which will imply the
lack of stability of U; under the stated composition of protocols.

The strategy consists of the following four rounds:
Round 1 (|71]| = |'S] time steps): The adversary injects a set Z; of |Z1| = r|T1| packets in g scheduled
to traverse the edges g, f. The packets in S traverse e or f and reach g. If we assume that the first
such packet reaches g before the first packet in Z; (if not, a constant offset of 1 needs to be included),
then at the completion of the round, all the packets in S have been absorbed after having traversed g
whereas the packets in Z; are queued in g; recall that 73| = |S| and note that in g the packets in S
have priority over those in Z; because the former are closer to their destination.
Round 2 (|T%| = r|T}| time steps): The adversary injects a set Zs of | Z3| = r|Tz| packets in g scheduled
to traverse the edges g,e and a set Zs of |Z3| = r|Tz2| packets in f scheduled to traverse f. In g, the
packets in Z; have priority over those in Zs; these flows have the same number of edges to traverse to
reach their destination, but the packets in Z; have been waiting longer in g. Therefore, all the packets
in Z; arrive at the queue of f along with the packets in Z3. The total number of packets arriving at f
during this round is |Z1| 4+ | Z3|; as the duration of this round is |T| time steps, |T2| of these packets
traverse the edge f during this round. Thus, at the end of this round, the queue of f will contain a
set X of |X|=|Z1| + |Z3] — |Tz| = r|T2| packets waiting to traverse the edge f and the queue of g will
contain the packets in Z waiting to traverse the edges g, e.
Round 3 (|T5| = r|Tz| time steps): The adversary injects a set Z4 of | Z4| = r|T5| packets in f scheduled
to traverse f and a set Z5 of |Z5| = r|T3| packets in e scheduled to traverse e, g. In f, the packets in
X have priority over those in Z; because the former have been longer in the system. Additionally, in
e, the packets in Z5 have priority over those in Z5 because the former are closer to their destination.
Thus, at the end of this round, the queue of f will contain the packets in Z; waiting to traverse the
edge f and the queue of e will contain the packets in Z5 waiting to traverse the edges e, g.
Round 4 (|Ty| = r|T5| time steps): The adversary injects a set Zg of |Zg| = r|T4| packets in e scheduled
to traverse e and a set Z7 of |Z7| = r|T4| packets in f scheduled to traverse f,¢. In f, the packets in
Z, have priority over those in Z7 because the former have been longer in the system. Additionally, in
e, the packets in Zg have priority over those in Z5 because the former are closer to their destination;
thus, at the end of this round, there are |Z5| + |Zs| — |T4| = r|T4| packets in e waiting to traverse e, g.



In total, at the end of this round, the network contains a set S’ of packets waiting in the queues of e
and f to traverse the edges e, g and f, g, respectively, where |S’| = |Z7| + r|Ty| = 2r|T4|.

serve that the situation at the end of the strategy is similar to the one in the beginning. Moreover,
18] > 18] <= 2r|Tu| > |S] = r > @ ~ 0.8409. 1

A similar theorem holds for the network U; under the compositions (NTG, FFS) and (NTG, LIS,
FFS) when packets are injected with non-simple paths.

Theorem 3.1.2 For the network Uy, there is an adversary A; of rate r > 0.841 such that the system
(Uy, A;, P;) is unstable where i = {1,2} and P; € {(NTG, FFS), (NTG, LIS, FFS)}.

As in Theorem 3.1.1, we assume that, in the beginning, the network contains packets waiting in the
queues of the edges e, f to traverse the edges e, g and f, g, respectively. For the composition of protocols
(NTG, FFS), the queue of f uses FFS and those of e, g use NTG; for (NTG, LIS, FFS), the queue of f uses
LIS, that of g uses FFS, and that of ¢ uses NTG. In all three cases, the adversaries’ strategies consist of
four rounds (for details, see the Appendix).

We can show similar results for the network Us where packets may follow non-simple paths, and the
networks Sy, S, S3 and Sy where packets are injected with simple paths. In particular,

Theorem 3.1.3 For the network Us, there is an adversary A; of rate v > 0.794 such that the system
(Ua, A;, P;) is unstable where i = {1,2,3} and P; € {(NTG,LIS), (NTG, FFS), (NTG, LIS, FFS)}.

In this case, we assume that, in the beginning, the network contains packets waiting in the queues of
the edges eq, e3 to traverse the edges es, e1 and es, eq, e1, respectively. For the composition of protocols
(NTG, LIS), the queue of the edge e4 uses LIS while all the other queues use NTG; for (NTG, FFS), the
queue of e4 uses FFS and all the other ones NTG; for (NTG, LIS, FFS), the queue of e4 uses LIS, the
queue of e; uses FFS, and those of e3, ez use NTG. In all three cases, the adversaries’ strategies consist
of three rounds (for details, see the Appendix).

Theorem 3.1.4 For the network S; (i =1,2,3,4), there is an adversary A; of rate r > 0.841 such that
the systems (S;, A;, (NTG, LIS)), (Si, Ai, (NTG,FFS)) and (S;, A;, (NTG, LIS, FFS)) are unstable where
i={1,2,3,4}.

For the network S;, we assume that, in the beginning, the network contains packets waiting in the
queues of the edges e, f to traverse the edges e,g1 and f, g1, respectively. For the composition (NTG,
LIS), the queue of f uses LIS and all other queues use NTG; for (NTG, FFS), the queue of f uses FFS
and all the others use NTG; for (NTG, LIS, FFS), f uses LIS, ¢g; uses FFS, and e, go use NTG. For the
network Ss, we assume that, in the beginning, the network contains packets waiting in the queues of the
edges e, f2 to traverse the edges eq, g and fo, g, respectively. For (NTG, LIS), the queue of g uses LIS
and all other queues use NTG; for (NTG, FFS), g uses FFS and all others use NTG; for (NTG, LIS, FFS),
g uses FFS, f5 uses LIS, and ey, e, f1 use NTG. For the network S3, we assume that, in the beginning,
the network contains packets waiting in the queues of the edges es, e5 to traverse the edges es, e; and
es, €6, €1, respectively. For (NTG, LIS), the queues of eq, ea use LIS and all other queues use NTG; for
(NTG, FFS), the queues of e1, es use FFS and all others use NTG; for (NTG, LIS, FFS), the queue of eg
uses LIS, ey, es use FFS, and e3, e4, e5 use NTG. For the network Sy, we assume that, in the beginning,
the network contains packets waiting in the queues of the edges es, e5 to traverse the edges es, e; and
es, €6, g1, €1, respectively. For (NTG, LIS), the queues of eq, ey use LIS and all other queues use NTG;
for (NTG, FFS), the queues of e1, e use FFS and all others use NTG; for (NTG, LIS, FFS), the queue
of eg uses LIS, the queues of eq, ey use FFS, and es, ey, €5, g1, g2 use NTG. In all cases, the adversaries’
strategies consist of four rounds (for details, see the Appendix).



3.2 Instability under Compositions of NTG with FIFO

In this section we consider the composition of the NTG and FIFO protocols. Again, we start with the
network U; where packets are injected with non-simple paths. We have:

Theorem 3.2.1 For the network Uy, there is an adversary A of rate r > 0.841 such that the system
(U1, A, (NTG, FIFO)) is unstable.

Proof. Consider that the edge e uses the FIFO protocol, and that the edges f, g use the NTG protocol.
We work as in the proof of Theorem 3.1.1: we assume that initially the network U; contains a set S of
packets waiting in the queues of the edges e, f in order to traverse the edges e, g and f, g, respectively;
we will describe a strategy for an adversary A which results in a set S’ of packets in the queues of e, f,
where |S’| > |S|. The strategy consists of the following four rounds:
Rounds 1 and 2 of the strategy are identical to the corresponding rounds in the proof of Theorem 3.1.1;
although the protocols on the edges e, f are different, they have the same effect. Thus, at the end of
Round 2, the queue of f will contain a set X of | X| = r|T»| packets waiting to traverse the edge f and
the queue of g will contain the set Zy of |Z2| = r|T»| packets waiting to traverse the edges g, e.
Round 3 (|T5| = r|T%| time steps): The adversary injects a set Z, of |Z4| = r|T3| packets in the queue
of e scheduled to traverse e and a set Zy of |Z5| = r|T5| packets in f scheduled to traverse the edges f, g.
In f, the packets in X have priority over those in Z5 because the former are closer to their destination.
Additionally, the packets in Z4 arrive at e along with the packets in Z5. The total number of packets
arriving at e during this round is |Z4| 4+ | Z2| packets; as the duration of this round is |T3| time steps,
|T5| packets traverse e during this round. Thus at the end of this round, there are |Z5| = r|T3| packets
in the queue of f waiting to traverse f,g and a set Y of |Y| = r|T5| packets in e waiting to traverse e.
Round 4 (|Ty| = r|T5| time steps): The adversary injects a set Zg of | Zg| = r|T4| packets in the queue
of e scheduled to traverse the edges e, g and a set Z7 of |Z7| = r|Ty| packets in the queue of f scheduled
to traverse the edges f,g. Among the packets in Z5 U Z7, |Ty| traverse f and thus at the end of this
round, there are |W| = r|Ty| packets in f waiting to traverse f,g. Additionally, in e, the packets in Y’
have priority over those in Zg because the former reached the queue of e first. In total, at the end of
this round, there are |W| + |Zg| = 2r|T4| packets in the queues of e, f waiting to traverse the edges e, g
and f, g, respectively.

Again, the situation at the end of the strategy is similar to the one in the beginning. Moreover,

15| > |S] <= 2r|Tu| > |S] == r > @ ~ 0.8409. 1

Next, consider the network U, where packets are injected with non-simple paths. Similarly to
Theorem 3.2.1 we can show:

Theorem 3.2.2 For the network Us, there is an adversary A of rate r > 0.867 such that the system
(Ua, A, (NTG, FIFO)) is unstable.

The queues of the edges es, eq of Us use FIFO, and the queues of e, e3 use NTG. For the adversary’s
strategy, we assume that, in the beginning, the network contains packets waiting in the queues of the
edges es, e3 to traverse the edges es, e; and es, ey, €1, respectively; the adversary’s strategy consists of
three rounds (for details, see the Appendix).

Finally, we consider the networks S7, S2, S35, and Sy, where packets are injected with simple paths.
Then, we can show:

Theorem 3.2.3 For the network S; (i =1,2), there is an adversary A; of rate r > 0.908 such that the
system (S;, A;, (NTG, FIFO)) is unstable.

Theorem 3.2.4 For the network S; (i = 3,4), there is an adversary A; of rate r > 0.9 such that the
system (S;, A;, (NTG, FIFO)) is unstable.

In all four cases, the adversary’s strategy consists of four rounds (see Appendix). For (S1, A1, (NTG, FIFO)),
the queue of f uses FIFO and those of ¢, g1, g2 use NTG; we assume that initially we have packets waiting



in the queues of e, f in order to traverse the edges e, g1 and f, g1, respectively. For (Ss, A, (NTG, FIFO)),
the queue of f5 uses FIFO and those of f1, g, €1, e2 use NTG; in this case, initially the packets are waiting in
the queues of es, f2 in order to traverse the edges ez, g and fa, g, respectively. For (S5, A3, (NTG, FIFO)),
the queues of e3, eq use FIFO and the queues of ey, ez, ¢4, e5 use NTG; initially, the packets are in the
queues of es, e5 waiting to traverse the edges es, e; and es, eg, e1, respectively. For (S4, A4, (NTG, FIFO)),
the queues of e3, eg use FIFO and the queues of e1, e, eq, €5, g1, g2 use NTG; the packets are in the queues
of e3, e5 waiting to traverse the edges es,e; and es, eg, g1, €1, respectively.

The application of subdivision operations to Uy, Us, S1,S2, 55,54 (as in [5]) in combination with
Theorems 3.1.1-4 and 3.2.1-4 enables us to show that all the graphs in £(Uy) UE(U2) UE(S1) UE(S2) U
E(S3) UE(Sy) are unstable under the investigated compositions of protocols. Thus, we have:

Corollary 3.1 If a network G contains any graph in E(Ur) U E(Uz) U E(S1) U E(S2) U E(S3) U E(S),
than it is unstable under any of the compositions (LIS, NTG), (FFS, NTG), (LIS, FFS, NTG), (FIFO,
NTG) of protocols.

4 Detecting Unstable Subgraphs in a Given Network

In light of Corollary 3.1, a network is unstable under each of the investigated compositions of protocols if
it contains as a subgraph an element of the set £(U1)UE(Uz) UE(S1)UE(S2)UE(S3)UE(Sys). Therefore,
it is important to be able to detect whether a given digraph contains a subgraph belonging to these
families; in this section, we present optimal algorithms for doing so. Moreover, as the existence of
subgraphs in a network G belonging to £(U;) UE(Uz) (resp., E(S1) UE(S2) UE(S3) UE(Sy)), determines
the universal stability (resp., simple-path universal stability) of G (Lemmas 2.1 and 2.4), our algorithms
constitute optimal decision procedures for the (simple-path) universal stability of networks.

4.1 Detecting the Graphs in £(U;) U E(U,)

Our algorithm for detecting the existence of subgraphs belonging to £(U;) U £(Us) relies on the result
stated in Lemma 2.3; it works as follows:

Algorithm Detect- U-Family

1. Construct the one-subdivided graph G* of the input digraph G;
2. Compute the strongly connected components S1, Sa, ..., Sk of the digraph G*,
and the number of vertices n; and edges m; of each strong component S;, 1 < i < k;
3. fori=1tokdo
if m; > n; then return that G contains an element of £(Uy) U E(Us); exit;
4. return that G does not contain an element of £(Uy) U £(Us);

The correctness of the algorithm follows from Lemma 2.3. Regarding its time and space complexity,
we have that, for a digraph G on n vertices and m edges, the one-subdivided graph G* has n + m
vertices and 2m edges; G* can be constructed in O(n + m) time, and its strong components can also
be computed in O(n +m) time. Thus, the whole algorithm runs in O(n +m) time; the space needed is
O(n +m). Hence, we have:

Theorem 4.1. Using Algorithm Detect- U-Family, we can decide whether a digraph G on n vertices and
m edges contains a graph in E(Uy) UE(Uz) as a subgraph in O(n +m) time and space.

4.2 Detecting the Graphs in £(5;) U E(S2) U E(S3) U E(Sy)

Our algorithm for detecting the existence of subgraphs belonging to £(S1)UE(S2) UE(S3) UE(Sy) relies
on the result of Lemma 2.5; it works as follows:

10



Algorithm Detect-S-Family
1. Construct the reduced graph G of the input digraph G
2. Compute the strong components C1,Cs, ..., Cy of the graph é, 1<i<k;

3. Compute the bi-scc C; 1,Cj2,...,C; k, of each strong component S;, 1 <1i <k,
and the number of vertices n; ; and edges m; ; of the bi-scc C; j, 1 < j < ky;

4. fori=1to kdo
for j =1to k; do
it n; ; > 3 and G(C; ;)¢ is not a cycle
then return that G contains an element of £(S2); exit;
if n; ; > 3 and G(Cj j)ue is a cycle
then if there exists an edge zy in G(C; ;) such that A(zy) > 2
then return that G contains an element of £(S1); exit;
else mark the bi-scc C; j;
if C; contains at least two marked bi-scc
then return that G contains an element of £(S3) U E(S4); exit;

5. return that G does not contain an element of £(S7) U E(S2) U E(S3) UE(Sy);

The correctness of the algorithm follows from Lemma 2.5. For an input graph G on n vertices and m
edges, the construction of the reduced graph G can be done in O(n + m) time. The graph G has n
vertices and m’ < m edges, and, thus, its strong components can be completed in O(n + m) time. The
bi-scc Ci1,Cia,...,Cik, of each strong component C;, 1 < i < k, can be computed in O(n + m) time
because n; ; < m; ; and Zj=1,k,, m;,; < m; since the bi-scc do not share edges. It is not difficult to see
that all the operation of Step 4 are executed in linear time. Thus, the algorithm runs in O(n+m) time;
the space needed is O(n 4+ m). Therefore, we can state the following result:

Theorem 4.2. Using Algorithm Detect-S-Family, we can decide whether a digraph G on n vertices and
m edges contains a graph in £(S1) U E(S2) U E(S3) UE(Ss) as a subgraph in O(n 4+ m) time and space.

5 Concluding Remarks

In this work, we proved instability results for families of network topologies under various compositions of
contention-resolution protocols using the Adversarial Queueing Model and described optimal algorithms
for detecting these families of network topologies; they run in time and space linear on the number of
network nodes and links. Our algorithms can also be used to decide universal stability in linear time
and space.

An interesting direction for further research would be to investigate whether other compositions of
protocols are unstable on specific network topologies. Especially, it would be interesting to characterize
the stability of the compositions of LIS with any of the SIS, NTS and FTG protocols that have been
proved unstable in [14]. As far as it concerns single protocols, only the characterization of stability
under FFS,; FIFO and NTG-LIS are known [1, 2, 5, 19].

It would also be interesting to see whether the approach and algorithmic techniques used in this
paper for detecting the E(U1) U E(Uz) and £(S1) U E(S2) U E(S3) U E(S4) network topologies, can help
develop optimal algorithms for other network topologies that are unstable under single or compositions
of contention-resolution protocols.
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Appendix

(Proofs of Lemmas)

A Proof of Lemma 2.5

By its definition, it follows that

(a) a bi-scc C;; of the scc C; of the digraph G either is a cycle O = (xg,21,T2,...,&r,To), T > 2,
or contains a cycle O = (zo,x1,Z2,...,%r,20), 7 > 2, and a path P = (z;,91,y2, ..., Y, ;) such
that Y1, Y2y« Yo ¢ Oa T 7& Zj and r’ > Oa

(b) two bi-scc C;;, and C; 4 of the scc C; have at most 1 vertex in common.

For each scc C;, 1 < i < k, let us consider the following undetected graph Gi: it consists of k;
vertices v; 1,v;,2, - - -, Vi, k;, Which correspond to the bi-scc Cy 1, C; 2, . . ., Ci k,, and two vertices vy, v, are
connected by an edge in (771 if the corresponding bi-scc C;;, and C; 4 have a common vertex. From the
properties of the bi-scc of Cj, it is easy to see that the graph G, is a tree.

(<) It is easy to see that if condition (i) holds, then the graph G(C;) contains a subgraph
H € £(S1). If condition (ii) holds, then the bi-scc C;; contains a cycle O = (xo,x1,22,...,Zr, To),
r > 2, and a path P = (z,91,¥2,..., Y, ;) such that z; # x; and v/ > 0. Thus, the graph G(C;)
contains a subgraph H € £(S3). Suppose now that condition (iii) holds and there exists no bi-scc C; ;
which satisfies conditions (i) or (ii). Then, all the bi-scc of the scc C; are cycles. Let v; , and v; 4 be the
vertices of (771 which correspond to the bi-scc s, and C; 4. Since the graph C:'l is a tree, there exists a
unique v; »~v; ¢ path P in CNT‘Z-; let (vip,vi1,vi2,...,%0i;,0iq) be the path P, j > 0. If the bi-scc C;; has
length ¢ > 3, i.e., it consists of n; 1 > 3 vertices, then the graph G(C;) contains a subgraph H € £(S3),
otherwise (if C; 1 is a 2-cycle) G(C;) contains a subgraph H € £(Sy).

(=) Suppose now that G is not simple-path universally stable. Then, G contains a subgraph
H e E(S1)UE(S2) UE(S3) UE(Sy), and, thus, H contains a cycle O = (zg, 21,22, .., Zo), 7 > 2. It
follows that O belongs to a scc C; of the graph @, 1 <i < k. Let C; ; be the bi-scc of C; which contains
the cycle O. Since r > 2, the bi-scc C; ; has at least three vertices, i.e., n; ; > 3. We distinguish two
cases:
Case (a): C;; contains the cycle O and a path P = (x;,y1,%2,...,Yr,x;), 7" > 0. Then, H € £(S2)
and G(Cj;)ye is not a cycle. Thus, condition (ii) holds.
Case (b): C;; contains only the cycle O = (x¢,z1,22,...,2r,Z0), 7 > 2. If there exists an edge
TiTi+1modr in O such that A(@i%it1moar) > 2 in G, then H € £(S1) and, since G(C; ;)ue is a cycle,
condition (i) holds. If there exists no such edge in O, then H € £(S3)UE(S4). Thus, H contains another
cycle O’ = (xp, 2,25, ..., )., x(), r > 2, which belongs to a bi-scc, say, C; 4, of C;. If conditions (i) and
(ii) do not hold for the bi-scc C; 4, then the graph G(C; ;)¢ is a cycle and n; ; > 3. Thus, condition (iii)
holds.

B Proof of Theorem 3.1.2

System (U1, Ay, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e,g and f,g,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T1| = |S] time steps): The adversary injects in the queue of g a set Z; of |Z1| = r|T}|
packets scheduled to traverse the edges g, f. In g, the packets in S have priority over those in Z;.



Round 2 (|T»| = r|T1| time steps): The adversary injects a set Zs of | Z| = r|T3| packets in g scheduled
to traverse the edges g, e, and a set Z3 of |Z3| = r|Ts| packets in f scheduled to traverse f. The packets
in Z; have priority over the packets of Z5 in g and over the packets of Z3 in f.

Round 3 (|T5| = r|Tz| time steps): The adversary injects a set Z4 of | Z4| = r|T5| packets in f scheduled
to traverse f, and a set Z5 of |Z5| = r|T3| packets in e scheduled to traverse e,g. Thus at the end of
this round, there is a set Y of |Y| = r|T3| packets in f waiting to traverse f. Additionally, in e, the
packets in Z5 have priority over those in Z5.

Round 4 (|7y| = r|T5]| time steps): The adversary injects a set Zg of | Zg| = r|T4| packets in e scheduled
to traverse e, g, and a set Z7 of |Z7| = r|Ty| packets in f scheduled to traverse f,g. The packets in Y’
delay those in Z7, which remain waiting in f. Among the packets in Z5 U Zg waiting in e, |Ty| traverse
e; thus, a set W of |W| = |Zs5| 4 |Zs| — |T4| packets remain in e wanting to traverse e, g.

At the end of the four rounds, there are |Z;| + |W| = 2r|T4| packets in the queues of e, f waiting to
traverse e, g and f,g. The number of these packets exceeds |S| if 2r* > 1, i.e., r > 0.841.

System (Uy, A2, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e, g and f,g,
respectively. The adversary’s strategy consists of four rounds of injections:

Round 1 (|71]| = |'S] time steps): The adversary injects in g a set Z; of |Z1| = r|T1| packets scheduled
to traverse g, f. In g, the packets in S have priority over those in Z;.

Round 2 (|T»| = r|T1| time steps): The adversary injects a set Zs of | Z| = r|T3| packets in g scheduled
to traverse g, e, and a set Z3 of |Zs| = r|T»| packets in f scheduled to traverse f. The packets of Z;
have priority over those of Zs in g and over those of Z3 in f; thus, the packets in Zs and Z3 remain
queued in e and f.

Round 3 (|75| = r|Tz| time steps): The adversary injects a set Z4 of |Z4| = r|T5| packets in f scheduled
to traverse f, and a set Z5 of |Z5| = r|T5| packets in e scheduled to traverse e, g. In f, the packets in
Z3 have priority over those in Z4, while in e, the packets in Z5 have priority over those in Zs.

Round 4 (|7y| = r|T5]| time steps): The adversary injects a set Zg of | Zg| = r|T4| packets in e scheduled
to traverse e, and a set Z; of |Z;| = r|T4| packets in f scheduled to traverse f,g. In f, the packets in
Z4 have priority over those in Z7, while among the packets in Z5 U Zg waiting in e, |Ty| traverse it.

At the end of the four rounds, there are | Z5| + | Zs| — |T4| and |Z7| packets in the queues of e, f waiting
to traverse e, g and f, g, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., r > 0.841.

C Proof of Theorem 3.1.3

System (U, Ay, (NTG, LIS)).

Initially, there is a set S of packets waiting in the queues of es, e3 in order to traverse eg, 1 and eg, ey, €1,
respectively. The adversary’s strategy consists of three rounds of injections:

Round 1 (|71| = | S| time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse e, €2, e3. In eq, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects a set Zs of |Z3] = r|Ts| packets in eg
scheduled to traverse es, and a set Z3 of |Z3| = r|Tz| packets in es scheduled to traverse es,eq,e1. In
es, the packets in Z, have priority over those in Z7; a set X of |Z1| — (|T2| — |Z2|) packets remain in e
waiting to traverse es, es3 and a set Y of |Th| — | Z2| packets have priority over Z3 packets in e3. Thus, a
set W of |Z3| + |Y| — |Tz| packets remain in e3 scheduled to traverse es, eq, e at the end of this round.
Round 3 (|T3] = r|T| time steps): The adversary injects a set Zy of |Z4] = r|T3| packets in eg
scheduled to traverse eq, eq, and a set Zs of |Z5| = r|T5| packets in es scheduled to traverse es. X
have priority over Z, packets in e;. Thus, at the end of this round, there are |X'| = |Zy| + |X| — |T5]
packets in e scheduled to traverse es,e;. X and Z5 packets have priority over W packets in ez. Thus,
|Y'| = |X|+ |W|+ |Z5| — |T3| packets remain in e3 requiring to traverse es, e, €;.
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At the end of the three rounds, there are | X’| + |Y’| packets in the queues of eq, e3 waiting to traverse
ea,e1 and e3, ey, e1, respectively. The number of these packets exceeds |S| if 2r® > 1, i.e., r > 0.794.

System (U, Az, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of es, e3 in order to traverse es, e; and es, ey, €1,
respectively. The adversary’s strategy consists of three rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in ey a set Zy of | Z1| = r|T}| packets scheduled
to traverse e, €2, e3. In e, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T}]| time steps): The adversary injects a set Zs of |Z3| = r|Ts| packets in eg
scheduled to traverse es, and a set Z3 of |Z3| = r|Tz| packets in es scheduled to traverse es,eq,e1. In
es, the packets in Z, have priority over those in Z7; a set X of |Z1| — (|T2| — |Z2|) packets remain in e
waiting to traverse eg, e3 and a set Y of |Tz| — | Z3| packets have priority over Z3 packets in e3. Thus, a
set W of |Z3| + |Y| — |Tz| packets remain in e3 scheduled to traverse es, e4, e at the end of this round.
Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Zy of |Z4] = r|T5| packets in eg
scheduled to traverse eq, e, and a set Zs of |Z5| = r|T5| packets in ez scheduled to traverse es. X
have priority over Z, packets in e;. Thus, at the end of this round, there are |X'| = |Zy4| + | X| — |T5]
packets in e scheduled to traverse ez, e;. X and Z5 packets have priority over W packets in e3. Thus,
|Y'| = |X|+ |W|+ |Zs5| — |T3| packets remain in e3 requiring to traverse es, e4, €;.

At the end of the three rounds, there are | X’| 4+ |Y”| packets in the queues of e, e waiting to traverse
ea,e1 and e3, ey, €1, respectively. The number of these packets exceeds |S| if 2r® > 1, i.e., r > 0.794.

System (Us, As, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of es, e3 in order to traverse es, e; and es, eq, €1,
respectively. The adversary’s strategy consists of three rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in ey a set Zy of | Z1| = r|T}| packets scheduled
to traverse e, es, e3. In e, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T}]| time steps): The adversary injects a set Zs of |Z3] = r|Ts| packets in eg
scheduled to traverse e, and a set Z3 of |Z3| = r|Tz| packets in e5 scheduled to traverse es, eq,e;. In
es, the packets in Z, have priority over those in Z7; a set X of |Z1| — (|T2| — |Z2|) packets remain in e
waiting to traverse eg, e3 and a set Y of |Ts| — | Z3| packets have priority over Z3 packets in e3. Thus, a
set W of |Z3| + |Y| — |Tz| packets remain in e3 scheduled to traverse es, eq, €1 at the end of this round.
Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Zy of |Z4] = r|T5| packets in eg
scheduled to traverse es,e;, and a set Zs of |Zs| = r|T5| packets in e3 scheduled to traverse es. X
have priority over Z, packets in e;. Thus, at the end of this round, there are |X'| = |Zy4| + |X| — |T5]
packets in e scheduled to traverse es,e;. X and Z5 packets have priority over W packets in es. Thus,
|Y'| = |X|+ |W|+ |Z5| — |T3| packets remain in e3 requiring to traverse es, e4, €;.

At the end of the three rounds, there are | X’| 4+ |Y”| packets in the queues of e, e3 waiting to traverse
e2,e1 and e3, ey, e1, respectively. The number of these packets exceeds |S| if 2r3 > 1, i.e., r > 0.794.

D Proof of Theorem 3.1.4

System (S, A;, (NTG, LIS)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e, g; and f, g1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T1| = | S| time steps): The adversary injects in g1 a set Z; of | Z1| = r|T}| packets scheduled
to traverse g1, g2. In g1, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in go a set Zy of |Za| = r|T»| packets
scheduled to traverse go,e. In go, the packets in Z; have priority over those in Zs.
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Round 3 (|T3] = r|T| time steps): The adversary injects a set Zs of |Z3| = r|T3| packets in go
scheduled to traverse go, f, and a set Z of |Z4| = r|T5| packets in e scheduled to traverse e, g;. In go,
the packets in Z5 have priority over those in Z3 and over the packets of Z, in e.

Round 4 (|Ty| = r|T5]| time steps): The adversary injects a set Z5 of | Z5| = r|T4| packets in e scheduled
to traverse e, and a set Zg of |Zg| = r|Ty| packets in f scheduled to traverse f,g;. In f, the packets in
Z3 have priority over those in Zg, while in e, the packets in Z5 have priority over those in Z4. Thus, at
the end of this round, there are |Y'| = |Z4| + |Z5| — |T4| packets in e scheduled to traverse e, g1.

At the end of the four rounds, there are | Zs| + |Y| packets in the queues of e, f waiting to traverse e, g1
and f, g1, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., 7 > 0.841.

System (S2, Az, (NTG, LIS)).

Initially, there is a set S of packets waiting in the queues of es, fo in order to traverse es, g and fs, g,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|71]| = |'S] time steps): The adversary injects in g a set Z; of |Z1| = r|T1| packets scheduled
to traverse g,e;. In g, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T3]| time steps): The adversary injects a set Zs of |Za| = r|Tz| packets in e;
scheduled to traverse the edges ej, ez, and a set Z3 of |Z3| = r|T:| packets in g scheduled to traverse
g, f1- The packets in Z; have priority over the packets of Zs in e; and over the packets of Z3 in g.
Round 3 (|T3| = r|Tz| time steps): The adversary injects a set Z; of |Z4] = r|T5| packets in f;
scheduled to traverse f1, fa, and a set Z5 of |Z5| = r|T3| packets in ey scheduled to traverse e, g. In eo,
the packets in Z5 have priority over those in Zs5, while in f1, the packets in Z35 have priority over those
in Zy.

Round 4 (|Ty| = r|T3| time steps): The adversary injects a set Zg of |Zs| = r|Ty| packets in eg
scheduled to traverse ey, and a set Z7 of |Z7| = r|Ty| packets in fs scheduled to traverse fo, g. In fo, the
packets in Z4 have priority over those in Z7, while in ey, the packets in Zg have priority over those in
Z5. Thus, at the end of this round, there are |Y| = |Z5| + | Zs| — |T4| packets in e scheduled to traverse
€2, 4.

At the end of the four rounds, there are |Z7| + |Y'| packets in the queues of eq, fo waiting to traverse
e, g and fo, g, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., r > 0.841.

System (S3, As, (NTG, LIS)).

Initially, there is a set S of packets waiting in the queues of e3, e5 in order to traverse e3, e; and es, eg, €1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in ey a set Zy of | Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T}]| time steps): The adversary injects in e a set Zy of |Za| = r|Tz| packets
scheduled to traverse e, e3,e4,€5. In es, the packets in Z; have priority over those in Z,.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in eg
scheduled to traverse es, e3, and a set Z4 of |Z4| = r|T5| packets in e5 scheduled to traverse es, eg, €;.
In es, the packets in Zs have priority over those in Z3 and over the packets of Z4 in es.

Round 4 (|Ty| = r|T3| time steps): The adversary injects a set Z5 of |Zs| = r|Ty| packets in e3
scheduled to traverse es,e1, and a set Zg of |Zg| = r|Ty| packets in es scheduled to traverse es. In e,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Z4. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e scheduled to
traverse es, eg, €1.

At the end of the four rounds, there are |Zs| + |Y| packets in the queues of e3, e5 waiting to traverse
es,e1 and es, eg, €1, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.
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System (S4, A4, (NTG, LIS)).

Initially, there is a set S of packets waiting in the queues of es,e5; in order to traverse es,e; and
es, €6, g1, €1, respectively. The adversary’s strategy consists of four rounds of injections as follows:
Round 1 (|71| = |S] time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in ey a set Zy of |Zy| = r|T»| packets
scheduled to traverse es, €3, g2, €4, €5. In es, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in eg
scheduled to traverse es, e3, and a set Z, of | Z4| = r|T5| packets in e5 scheduled to traverse es, eg, g1, €1.
In e, the packets in Z5 have priority over those in Z3 and over the packets of Z4 in es.

Round 4 (|Ty4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e3
scheduled to traverse es, e, and a set Zg of |Zs| = r|Ty| packets in e scheduled to traverse es. In eg,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Zy. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e5 scheduled to
traverse es, €g, g1, €1-

At the end of the four rounds, there are |Z5| 4+ |Y'| packets in the queues of es, e5 waiting to traverse
es,e1 and e, eg, g1, €1, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.

System (51, A1, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e, g; and f, g1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T1| = | S| time steps): The adversary injects in g1 a set Z; of |Z1| = r|T}| packets scheduled
to traverse g1, g2. In g1, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in go a set Zy of |Za| = r|T»| packets
scheduled to traverse go,e. In go, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|T| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in go
scheduled to traverse gs, f, and a set Z4 of |Z4| = r|T3| packets in e scheduled to traverse e, g;. In go,
the packets in Z5 have priority over those in Z3 and over the packets of Z,4 in e.

Round 4 (|Ty| = r|T5| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e scheduled
to traverse e, and a set Zg of |Zs| = r|T4| packets in f scheduled to traverse f,g;. In f, the packets in
Z3 have priority over those in Zg, while in e, the packets in Z5 have priority over those in Z,. Thus, at
the end of this round, there are |Y| = |Z4| + |Z5| — |T4| packets in e scheduled to traverse e, g1.

At the end of the four rounds, there are |Zg| 4 |Y| packets in the queues of e, f waiting to traverse e, g
and f, g1, respectively. The number of these packets exceeds |S|if 2r* > 1, i.e., 7 > 0.841.

System (S2, Az, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of es, fo in order to traverse es, g and fs, g,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|71]| = |'S] time steps): The adversary injects in g a set Z; of |Z1| = r|T1| packets scheduled
to traverse g, e;. In g, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects a set Zs of |Za| = r|Tz| packets in e;
scheduled to traverse the edges e1, e, and a set Z3 of |Z3| = r|Ts| packets in g scheduled to traverse
g, f1- The packets in Z; have priority over the packets of Zs in e; and over the packets of Z3 in g.
Round 3 (|T3| = r|Tz| time steps): The adversary injects a set Z; of |Z4] = r|T5| packets in f;
scheduled to traverse f1, fa, and a set Z5 of |Z5| = r|T3| packets in ey scheduled to traverse es, g. In eo,
the packets in Z5 have priority over those in Z5, while in f1, the packets in Z35 have priority over those
in Zy.

Round 4 (|Ty| = r|T3| time steps): The adversary injects a set Zg of |Zs| = r|Ty| packets in eg
scheduled to traverse es, and a set Z7 of | Z7| = r|Ty| packets in f5 scheduled to traverse f2,g. In fa, the
packets in Z4 have priority over those in Z7, while in ey, the packets in Zg have priority over those in



Z5. Thus, at the end of this round, there are |Y| = |Z5| + | Zs| — |T4| packets in e scheduled to traverse
€2,4.

At the end of the four rounds, there are |Z7| + |Y| packets in the queues of eq, fo waiting to traverse
ea2,g and fa, g, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.

System (S3, A3, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of es, e5 in order to traverse es, e; and es, eg, €1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|71| = | S| time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in ey a set Zy of |Zy| = r|T»| packets
scheduled to traverse es, e3, ey, es5. In es, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in eg
scheduled to traverse eq, es, and a set Zy of |Z4| = r|T5| packets in e5 scheduled to traverse e, eg, €;.
In es, the packets in Z5 have priority over those in Z3 and over the packets of Z4 in es.

Round 4 (|Ty4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in es
scheduled to traverse es, ey, and a set Zg of |Zg| = r|Ty| packets in e5 scheduled to traverse es. In e,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Zy. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e5 scheduled to
traverse es, eg, €1.

At the end of the four rounds, there are |Z5| 4+ |Y'| packets in the queues of es, e5 waiting to traverse
e3,e1 and es, eg, €1, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.

System (Sy, Ay, (NTG, FFS)).

Initially, there is a set S of packets waiting in the queues of ez, e5; in order to traverse es,e; and
es, €6, g1, €1, respectively. The adversary’s strategy consists of four rounds of injections as follows:
Round 1 (|71| = | S| time steps): The adversary injects in ey a set Z; of | Z1| = r|T}| packets scheduled
to traverse eq, e2. In eg, the packets in S have priority over those in Z.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in ey a set Zy of |Zy| = r|Ts| packets
scheduled to traverse es, €3, g2, €4, €5. In es, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|T| time steps): The adversary injects a set Z3 of |Z3| = r|T3| packets in eg
scheduled to traverse es, e3, and a set Z, of | Z4| = r|T5| packets in e5 scheduled to traverse es, eg, g1, €1.
In ey, the packets in Z5 have priority over those in Z3 and over the packets of Z4 in es5.

Round 4 (|Ty4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e3
scheduled to traverse es, e, and a set Zg of |Zg| = r|Ty| packets in e scheduled to traverse es. In eg,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Zy. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e5 scheduled to
traverse es, €6, g1, €1-

At the end of the four rounds, there are |Z5| 4+ |Y'| packets in the queues of es, e5 waiting to traverse
es,e1 and es, eg, g1, €1, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., r > 0.841.

System (S, A1, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e, g; and f, g1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in g1 a set Z; of | Z1| = r|T}| packets scheduled
to traverse g1, g2. In g1, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T}| time steps): The adversary injects in go a set Zy of |Za| = r|Tz| packets
scheduled to traverse gs, e. In g2, the packets in Z; have priority over those in Zs.
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Round 3 (|T3] = r|T| time steps): The adversary injects a set Zs of |Z3| = r|T3| packets in go
scheduled to traverse go, f, and a set Z of |Z4| = r|T5| packets in e scheduled to traverse e, g;. In go,
the packets in Z5 have priority over those in Z3 and over the packets of Z, in e.

Round 4 (|Ty| = r|T5]| time steps): The adversary injects a set Z5 of | Z5| = r|T4| packets in e scheduled
to traverse e, and a set Zg of |Zg| = r|Ty| packets in f scheduled to traverse f,g;. In f, the packets in
Z3 have priority over those in Zg, while in e, the packets in Z5 have priority over those in Z4. Thus, at
the end of this round, there are |Y'| = |Z4| + |Z5| — |T4| packets in e scheduled to traverse e, g1.

At the end of the four rounds, there are | Zs| + |Y| packets in the queues of e, f waiting to traverse e, g1
and f, g1, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., 7 > 0.841.

System (S, A2, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of es, fo in order to traverse es, g and fs, g,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|71]| = |'S] time steps): The adversary injects in g a set Z; of |Z1| = r|T1| packets scheduled
to traverse g,e;. In g, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T3]| time steps): The adversary injects a set Zs of |Za| = r|Tz| packets in e;
scheduled to traverse the edges ej, ez, and a set Z3 of |Z3| = r|T:| packets in g scheduled to traverse
g, f1- The packets in Z; have priority over the packets of Zs in e; and over the packets of Z3 in g.
Round 3 (|T3| = r|Tz| time steps): The adversary injects a set Z; of |Z4] = r|T5| packets in f;
scheduled to traverse f1, fa, and a set Z5 of |Z5| = r|T3| packets in ey scheduled to traverse e, g. In eo,
the packets in Z5 have priority over those in Zs5, while in f1, the packets in Z35 have priority over those
in Zy.

Round 4 (|Ty| = r|T3| time steps): The adversary injects a set Zg of |Zs| = r|Ty| packets in eg
scheduled to traverse ey, and a set Z7 of |Z7| = r|Ty| packets in fs scheduled to traverse fo, g. In fo, the
packets in Z4 have priority over those in Z7, while in ey, the packets in Zg have priority over those in
Z5. Thus, at the end of this round, there are |Y| = |Z5| + | Zs| — |T4| packets in e scheduled to traverse
€2, 4.

At the end of the four rounds, there are |Z7| + |Y'| packets in the queues of eq, fo waiting to traverse
e, g and fo, g, respectively. The number of these packets exceeds |S| if 2r* > 1, i.e., r > 0.841.

System (Ss3, As, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of e3, e5 in order to traverse e3, e; and es, eg, €1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in ey a set Zy of | Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T}]| time steps): The adversary injects in e a set Zy of |Za| = r|Tz| packets
scheduled to traverse e, e3,e4,€5. In es, the packets in Z; have priority over those in Z,.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in eg
scheduled to traverse es, e3, and a set Z4 of |Z4| = r|T5| packets in e5 scheduled to traverse es, eg, €;.
In es, the packets in Zs have priority over those in Z3 and over the packets of Z4 in es.

Round 4 (|Ty| = r|T3| time steps): The adversary injects a set Z5 of |Zs| = r|Ty| packets in e3
scheduled to traverse es,e1, and a set Zg of |Zg| = r|Ty| packets in es scheduled to traverse es. In e,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Z4. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e scheduled to
traverse es, eg, €1.

At the end of the four rounds, there are |Zs| + |Y| packets in the queues of e3, e5 waiting to traverse
es,e1 and es, eg, €1, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.
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System (S, A4, (NTG, FFS, LIS)).

Initially, there is a set S of packets waiting in the queues of es,e5; in order to traverse es,e; and
es, €6, g1, €1, respectively. The adversary’s strategy consists of four rounds of injections as follows:
Round 1 (|71| = |S] time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in ey a set Zy of |Zy| = r|T»| packets
scheduled to traverse es, €3, g2, €4, €5. In es, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in eg
scheduled to traverse es, e3, and a set Z, of | Z4| = r|T5| packets in e5 scheduled to traverse es, eg, g1, €1.
In e, the packets in Z5 have priority over those in Z3 and over the packets of Z4 in es.

Round 4 (|Ty4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e3
scheduled to traverse es, e, and a set Zg of |Zs| = r|Ty| packets in e scheduled to traverse es. In eg,
the packets in Z3 have priority over those in Z5, while in e5, the packets in Zg have priority over those
in Zy. Thus, at the end of this round, there are |Y| = |Z4] + |Zs| — |T4| packets in e5 scheduled to
traverse es, €g, g1, €1-

At the end of the four rounds, there are |Z5| 4+ |Y'| packets in the queues of es, e5 waiting to traverse
es,e1 and e, eg, g1, €1, respectively. The number of these packets exceeds |S| if 2rt > 1, i.e., r > 0.841.

E Proof of Theorem 3.2.2

System (U, Az, (NTG, FIFO)).

Initially, there is a set S of packets waiting in the queues of es, e3 in order to traverse eg, 1 and eg, ey, €1,
respectively. The adversary’s strategy consists of three rounds of injections as follows:

Round 1 (|71| = |S] time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse e, €2, e3. In eq, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|Ty| time steps): The adversary injects a set Z5 of | Z3| = r|Tz| packets in ey scheduled
to traverse eg, and a set Zs of |Z3| = r|T»| packets in es scheduled to traverse es,eq,e;. The packets
in Z; and the packets in Z5 arrive at e together; a set X5 of |Za| — %ﬁﬂ packets remain in es
waiting to traverse eq, a set X3 of |Z1] — %Eﬂ packets remain in es waiting to traverse es, e; and
aset Y of %Wﬂ packets have priority over Zs packets in es. Thus, a set W of |Z3| + |Y| — |T2|
packets remain in eg scheduled to traverse es, e4, e1 at the end of this round.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Zy of |Z4] = r|T5| packets in eg
scheduled to traverse es, e1, and a set Z5 of |Z5| = r|T5| packets in es scheduled to traverse es. X; and
X, packets have priority over Z; packets in e5. Xo and Z5 packets have priority over W packets in es.
At the end of the three rounds, there are |W| + | Z4| packets in the queues of eq, e waiting to traverse

ea,e1 and es, ey, e1, respectively. The number of these packets exceeds |S| if 7"3% > 1, i.e., r > 0.867.

F Proof of Theorem 3.2.3

System (S, A1, (NTG, FIFO)).

Initially, there is a set S of packets waiting in the queues of e, f in order to traverse e, g; and f, g1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T3| = | S| time steps): The adversary injects in g1 a set Z; of | Z1| = r|T}| packets scheduled
to traverse g1, g2. In g1, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T}| time steps): The adversary injects in go a set Zy of |Za| = r|Tz| packets
scheduled to traverse gs,e. In g2, the packets in Z; have priority over those in Zs.

Round 3 (|T3| = r|T3| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in e scheduled
to traverse e, g1, and a set Z4 of |Z4| = r|T3| packets in g2 scheduled to traverse go, f. In e, the packets
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in Zs have priority over those in Z3 and over the packets of Z4 in go.

Round 4 (|Ty| = r|T5| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e scheduled
to traverse e, and a set Zg of | Zg| = r|Ty| packets in f scheduled to traverse f,g;. In e, the packets in
Z5 have priority over those in Z3. Thus, at the end of this round, a set X of r|T4| packets remain in e

‘Z6|‘ZG\ |T4| packets remain in f scheduled to traverse

scheduled to traverse e, g1 and a set Y of |Zg| — Az

fa g1
At the end of the four rounds, there are |X|+ |Y| packets in the queues of e, f waiting to traverse e, g1

and f, g1, respectively. The number of these packets exceeds |S] if r*4£25 > 1, ie., 7 > 0.908.

System (S2, Az, (NTG, FIFO)).

Initially, there is a set S of packets waiting in the queues of ez, fo in order to traverse es, g and fs, g,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|71]| = |S]| time steps): The adversary injects in g a set Zy of |Z1| = r|T1| packets scheduled
to traverse g, e;. In g, the packets in .S have priority over those in Z;.

Round 2 (|Tz| = r|T}| time steps): The adversary injects a set Zs of |Z3| = r|Ts| packets in ey
scheduled to traverse the edges ej, es, and a set Z3 of |Z3| = r|T:| packets in g scheduled to traverse
g, f1- The packets in Z; have priority over the packets of Zs in e; and over the packets of Z3 in g.
Round 3 (|T3] = r|T| time steps): The adversary injects a set Zy of |Z4] = r|T3| packets in eo
scheduled to traverse es, g, and a set Z5 of | Z5| = r|T3| packets in f1 scheduled to traverse f1, fo. In eo,
the packets in Z5 have priority over those in Z4, while in f7, the packets in Z3 have priority over those
in Zs.

Round 4 (|Ty4] = r|Ts| time steps): The adversary injects a set Zg of |Zg| = r|T4| packets in eo
scheduled to traverse es, and a set Z; of |Z7| = r|T4| packets in fo scheduled to traverse fa,¢1. In eo,
the packets in Zg have priority over those in Z4. Thus, at the end of this round, a set X of r|Ty| packets
remain in es scheduled to traverse ez, g and a set Y of | Z7| — %mﬂ packets remain in fy scheduled
to traverse fa, g;.

At the end of the four rounds, there are | X| + |Y| packets in the queues of es, fo waiting to traverse

es, g and fa, g, respectively. The number of these packets exceeds |S| if 7"411"’—3“ > 1,1ie., r>0.908.

G Proof of Theorem 3.2.4

System (S3, As, (NTG, FIFO)).

Initially, there is a set S of packets waiting in the queues of e3, e5 in order to traverse e3, e; and es, eg, €1,
respectively. The adversary’s strategy consists of four rounds of injections as follows:

Round 1 (|T3| = |S] time steps): The adversary injects in ey a set Zy of | Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T}| time steps): The adversary injects in e a set Zy of |Za| = r|Tz| packets
scheduled to traverse e, e3,e4,€5. In es, the packets in Z; have priority over those in Z,.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in e3
scheduled to traverse es, and a set Z; of |Z4] = r|T5| packets in e5 scheduled to traverse es, eg, €;.

The packets in Z and the packets in Z3 arrive at es together; a set Xy of |Z3| — %Wﬂ packets
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traverse es, eq,e5. A set Y of %mﬂ packets have priority over Z4 packets in e5. Thus, a set W

remain in ez waiting to traverse ez and a set X5 of |Z5] |T5| packets remain in es waiting to

of |Z4| + |Y| — |T5| packets remain in e5 scheduled to traverse es, eg, €1 at the end of this round.
Round 4 (|T4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e3
scheduled to traverse es, e;, and a set Zg of |Zg| = r|Ty| packets in e5 scheduled to traverse es. X; and
X, packets have priority over Z5 packets in e3. Xo and Zg packets have priority over W packets in es.
At the end of the four rounds, there are |W|+ |Z5| packets in the queues of ez, e5 waiting to traverse
es,e1 and es, eg, e1, respectively. The number of these packets exceeds |S| if 7"4% >1,ie.,r>0.9.

ix



System (S4, A4, (NTG, FIFO)).

Initially, there is a set S of packets waiting in the queues of es,e5; in order to traverse es,e; and
es, €6, g1, €1, respectively. The adversary’s strategy consists of four rounds of injections as follows:
Round 1 (|71| = |S] time steps): The adversary injects in ey a set Z; of |Z1| = r|T}| packets scheduled
to traverse ej, es. In eg, the packets in S have priority over those in Z;.

Round 2 (|Tz| = r|T1]| time steps): The adversary injects in ey a set Zy of |Zy| = r|T»| packets
scheduled to traverse es, €3, g2, €4, €5. In es, the packets in Z; have priority over those in Zs.

Round 3 (|T3] = r|Tz| time steps): The adversary injects a set Z3 of |Z3| = r|T5| packets in e3
scheduled to traverse ez, and a set Z4 of |Z4| = r|T3| packets in e5 scheduled to traverse es, eg, g1, €1.

The packets in Z and the packets in Z3 arrive at es together; a set Xy of |Z3| — W|T3| packets
remain in e3z waiting to traverse 63 and a set Xy of |Zs| — %ng packets remain in e3 waiting to

traverse es, g2, €4, €5. A set Y of |T5| packets have priority over Z, packets in e5. Thus, a set W

of |Z4| +|Y| — |T5| packets remal‘i gfg,lscheduled to traverse es, eg, g1, €1 at the end of this round.

Round 4 (|T4] = r|Ts| time steps): The adversary injects a set Z5 of |Z5| = r|T4| packets in e3
scheduled to traverse es, e1, and a set Zg of |Zg| = r|T4| packets in es scheduled to traverse es. X; and
X, packets have priority over Z5 packets in e3. Xo and Zg packets have priority over W packets in es.
At the end of the four rounds, there are |W|+ |Z5| packets in the queues of e, e; waiting to traverse

es,e1 and e, eg, g1, €1, respectively. The number of these packets exceeds |S] if 7"4% >1,ie,r>0.9.



