Overlay Networks and Query Processing: A Survey*

Georgia Koloniari Nikos Kremmidas Kostas Lillis
Panos Skyvalidas and Evaggelia Pitoura
Department of Computer Science, University of loannina, Greece
{kgeorgia, nkremmid, klillis, skyval, pitoura}@cs.uoi.gr

Computer Science Department,
University of Ioannina,
Technical Report 2006-08,
October 2006.

*Work supported in part by the integrated project AEOLUS, IST-15964

Contents

1

2

Overlay Networks

Structured Overlays

2.1 Distributed Hash Tables (DHTSs)
2.1.1 Content Addressable Network (CAN)
212 CHORD
213 P-RINE. « o o v oottt e

2.2 Tree-based Topologies e
2.2.1 BATON . . . e
2.2.2 BATON* and VBI-Tree oo v v ii i
223 P-Grid.

2.3 Skip-lists e e

2.4 Hypercubes e e e e e e

2.5 CompariSon oi . e e e e e e e e e e e

Unstructured Overlays

3.1 Blind Search e
3.1.1 Expanding Ring
3.1.2 Random Walks
3.1.3 Biased Random Walks
3.1.4 Restricted Flooding
3.1.5 Search in Square-Root Overlays

3.2 UsinglIndexes e e e e

Other Overlays

4.1 Multi-Layer Overlays o o

4.2 Hybrid Structured and Unstructured Overlays.

4.3 Semantic Overlays Lo
4.3.1 Semantic Overlays through Content Clustering
4.3.2 Semantic Overlays through Caching
4.3.3 Associative Overlays L.

4.4 Replication and Caching o oo
4.4.1 TUnstructured Overlays L.
4.4.2 Structured Overlays
443 Updates o
444 OtherlIssues. e
4.4.5 Replication and Quality-of-Service

Query Processing

Processing of Relational Operators

6.1 Relational Queries L.
6.2 Range Queries e e
6.3 Top-kand Skyline
6.4 Similarity and Partial-match Querieso

6.5 Aggregation Queries Lo 52

7 Processing of XML and RDF Queries 53
7.1 Processing RDF 53
7.1.1 RDF Data Model and Query Languages 53

712 RDFDatainP2P 55

7.2 Processing XML 60
7.2.1 XML Data Model and Query Languages 60

7.2.2 Querying XML Documents in P2P Systems 61

1 Overlay Networks

In a peer-to-peer system, a large number of nodes share data with each other. The
participation of nodes is highly dynamic, nodes may enter and leave the system at will.
Since, it is not possible to maintain links with all nodes, for performance as well as for
privacy and anonymity reasons, each node maintains links with a selected subset of other
nodes, thus forming an overlay network. A message between any two nodes in the p2p
system is routed through the overlay network. The overlay network is built on top of the
physical one. Thus, two nodes that are neighbors in the overlay network may be many
links apart in the physical network.

The overlay network is built to facilitate the operation of a p2p system. In data sharing
p2p systems, a basic functionality is discovering the data of interest. A look-up query for
data items may be posed at any node in the overlay. The query is then routed through
the overlay to efficiently discover the nodes in the p2p system that hold the data items
requested. Such query routing must be achieved by contacting as “small” a number of
nodes in the overlay as possible and by maintaining as “little” state information at each
overlay node as possible.

There are two basic types of overlays: structured and unstructured ones. To assist
lookup, structured overlays map (keys of) data items to nodes. In unstructured overlays,
there is no correlation between nodes and data items. In structured overlays, the mapping
is usually done through hashing the key space of the data items to the id space of nodes.
Thus, each node in the overlay maintains a partition of the data space. In structured
overlays, lookup reduces to locating the node in the overlay that is responsible for the
corresponding data partition. Most structured overlays guarantee lookup operations that
are logarithmic in the number of nodes. Unstructured overlays usually provide no guar-
antees for the performance of lookup. In the lack of any additional information, search in
unstructured overlays is done through some form of flooding, where each node forwards
the lookup to its neighbors until the data item is located. To assist in selecting an appro-
priate neighbor for forwarding the query, often some additional index information is kept
at each node.

Most structured overlays follow a regulated topology, such as a ring, tree or grid. Then,
upon entering the p2p system, each node takes a specific position in the overlay network.
In unstructured overlays, the topology is not a rigid one. Upon entering the system, each
node usually connects to an existing node selected randomly from a set of known p2p
entry points. Due to the high churn produced by nodes entering and leaving the system,
the maintenance cost in structured overlays is high. Another important issue in building
structured overlays is deriving mappings that produce a load balanced assignment of items
to nodes. Load is also related to query load, so that each node in the overlay network
receives the same amount of query and update messages.

To improve performance of lookup, caching and replication of either data, search paths
or both is possible. Replication besides improving search may also assist in providing load
balancing. Further, replication improves fault tolerance and the durability of data items.

2 Structured Overlays

There are a number of issues regarding the design of a structured p2p system. One design
dimension refers to the geometry of the overlay, that is, its structural characteristics.
Another design choice is how data are mapped to nodes. The mapping must be fair so
that nodes receive similar loads even when the data sets or the operations are skewed.
All designs aim at supporting efficiently the basic operations of the overlay, that is, its
construction, its incremental maintenance when nodes enter or leave the system, and
search. Efficiency must be achieved even in the case of high churn. For some designs, it is
easier to achieve physical network awareness either during their constructions by selecting
as overlay neighbors, nodes that are neighbors in the physical network or during search,
by routing a query to nodes that are neighbors at the physical layer. Finally, overlays
differ with respect to the range of different type of queries that they support.

In the following, we discuss each of the above issues for: DHTs (CAN, CHORD),
Tree-topologies (BATON, Cornell, P-Grid), skip-lists and hypercubes.

2.1 Distributed Hash Tables (DHTSs)
2.1.1 Content Addressable Network (CAN)

The overlay network in CAN [85] is structured as a d-dimensional Cartesian coordinate
space (d-torus). Each node is assigned randomly a point in this space, when it enters the
system. An instance of a CAN is shown in Fig. 1. Each node stores the coordinates of its
zone as well as the coordinates of the neighbor zones. The key space is also dynamically
partitioned into zones, so that each node “owns” one or more zone using hashing. To map
a key-value, (K, V), pair to a specific node, CAN uses a hash function which maps key K
to a particular point P in the virtual coordinate space. (K, V) is stored at the node which
is responsible for the zone in which P lies. To retrieve a data item with key K, CAN uses
the same hash function over K, thus K is mapped to point P. Next CAN retrieves the
data from the node that owns P.

To route a query from a source to a specific destination, the routing algorithm of CAN
follows the path from the source to the destination based on the Cartesian coordinates
of the d-dimensional space in which CAN has been structured. In particular, a greedy
algorithm is used to forward the query to the neighbor zone whose coordinates are closest
to the coordinates of the destination. An example is shown in Fig. 2. Assume that the
node that owns zone 1 asks for the data with coordinates (z,y). Node 1 will forward the
query to its neighbor zone whose distance from (z,y) is the smallest. In our example,
this zone is zone 4, thus the query is forwarded to the node that owns zone 4. Again,
node 4 selects to forward the query to the neighbor with the smallest distance from (z,y).
Routing continues until the node that owns the zone in which (z,y) belongs is reached.

For a d-dimensional space, partitioned into n equal zones (each node corresponds to
one and only one node, so we have N nodes, in total), each node has 2d neighbors and the
average path length is (d/4)(N'/?). Also, for a d-dimensional space, when we increase the
number of nodes (consequently, increasing the number of zones), the average path length
grows as O(N'/4), while the amount of information that each node has to store stays the
same (2d).

(05-0.75,05-1.0)
10 A
8 4 S B (075-1005-10)
(005,05-1.0)
1 2
(0-05,0-05) (05-10,0-05)
00
00 10

node 2's virtual coordinate space

Figure 1: Structure of CAN

The virtual coordinate space is constructed whenever a new node arrives. Assume that
a node wants to join to CAN. It chooses a random point P in the coordinate space and
sends a join message to the node that owns the zone where P lies. When that message
arrives to the node that owns P, the node divides its zone into two equal zones. For
example, if we have a 2-dimensional space, then the node will divide its zone, initially on
the first dimension (e.g. on X) and then on the second dimension (e.g. on Y). If the same
node needs to divide its zone again, then it will divide it on dimension X again and the
whole procedure is repeated by dividing its zone on dimension X, and Y, alternatively.
Next, the (K, V) pairs that belong to the newly created zone are transferred to the new
node and the neighbors of the old and the new node are informed of the arrival of the
new node and the creation of the new zone. Finally, the new node is also informed of its
neighbor zones. Fig. 3 provides an example, where node 7 joins the CAN system of Fig. 2.
Node 7 is randomly assigned to a point, say on the zone owned by node 1. Node 1 divides
its zone into two equal zones (on dimension Y'). The left part of the zone is assigned to 1
and the other part to 7. In addition, all the (K, V) pairs of node 1 that now fall into the
zone of 7 zone are transferred to 7. All the neighbors of 1 and 7 (nodes 2, 3, 4 and 5) are
informed of the arrival of 7. Finally, 7 is informed of its neighbors (nodes 1, 2, 4 and 5).

When a node leaves CAN voluntarily, it hands over its zone and its (K,V') pairs
to a neighbor node (with the restriction that valid zones, as described above, must be
maintained). When a node fails, all the unreachable nodes initiate an immediate takeover
algorithm [1], which assigns the zone of the failed node to a neighbor. A node failure can
be traced through periodic messages that nodes send among them.

CAN uses several methods for achieving load balancing. First, CAN uses uniform
partitioning so that nodes are assigned an equivalent space volume. When a node is about
to split its zone after having received a request for an arrival of a new node, instead of
splitting its own zone, it compares it with the zones of its neighbors. Then, the zone
that occupies the largest space among them is selected to be split, so that one half of this
zone is handed over to the new node. In this way, CAN manages to balance the data-load
stored at each node. Other methods for load balancing exploit replication. One replication
method for handling the query load is the following. When a node becomes overloaded
with requests for a specific data key, the node replicates the key to its neighbors and

A
|/
w

(x, y3

simple routing
path from node 1
to point (x, y)
1's coordinate neighbor set = {2, 3, 4, 5}
7's coordinate neighbor set = {}

Figure 2: Routing example. Query is routed from 1 to (x, y)

1's coordinate neighbor set = {2, 3, 4, 7}
7's coordinate neighbor set = {1, 2, 4, 5}

Figure 3: An example of a node joining CAN. Node 7 joins the system

thus shares the load with them. Another replication technique is based on using multiple
realities. Multiple coordinate zones are built so that each node can be assigned to a
different zone in each reality. The contents of the hash table are replicated in each reality.
This improves data availability as well as load balancing. Also data availability and load
balancing can be improved by overloading coordinate zones by assigning each zone to more
than one node. Finally, multiple hash functions can be used to map each key to k different
points in the coordinate space and thus increase its availability.

Furthermore, each node can use caching so as to cache data keys it recently accessed.
In that way when a node requests for a specific key, it can access, first, its own cache and if
it finds it there it will not have to forward the request any further. As a result of caching,
data becomes widely available and the search cost is drastically reduced.

2.1.2 CHORD

In Chord [75], nodes form a ring called identifier circle or Chord ring. Data files are also
distributed over the same identifier space. In particular, Chord maps the node identifier
key space and the data key space to an m-bits identifier using consistent hashing. Con-
sistent hashing tends to balance load, as each node receives roughly the same number of
keys. Nodes are placed in the ring according to the modulo of the key with the number
2™. A data file with key k is stored on the first node whose identifier is equal to or follows
k in the identifier space. This node is called the successor node of key k.

Each node needs only to be aware of its successor node in the circle. Specifically, each
node is linked to the next one with a successor pointer. Queries for a given identifier
can be passed around the circle via the successor pointers until they first encounter a
node that succeeds the identifier; this is the node the query maps to. To accelerate this
process, each node maintains a routing table with information for O(log N) other nodes.
In this way, queries are executed more efficiently. In particular, each node knows all the
other nodes carrying the nearest, largest key among all the keys that are at a distance
of an increasing power of 2. This knowledge is stored in a table with m entries, called
finger table. A finger table entry includes the Chord identifier, the IP address and the
port number of the relevant node. The first entry is its immediate successor on the circle.
The " entry of the finger table for a node n, called the i** finger of n, contains the
identity of the first node, s, that succeeds n by at least 2'~! in the identifier circle, i.e.,
s = successor((n + 2°"1)mod(m)), where 1 < i < m.

Fig. 5 shows the finger tables of three nodes in a Chord ring with m = 3. When a
node n performs a lookup for a key, the first thing checked is whether the key is located
between n and its successor. If this is true, then n’s successor is the node that owns the
key. Otherwise, n searches its finger table to find the node with the first largest key from
the key that is being looked up. This procedure continues until the node that stores the
key is found. In a system with N nodes, a lookup operation requires a total of O(log N)
messages to be transmitted among nodes.

As nodes can join and leave the network dynamically, the Chord protocol needs to
make sure that every lookup operation is performed successfully. For this reason, the two
following invariants are preserved at any time.

e Each node’s successor is correctly maintained.

start | int,_[succ

finger tabbe keys
1 (L) 1

A1 2 |4 3
AR
- “]
o ™ | finger table keys
P 1. starl| inl._[succ
7 v 1| 2 |m>w] 3
3 |ps| a3
s |51 0
s 6 2 .
finger table keys
/| [Siaf]int._Jsucc El
5 - 4 (5|0
. 4 M s B0 e
: - 7 o] e

Figure 4: Chord ring for m=3. Finger tables of nodes 0, 1, 3

e For every key k, node successor(k) is responsible for k.

To simplify the join and leave operations, each node maintains also a pointer to its
immediate predecessor in the circle. When a new node n joins the system three steps
must be carried out. Initially, n must connect with an existing node p in the system and
initialize its finger table using p’s support. Secondly, the finger tables of the existing nodes
in the system must be updated to include node n and finally the appropriate keys that n
is responsible for, must be transferred to n from its successor.

Chord uses two mechanisms to deal with nodes joining the system concurrently with
nodes that fail or leave the system. The first mechanism is a stabilization protocol that
each node runs periodically to keep its successor pointers up to date, which is sufficient
to guarantee correctness of lookups. These successor pointers are then used to verify
and correct finger table entries, which allows the lookup operations to be fast as well
as correct. When node n runs the stabilization protocol, it asks its successor g for ¢’s
predecessor p and decides whether p should be its successor instead. This would be the
case if node p recently joined the system. The stabilization protocol also notifies node
n’s successor of n’s existence, giving the successor the chance to change its predecessor to
n. The successor does this only if it knows of no closer predecessor than n. The second
mechanism is a replication mechanism. Each Chord node maintains a successor-list of its
r nearest successors on the Chord ring. If node n notices that its successor has failed, it
replaces it with the first live entry in its successor list. At that point, n can direct ordinary
lookups for keys for which the failed node was the successor to the new successor. As time
passes, the stabilization protocol will correct finger table entries and successor-list entries
pointing to the failed node.

2.1.3 P-Ring

P-Ring [30] introduces a new content router called Hierarchical Ring (HR) that can effi-
ciently route range queries and handle highly skewed data distributions. The basic idea
behind HR is the creation of a hierarchy of rings. At each level of the hierarchy a list of

the first d successors are maintained, where d is an integer called the order of HR. At the
lowest level, level 1, node p maintains a list of the first d successors on the ring. Using
these successors, a message can be forwarded to the last successor in the list that does not
overshoot the target skipping up to d-1 nodes at a time. At level 4, a list of d successors is
also maintained. However, a successor at level ¢ corresponds to the dth successor at level
1 - 1. Using these successors, a message can be routed to the last successor in the list that
does not overshoot the target, skipping up to dl — 1) nodes at a time. The procedure of
defining the successor at level | + 1 and creating a list of level [+ 1 successors is iterated
until no more levels can be created. The fact that positions of the ring are indexed instead
of values, allows the structure to handle skewed data distributions. An HR of order d,
has only logq(P) levels, and the space requirement for the HR component at each node is
O(dlogy(P)), where P is the number of nodes in the ring.

The routing procedure takes as input the lower-bound (Ib) and the upper-bound (ub)
of the range in the request, the message that needs to be routed and the address of the
node where the request was originated. The routing procedure at each node selects the
farthest away pointer that does not overshoot b and forwards the request to that node.
Once the algorithm reaches the lowest level of the HR, it traverses the successor list until
the value of a node exceeds ub. In a consistent state, the routing procedure will go down
one level in the HR every time a routing message is forwarded to a different node. Hence,
each search process requires O(dlogy(P)) steps.

As an example, consider the P-Ring of Fig. 5, which consists of an HR with three
levels and a query with range (18, 25] that is issued at node 1. The routing algorithm first
determines the highest HR level in node 1 that contains an entry whose value is between
5 (value stored in node 1) and 18 (the lower bound of the range query). This corresponds
to the first entry at the second level of 1’s HR successors, which points to node 3 with
value 15. The query is hence forwarded to node 3. 3 forwards in a similar way the query
to node 4. Since 4 is responsible for items that fall within the required range, 4 processes
the routed message and returns the results to the originator node. Since the successor of
4, node 5, might store items in the (18, 25] range, the request is also forwarded to 5. 5
processes the request and sends the results to the originator node 1. The search terminates
at node 5 as the value of its successor does not fall within the query range.

In a dynamic p2p environment with continuous node insertions and failures maintaining
the HR consistent becomes a matter. P-Ring uses a simple Stabilization Process similar to
that in Chord that runs periodically at each node and fixes the successor lists at all levels
of the hierarchy. FEach node needs only local information to compute its own successor
at each level. The algorithm loops from the lowest level to the top-most level of the HR
until the highest level is reached. When a node p stabilizes a level, it contacts its successor
at that level and asks for its entries at the corresponding level. Node p replaces its own
entries with the received entries and inserts its successor as the first entry in the index
node.

P-Ring also uses a replication mechanism to deal with failures. Consider an item 3
stored in node p. The replication manager replicates ¢ to k successors of p. In this way,
even if p fails, 7 can be recovered from one of the successors of p. Larger values of k offer
better fault-tolerance but introduce additional overhead.

10

3|5:[20]
2|3:15] | 5:[20] 3| 15
1| 2:110] | 3:[15] 2|418]| 1:5]
1 21 3[15] | 4:[18]
5 10
izﬁzi 418] | 5 @20 15 33 209
2|5:[20] | 2:[10]
128l 20 8 1{4:18] | 5:[20]
4
3|3:[15]
2| 1:[5] | 3:[15]
1{5:20] | 1:[5]

Figure 5: P-Ring with HR of 3 levels

2.2 Tree-based Topologies
2.2.1 BATON

In BATON [56] a balanced binary search tree is maintained as shown in Fig. 6. In a typical
search tree nodes near the root are much more frequently accessed than nodes near the
leaves. The main contribution of BATON is a tree-structured overlay network that does
not have a substantial skew in access load. Each node of the tree maps exactly one peer
and is associated to its level and its position number at the level. The combination of the
two precisely determines the location of a node in the tree and can be used to determine
the structural relationship between a given pair of nodes. Thus, each node has a logical
id in terms of its level and position number, and a physical id in terms of its IP address.
Additionally, each node maintains links (the physical id) to its parent, to its children, to
its left and right adjacent nodes (determined by the in-order traversal of the tree) and to
selected neighbors at the same tree level. Links to selected neighbors are maintained by
means of two routing tables, a left routing table and a right routing table, each of which
has O(log N) entries where N is the number of peers in the network. The j* entry in the
left (right) routing table at node numbered n contains a link to the node at number n -
2771 (respectively n + 2771) at the same level.

The overlay network described is used to partition data among participating peers and
to build an effective distributed index structure. To achieve that, a range of values is
assigned to each node. The range of values managed by a node is required to be to the
right of the range managed by its left subtree and to the left of the range managed by its
right subtree (for example [10 , 20] is to the right of [1 , 9] and to the left of [21 , 30]) the
same way as in a binary search tree. Each node records, for each of its links, the range of
values managed by the target node (Fig. 6).

Nodes can join and leave the network at any time. A node wanting to join must send
a JOIN request to a node inside the network. A node receiving a JOIN request can accept
the new node as its child if it does not already have two children and the tree remains

11

,4 Node 13: level=3, number=6
. parent=6, leftchild=null,rightchild=18
[45-51) e leftadjacent=6, rightadjacent=18
’ Left routing table:
Node | Left |Right| Lower| Upper|
child| child| bound| bound

Level 0

Level 1

Level 2

0112 null | null | 51 54
111 16 [17 34 39
Level 3 e 0 @ @ @ @ @ @ 2ngf91t routlr?é”t;blgu” 8 12

Node | Left | Right Lower| Upper|
child| child bound bound
14 null | null] 75 81
15 19 20 89 93

Level 4

o

[29-34) [39-45) [68-72) [85-89) [93-100)

Figure 6: Binary balanced tree index architecture and data range assigned at each node

balanced. Otherwise, it forwards the request, by using its links, towards a node which has
less then two children or is a leaf-node. When the node that will be the parent of the new
node is located, it splits half of its range associated to it with its new child. The parent
of the new node uses its own links to gather the information needed by the new node
to create its links and to notify the nodes concerned by the join about the new nodes’
existence.

If a leaf node wishes to leave the network and its departure does not upset the tree
balance, it can simply leave after transferring its range of values to its parent and notifying
all nodes in its routing tables and its adjacent nodes about the departure. All the above
nodes update their links to reflect the changes provoked by the departure. If a node that
wishes to leave can not do so without upsetting the tree balance, it has to find a leaf node,
which can normally leave the network, to replace it. The leaf node follows the procedure
mentioned above to leave the network and takes the place of the departing node. The
nodes with links to the departed node are notified to replace its physical address with the
address of the replacement node. In [56], it is shown that both node join and departure
need O(log N) messages.

In case of a node failure, the parent of the failed node makes use of links maintained in
its own routing tables to regenerate the links of the failed node by contacting the children
of nodes in its own routing tables. This way the parent node can initiate a “graceful
departure” for the failed node.

The tree structure of BATON allows it to efficiently support exact match and range
queries. For an exact match query issued or received at a node, the node will first check its
own range. If it is within the current range, the query can be answered locally otherwise it
has to be routed to the node holding the range containing the query. Initially, if the nodes’
upper (lower) bound is smaller (greater) than the query, the query is routed horizontally
to the farthest neighboring node whose range upper (lower) bound is smaller (greater)
than the query. Next the query is routed vertically by following right (left) adjacent or
right (left) child links, until the node holding the range containing the query is located.
At each step of the routing the search space is reduced by half, leading to a search cost
of O(log N) steps. Observe that a request is forwarded at a higher level node only if
the node contains the answer or the forwarding node does not have two children. This
property helps the root to avoid receiving more requests than other nodes. A range query
proceeds exactly in the same manner as an exact match query with the difference that
the search is performed for a node whose range intersects with the query range. Then the

12

query proceeds left and/or right to cover the remainder of the searched range. The cost
of answering range queries is the cost of locating the first node, plus the cost of visiting
the X nodes covering the remainder of the search range, i.e. O(log N + X) steps.
Skewed datasets and queries can lead some nodes of the network, holding the cor-
responding data range, to being overloaded. To avoid this from happening, nodes are
allowed to split part of their range or acquire additional range from other nodes. Thus, if
a node detects it is overloaded, it searches for a lightly loaded node to share its load. If the
overloaded node is a non-leaf node, it does load balancing with adjacent nodes. Otherwise,
if it is a leaf node and its adjacent nodes are also loaded, it finds a lightly loaded leaf node
to do load balancing with. The lightly loaded leaf node leaves its position (the same way
as if it leaves the network) and joins as a child of the overloaded node. This can cause the
tree to be unbalanced and a network restructuring is needed to re-balance the tree. The
restructuring is achieved by a number of rotations during which some nodes change their
position in the tree and their links need to be updated. Thus, load balancing comes with
a cost: for each node changing position, adjusting the links requires an O(log N) effort.
The only concern of the node joining procedure is keeping the tree balanced. Addi-
tionally during load balancing nodes are moved away from their initial positions with the
single scope of relieving overloaded nodes. These observations indicate that it is particu-
larly hard to achieve physical network awareness in the construction of the tree overlay.

2.2.2 BATON?* and VBI-Tree

BATON provides search with cost O(logy N). For improving the search cost, a multi-way
tree structure called BATON* [54] is derived from BATON by increasing the fanout of the
search tree. Thus, in BATON* each node can have up to m children and in addition to
storing links to its parent and children, it also keeps track of the range of values managed
by its children. The range of values managed by a node is to the right of the ranges
managed by its first [m/2] children and at the left of the ranges managed by its last
|m/2]| children. Additionally, different from BATON, in the routing tables of each node,
links are maintained to neighbor nodes at the same level which are at distance d - m/,
where d =1 ... m —1 and ¢ > 0. Thus, routing tables store O(m - log,, N) entries.

The algorithms for nodes joining or leaving the network are the same as those for
BATON and have a cost of O(m - log,, N) for updating routing table entries at the nodes
involved.

The search algorithm (for answering exact match queries) is modified from that in
BATON to reflect the increased number of children at each node. Thus, when the query
is forwarded vertically at a child node. The forwarding node needs to consider the infor-
mation about the bounds of ranges maintained by its children to locate the appropriate
child node to forward the query to. Obviously, since the fanout of the tree is m and
routing tables store links to nodes at logarithmic (with base m) distance, the search cost
in BATON* is O(log,, N). The cost for search is decreased logarithmically as the fanout
is increased, but the cost for node insertions and deletions goes up. Thus, the choice of
the fanout must consider the ratio of queries to node joining and leaving the network. In-
creased fanout of the tree also increases the number of links among nodes and the number
of leaves in the network, thus achieving better fault tolerance and better load balancing.
Therefore, fault tolerance and load balancing should be also considered in selecting the

13

appropriate fanout. Additionally to speeding up search BATON* can also support queries
over multiple attributes (described in Section 6.2).

The VBI-Tree [55] is another balanced binary tree structure which is based on BATON
and supports multi-dimensional indexing schemes. In the VBI-Tree, nodes belong to two
classes: data nodes that are leaf nodes actually storing data and routing nodes and internal
nodes storing routing information. Each node, maintains parent, children, adjacent links
same as BATON nodes, and information about heights of sub-trees rooted at its children.
Additionally, each routing node maintains an upside table with information about regions
covered by each of its ancestors and the left and right routing tables. Different from
BATON, each peer in the network is assigned a pair of VBI-Tree nodes: a routing node
and its right adjacent data node. Multi-dimensional data define data points in the attribute
space, and regions containing them are partitioned among nodes. Each internal node has
associated a region that covers all regions managed by its children.

The algorithms for peers joining and leaving the network are the same as those used in
BATON, with the difference that now two nodes join/leave the network and data regions
are divided/merged only between data nodes. The index constructed by nodes joining
the network and hierarchically partitioning the attribute space among nodes, is used for
efficiently answering queries on the multi-dimensional data.

A node n receiving a data point query checks if the region associated to it covers the
data point. If the above is true and n is a data node it can answer the query itself otherwise
it forwards it to one of its children. If the region associated to n does not contain the data
point, using the upside table n finds the nearest ancestor x covering the data point query
and forwards the query to a neighbor found in n’s routing tables, situated at the other
side of the sub-tree rooted at x. For answering range queries firstly a node associated
to a region intersecting the query range is located and the query is forwarded to other
appropriate nodes. Load balance is performed in the same manner as in BATON and as
all other operations of VBI-Tree has the same cost as those in BATON.

2.2.3 P-Grid

In P-Grid [3], a dynamic binary search tree is maintained in a distributed way, such that
the search space, consisting of binary strings, is partitioned between peers. The salient
feature of P-Grid is the separation of concerns between peer identifier and peers position
in the network. More specifically, each peer p is associated to a path m(p) of the tree and
is responsible for storing references to the peers that store data items indexed by keywords
for which 7(p) is a prefix. Multiple peers can be associated to and thus, be responsible
for the same path. Each peer maintains a routing table where for each prefix of 7(p) of
length [it stores references to at least one other peer whose path has the same prefix of
length [but differs at position [4+ 1. This means that at each level of the tree, each peer
stores the address of one or more peers that are responsible for the other side of the tree
at that level. An example of P-Grid is shown in Fig. 7

Paths of each peer are not determined a priori but are acquired and changed dynam-
ically through negotiation with other peers. Initially, all peers are responsible for the
whole search space (all binary keys). When two peers meet they decide, based on a local
criterion, if they will divide the search space in half and each peer will become responsible
for the corresponding half. Thus, peers extend their paths in opposite directions and store

14

00 01 10 11
0 :2 0 6 1:6
11:5 11:5 10:4
Stores Stores Stores
data data data
with key with key with key
prefix 10 prefix 10 prefix 11

Legend: @ Peer X
Routing table (route keys with prefix P to peer X)
@ Dataindexes (keys have prefix P)

Figure 7: Example P-Grid. Each peer is responsible for part of the overall tree

references to each other. The same happens whenever two peers responsible for the same
path meet. When two peers whose paths share a common prefix meet, they share their list
of references at the level of the common prefix and initiate new meetings by forwarding
each other to their referenced peers. Finally, when two peers meet and the path of one
peer is a prefix of the other, the peer with the shorter path extends its path to the opposite
direction from the other peer at that level.

If peers use as a splitting criterion their current storage load, then the resulting shape
of the tree will adapt to the data key distribution, achieving an even distribution of storage
load among peers. This way, skewed data sets don not influence the load balance but can
lead to an unbalanced tree with height linear in network size.

The search space in P-Grid consists of binary strings, therefore, insertions and queries
are based on binary keys extracted from the data. Queries can be issued at any peer and
are routed through peers routing tables. A peer p issuing or receiving a query g checks if
m(p) is a prefix of q, therefore it can satisfy the query locally. Otherwise, it calculates the
length [of the common prefix of 7(p) and ¢, and forwards the query to a randomly selected
peer included in p’s references for the level [+ 1. This way the query is always routed
downwards at the binary tree achieving a cost of O(log N) messages for a balanced tree.
Theoretical analysis [4] shows that even for unbalanced trees, probabilistically the cost
remains logarithmic in terms of messages due to the randomized selection of references to
peers in the routing table.

As mentioned above, multiple peers can be responsible for the same path. Thus,
all those peers store the same references to the peers that store data items indexed by
keywords for which the path is a prefix. This way, data becomes replicated and the system
more robust to failures. Additionally, peer failures don’t influence the query routing
algorithm. By storing multiple, alternative references in the routing table of each peer,
in case of peer failures, there exists the possibility to use alternative routes to reach the
desired destination.

15

2.3 Skip-lists

SkipNet [51] organizes peers in a circular distributed data structure that provides con-
trolled data placement and routing locality. It is a generalization of Skip Lists [83] which
are sorted linked lists in which some nodes are supplemented with pointers that skip over
many list elements. In SkipNet each peer is mapped to an element of the Skip List by
using its string name ID (e.g. its DNS name). In a Skip List the head of the list is accessed
at every search. Since peers should have equal roles and their processing overhead should
be roughly the same, the list is transformed to a doubly-linked ring. Each peer maintains
a routing table consisting of 2log N pointers to other peers, where N is the number of
peers in the system. The pointers at level h of a peers routing table, point to peers that
are roughly 2" peers to the left and right of the given peer. All peers are connected by
the root ring formed by each peer’s pointers at level 0. Links at each level i of the routing
tables form 2¢ disjoint rings, which are obtained by splitting each level i - 1 ring into two
disjoint rings, each ring containing every second peer of level i - 1 ring. At each level, each
peer participates in exactly one ring which is encoded by a binary string. Therefore, to
each peer is assigned a unique binary number, according to the ring it participates at each
level, which represents the peer’s numeric ID. The SkipNet infrastructure is shown in Fig.
8.

Routing in SkipNet can be performed in both the name and the numeric ID spaces.
Routing by name ID is identical to searching in Skip Lists: At each peer, a search message
will be routed along the highest level pointer of the left or right routing table that does
not point past the destination value (peer name ID). The search terminates when the
message arrives at a peer whose name ID is closest to the destination. If the sources
name ID and the destination name ID share no common prefix, a message can be routed
either left or right. In that case, a peer randomly picks a direction so that nodes whose
name IDs are near the middle of the sorted ordering do not get a disproportionately large
share of the traffic. If the source’s name ID and the destination name ID share a common
prefix, routing traverses only nodes whose name IDs share a non-decreasing prefix with
the destination. This is an interesting property that can be exploited so that, (by using
DNS names as name IDs) routing paths remain local within an administrative domain
whenever possible.

Routing by numeric ID begins by examining peers in the root level until a peer is
found whose numeric ID matches the destination numeric ID in the first digit. Next the
search message is forwarded to that peer. Each peer that receives such a message and its
numeric ID matches the destination numeric ID up to the i** digit, forwards the message
to a peer in the level 7 ring, whose numeric ID matches the destination numeric ID at least
in the first 2 + 1 digits. This procedure is repeated until the destination is reached or the
message can not be forwarded any further. In the second case the destination is chosen to
be the peer whose numeric ID is numerically closest to the destination numeric ID among
all peers in the ring where routing has stopped. Both routing by name ID and numeric
ID have a cost of O(log N) messages [50].

To insert data in SkipNet, a search for its name ID is performed and data is stored at
the peer reached by the search procedure. This makes the algorithm of answering exact
match queries obvious. Additionally, since peers are ordered by their name IDs, range
queries can be answered by locating the peer storing the lower bound of the query and

16

Ring Ring Ring Ring Ring Ring Ring Ring
000 001 10 011 100 101 110 111

D 5]
3 2
8] 6]

(1
E)
%
=
5
&)

Level: L=0
|
4 >
Level /D C Level /D C
2 5 5 2 2 2
1 3 7 1 8 4
0 2 8 0 7 5

Figure 8: The SkipNet routing infrastructure for an 8 node system

following the neighbor pointers at the root ring until the peer storing the upper bound of
the query is reached.

To join a SkipNet, a new peer first selects a random unique numeric ID which defines at
which ring at each level the peer will participate (this way each node randomly at uniform
chooses at each level to which of the two rings it will participate). Next, it must find the
top level ring that corresponds to its numeric ID by performing a search by numeric ID.
The new peer then finds its neighbors at the top level ring ring, using a search by name ID
within this ring only. One of the neighbors takes over searching for the new peers name
ID at the next lower level and thus finding its neighbors at that level. This procedure is
repeated for each level until the root ring is reached and the new peer has joined the root
ring. Finally the new peer notifies its neighbors at each level that it should be inserted
next to them. When a peer wants to leave the system, it can proactively notify all its
neighbors at each level to repair their pointers immediately.

The correct function of the overlay is ensured by the neighbor pointers in the root
ring. The pointers in the next rings are just optimization hints. Thus, for the system to
be fault tolerant is enough that the root ring neighbor pointers are maintained correctly.
To achieve this each participating peer maintains a leaf set of 16 neighbors, thus, in case
of peer failures the surviving peers can still reach their neighbors in the root ring. The
pointers of the higher level rings are restored by a background process. Additionally,
routing path locality ensures that failures along administration domains, allow peers to
still point to live nodes within the same domain.

Routing by name ID makes it possible to control where data is stored within the
network. For example, by appending the document name at the name ID of the desired
peer, the search will reach that specific peer and the document will be stored there.
Additionally, data can be uniformly distributed across the nodes within a certain domain
by use of Constrained Load Balance. The document name ID is divided in two parts: the
name ID of the domain where load balancing should be performed (the CLB domain) and
the document name. To perform CLB, first the CLB domain is used as a name ID to

17

Figure 9: Hypercube topology

locate a peer inside the domain. Next a hash function is used to compute a numeric ID for
the document name which is used for routing by numeric ID inside the domain. The peer
where routing ends is the peer that will store the specified document. This way, by using
a hash function that uniformly distributes keys, the load will be spread evenly among the
peers within the domain.

Routing path locality ensures that routing between peers within the same domain will
never leave the domain. To take into account the physical network topology when routing
between peers in different domains, two additional routing tables are maintained: P-Table
for routing by name ID and C-Table for routing by numeric ID. These two tables maintain
routing in O(log N) messages, while also ensuring that each message has low cost in terms
of network latency.

2.4 Hypercubes

HyperCup [92] is a p2p structure where nodes are placed in a hypercube topology. The
advantage of a hypercube topology is that its diameter (that is the longer distance between
two nodes) is O(logyn), where b is the base of the hypercube and n is the number of nodes
in the structure. Also, a hypercube topology is a symmetric structure, something that is
crucial for load balancing in the network as the load will always be shared equally. In Fig
9, we can see a hypercube topology with base b = 2. As we can see the diameter of this
hypercube is logo8 = 3 and the topology is symmetric (all nodes have two neighbors).
Routing in HyperCup is essentially a broadcast in the hypercube topology with a
time-to-live (with limited scope). Broadcast in a hypercube works as follows: Each edge is
labeled (node X is dubbed i-neighbor of node Y'), as shown in Fig 9. When a node issues a
broadcast, it sends the message to all its neighbors tagging it with the edge label on which
the message was sent. Nodes receiving the message restrict the forwarding of the message
to those links tagged with higher edge labels. For example, let us assume that node 0 in
Fig. 9 sends a broadcast message. Node 4 receives this message which is tagged with the
0 label. Then node 4 will forward this message to both nodes 5 and 6, as the edges 4-5
and 4-6 are labeled with a higher label than 0. On the same step, node 1 receives the same
message which is tagged with 2. In this case, node 1 will not forward the message to its
neighbors as edges 1-5 and 1-3 are labeled with lower labels than 2. Finally, on the same

18

Figure 10: Node 7 has already left the structure. This is how the hypercube is “trans-
formed” after the departure of node 0

step node 2 receives a message which is tagged with 1 and will forward it only to node 3,
as edge 2-5 has lower label than 1 and edge 2-3 has higher label than 1. The broadcast
algorithm continues with the same way until all the nodes get the message. In this way, it
is guaranteed that exactly n-1 messages are required until the broadcast message reaches
all nodes, while only logyn steps are required for the message to reach the furthest nodes.

Assume that a node wants to leave the network. Firstly, it must define the buffering
cluster. The buffering cluster is the set of nodes that are responsible for the departing
node and it is always the complementary cluster of the departing node. A cluster, in
a hypercube topology is formed of two i-neighbors and all of the nodes of higher level.
For example, in Fig. 9, one cluster is 0, 1, 2, 3 at level 0 (lower cluster). Secondly, the
departing node must define the active nodes of the buffering cluster, which are the nodes
that exist in the topology (in contradiction to the nodes of the buffering cluster that have
left the hypercube). Next, the buffering nodes are defined. Each node of the buffering
cluster takes over certain position in the departing node’s cluster, so buffering nodes are
those nodes of the buffering cluster where the links of the departing node are going to be
transferred. Next, the links of the departing node are transferred to the buffering node.
Finally, the departing node’s neighbors are informed of the node’s departure and they
disconnect from it, while connecting to the buffering nodes.

In Fig. 10, we can see how the hypercube topology is “transformed” when a node
disconnects from the hypercube. Let us assume that node 7 has already left the hypercube
and now node 0 wants to leave it too. Firstly, node 0 defines the buffering cluster, which
is the set of nodes 4, 5, 6, 7. Secondly, it defines the active buffering nodes, which are
nodes 4, 5, 6 (since node 7 had previously left the structure). Then, the buffering node
is determined, which, in our case, is node 4. Node 0 transfers its links (with node 3 and
1) to node 4, thus creating the links 1,2 and 0,2. Finally, nodes 3 and 1 are informed of
node’s 0 departure and they disconnect from node 0, while connecting to buffering node
4 (with the links 1,2 and 0,2 respectively).

Node arrivals essentially follow similar steps as node departure. The node that wants
to join the network may contact any of the existing nodes of the hypercube. The con-
tacted node chooses the integration position, which is one of the vacant positions of the
hypercube where the arriving node will be placed. This position is the vacant position

19

2

A
(1)

Figure 11: Node 8 arrives to the hypercube. Arrows (1), (2) and (3) show the steps of the
arrival’s algorithm

of the lower cluster. If the hypercube is complete (in the current level), as in Fig. 9,
then the hypercube is extended creating a new (higher) level in the hypercube. Next, the
contacted node chooses the integration control node, which is, in fact, the buffering node
of the integration position. Then the integration request is forwarded to the integration
control node. Finally, the links that were held by the buffering node are now transferred
to the new node and the buffering cluster of the new node is informed of its presence.

In Fig 6, we can see an example of a node arrival. Let’s assume that the current
hypercube is as in Fig. 11 (continuing the example of Fig. 10) and node 8 arrives to the
network. Firstly, let us assume that node 8 contacts node 6 (arrow (2) of Fig. 11). Node 6
defines that the integration position is position number 0 (arrow (1) of Fig. 11), as it is the
vacant position of the lower cluster. Next, node 6 chooses node 4 as the integration control
node, as it is the buffering node of position number 0 (arrow (3) of Fig. 11). Finally, node
4 transfers the responding links to position number 0 and thus to node 8 and the buffering
cluster of node 8 is informed of the new node’s presence with a broadcast message (arrows
(4) and (3) of Fig. 12).

2.5 Comparison

Table 1 summarizes the characteristics of the structured systems presented.

3 Unstructured Overlays

Unstructured overlays are formed by the nodes as they join the system by either selecting
randomly a node from a known list of other nodes in the overlay or by following some
loose rules regarding this selection. The resulting topology may have certain properties
however there is no assumption regarding the way the data space is mapped to the address
space of the nodes in the overlay.

20

Table 1: Structured P2P Systems. N is the number of nodes, h the tree height, d the
number of CAN dimensions, b the base of the hypercube, m the order of BATON*, R the
average number of references stored at each level, and D the order of the hierarchical ring

Join & Query Physical
Search Leave Space Load Balance Type Replication Proximity Routing
Yes
Load balance
Availability
Performance
Multiple
Join: realities
CAN O(le/d) O(le/d) O(d) Yes Key-value Multiple hash RTT Iterative
Leave: functions
O(1) Replicate at
neighbors
Caching
Overload
coord zones
Yes
Yes Load balance
Use of Availability
Chord O(logN) O(log?N) O(logN) virtual nodes Key-value successor-list No Iterative
Consistent of r successors
hashing Replication at
T Successors
Yes
Overflow:
split Availability
P-Ring O(logp N) O(logp N) O(Dlogp N) Underflow: Key-value Replication at No Iterative
merge or Range r-successors
redistribute
Yes
Loaded nodes
BATON O(logN) O(logN) O(logN) split content Value No No Recursive
with lightly Range
loaded ones
Yes
Loaded nodes Single/multi
BATON* O(logm N) O(mlogm N) O(mlogm N) split content attribute No No Recursive
with lightly value/range
loaded ones
Yes
Loaded nodes Single/multi
VBI-Tree O(logN) O(logN) O(logN) split content attribute No No Recursive
with lightly value/range
loaded ones
Yes
Yes Availability
Storage Performance
Querying Key-value Many peers
PGrid O(logN) O(hR) assuming Range responsible No Recursive
uniform for the same
query part of the
distribution search space
Yes, by
Yes construction
Constrained Value nodes
SkipNet O(logN) O(logN) O(logN) load Key No sharing Recursive
balancing, Range common Iterative
consistent domains are
hashing neighbors
Yes
Assuming
HyperCup | O(logpN) O(logyN) uniform join No No Recursive
and leave

21

Figure 12: Node 8 has taken its place in the hypercube and the buffering cluster is informed
of its presence

To locate data of interest, a node queries its neighbors in the overlay. The most
typical query method is flooding. In flooding, the query is propagated to all neighbors
within a certain radius. Unstructured overlays are resilient to nodes entering and leaving
the system. However, they provide no guarantees on the complexity of search. It has been
shown that the search cost is reduced if the square-root principle is satisfied. The square
root principle states that each object is probed with probability proportional to the square
root of its query popularity.

We can roughly distinguish search in blind and informed search [100]. In blind search,
nodes maintain no information about the distribution of items to nodes. Their goal is
to send the query to a sufficient number of other nodes so that the query is successful.
In informed search, to make searching more efficient in terms of message overhead and
response time, nodes in the overlay maintain information about the location of data. Such
indexes are distributed in the overlay network.

The topology of an unstructured overlay is built up over time in a decentralized manner
as peers join and leave the system. In many existing systems, upon joining the network, a
peer selects to connect to another peer essentially at random. In these systems, topologies
tend toward a power-law distribution, where some long-lived peers have many connections,
while most other peers have a few connections. Formally, in a power-law network, the
number of neighbors of the ith most connected peer is proportional to 3, where w is a
constant that determines the degree of connectivity and a is a constant that determines
the skew of the distribution. with larger values resulting in more skew.

3.1 Blind Search

With blind search, the only way to locate an item is to visit enough nodes so that, with
high probability, one of the nodes has the item. Thus, the key to scalable blind searches
in unstructured network is to cover the right number of nodes as quickly as possible and
with as little overhead as possible.

The authors in [70] highlight three important issues in reaching the requested coverage.
One is a low-overhead mechanism for adaptive termination of search. Flooding uses a fixed

22

value for T'TL to terminate search whose value is critical for both the probability of success
and the associated cost. If the TTL value is too high, each query unnecessarily burdens
the network. If the TTL is too low, a query may fail to locate a requested item, even
if the item exists in the network. Another issue is to minimize message duplication. An
important problem with flooding is that it introduces a very large number of duplicate
messages, particularly in high connectivity overlays. Duplicate messages are multiple
copies of a query that are sent to a node by its multiple neighbors. Duplicate messages are
pure overhead, since they incur extra network interrupt processing at the nodes receiving
them but do not increase the chance of locating an item. Usually, duplicate detection
mechanisms are deployed in unstructured p2p systems, so that when a node receives a
query more than once, it does not forward it any further. However, even in this case, the
number of duplicate messages can still be excessive, and the problem worsens as the TTL
increases. Finally, the granularity of the coverage should be small. Each additional step
in the search should not increase the number of nodes visited significantly. In flooding, at
each step, the number of nodes visited is multiplied resulting in an exponential growth.

3.1.1 Expanding Ring

To address the first issue, that of determining a good value of TTL, ezxpanding ring initiates
successive flood requests with increasing TTLs. A node starts with a flood having a small
TTL. If the search is not successful, the node increases the T'TL and starts another flood.
The process is repeated until the object is found or some maximum TTL value is reached.
This method is expected to work well when hot data items are replicated more widely
than cold data items. In this case, most of the queries are satisfied with a small TTL,
since hot items can be found within a very small number of steps. Although, expanding
ring addresses the shortcoming of having a fixed T'TL value, it still suffers from a high
number of duplicate messages. More importantly, the granularity of coverage is still large.

A similar approach to expanding ring, called iterative deepening is proposed in [107]
with a slightly different implementation. The requesting node waits for a protocol specified
time period W. If during this period, it does not receive any replies, it proceeds with
issuing a new flood with a larger TTL value. Assume two successive flood messages with
TTL a and b, b > a. Queries are labeled with an ID, so that when at a subsequent flooding
round, they receive the same query they do not process it, but simply forward it to their
neighbors.

3.1.2 Random Walks

With random walk, at each step, a query message is forwarded to a single randomly
chosen neighbor until the object is found. This message is called a walker. Random walks
can reduce the message overhead by an order of magnitude compared to expanding ring.
However, there is also an order of magnitude increase in user-perceived delay. To reduce
this delay, the number of walkers may increase. With &k random walkers, instead of just
sending out one query message, a requesting node sends k query messages, and each query
message takes its own random walk. The expectation is that k& walkers after 1" steps should
reach roughly the same number of nodes as 1 walker after kT steps. This is confirmed
by simulation. The number of walkers is an important parameter. With more walkers,
data items are located faster, but the message overhead is higher. Further, when the

23

number of walkers is large enough, increasing it further yields only a very small reduction
in the number of hops although significantly increasing the message traffic. The authors
experimented with different number of walkers. Usually, 16 to 64 walkers give good results.
Two methods are proposed for terminating the random walk search: TTL and checking.
As in flooding, TTL means that, each random walk terminates after a certain number of
hops is reached. With checking, a walker periodically checks with the original requester
before walking to the next node. The checking method still uses a TTL, but the TTL
is very large and mainly used to prevent cycles. Simulations shows that using checking
is preferable than using TTL, since the TTL approach runs into the same TTL selection
problem as flooding does. Further experiments show that checking once at every fourth
step strikes a good balance between the overhead of the checking messages and the benefits
of checking.

The authors also studied an improvement to random walkers that requires each node
keep state. Each query has a unique ID and all its & walkers are tagged with that ID. For
each ID, a node remembers the neighbors to which it has forwarded queries of that ID.
When a new query with the same ID arrives, the node forwards it to a different neighbor
randomly chosen. This state keeping accelerates the walks because walkers are less likely
to cover the same route and hence they visit more nodes. Simulation results show that
there is improvement, however this is very small in power-law style graphs.

3.1.3 Biased Random Walks

Although random walks result in a better coverage, this can be improved so that the selec-
tion of the next node to visit is not random but instead takes into account the likelihood
that this node will have responses for the query. This form of search is not blind any more
since it assumes that there is some information about the content of neighboring peers
that would help the selection of which node to visit next. In particular, peers must know
the content of their neighbor peers.

[7] proposes to bias the random walks towards high-degree nodes. The intuition behind
this is that high-degree nodes have many neighbors and thus will have knowledge of a
large number of items. Hence, a high-degree node is more likely to have an answer that
matches the query.

Biasing the search towards high-degree nodes may overload them. The design of Gia
[24] takes into account the capacity constraints associated with each node. The capacity
of a node depends upon a number of factors including its processing power, disk latencies,
and access bandwidth. Studies of p2p systems have shown that the nodes of a p2p exhibit
high degrees of heterogeneity with regards to capacity. Gia proposes a dynamic topology
adaptation protocol with the goal to ensure that high capacity nodes are indeed the ones
with high degree and that low capacity nodes are within short reach of higher capacity
ones. An active flow control scheme is used to avoid overloading hot-spots by assigning
flow-control tokens to nodes based on available capacity. Random walks are biased towards
high-capacity nodes, which are typically best able to answer the queries.

The authors of [112] propose popularity-biased random walks that realizes the square-
root principle. At each step of the walk, the node to visit next is chosen from the neighbors
of the current node with probabilities that are proportional to the square root of the
content popularity of the neighbor.

24

3.1.4 Restricted Flooding

Another approach to restrict the traffic introduced by flooding is instead of forwarding a
search request to all neighbors of a node, to forward it to a subset of its neighbors. In
Random Breadth First Search [57] or teeming [36], the sets of neighbors to forward the
query are selected randomly.

A variation of teeming, called teeming with decay was proposed in [67]. This works like
teeming but the probability ¢ of contacting a neighbor decreases with the distance from
the requesting node to avoid the high message count in later steps. If a node is in distance
t from the requesting peer, then the probability is given by:

¢ = ¢(1 - <),

where ¢9 = ¢ and c is the decay parameter. For ¢ = 0 we have simple teeming, while if
in addition ¢ = 1, the strategy is pure flooding. The higher the value of ¢, the faster the
probability decreases and the fewer the message transmissions become.

In the Directed BFS (DBFS) [107], each node maintains simple statistics about the
query behavior of its neighbors and uses them to select those that are expected to return
more “quality” results. Such statistics may include for example the number of results
received through that neighbor for past queries, or the latency of the connections with that
neighbor. These statistics are used for selecting s the best neighbor to send the query such
as selecting the neighbor (i) that has returned the highest number of results for previous
queries, (ii) that returns response messages that have taken the lowest average number
of hops (iii) that has forwarded the largest number of messages for the node, potentially
implying that this neighbor is stable and it can handle a large flow of messages, or .
(iv) with the shortest message queue. In general DBFS has better response time than
expanding ring but generates more message traffic.

3.1.5 Search in Square-Root Overlays

[29] introduce the square-root topology, where the degree of each peer is proportional to
the square root of the popularity of the content at the peer. The content popularity of a
peer is estimated as the number of queries satisfied by a peer divided by the total number
of queries received by it. Analytical results based on random walks in Markov chains show
that the square-root topology is not only better than power-law networks, it is in fact
optimal in the number of hops needed to find content. Intuitively, the probability that a
random walk quickly reaches a peer is proportional to the degree of the peer, and if peers
with popular content have correspondingly high degrees, then most searches will quickly
reach the right peers and find matching content. Simulation results confirm the analysis,
showing that a random walk requires up to 45 percent fewer hops in a square-root topology
than in a power-law topology. Simulation results also show that several other walk-based
techniques perform better in a square-root topology than in a power-law topology. To
construct the square-root topology, each peer uses purely local information to estimate
the popularity of its content. Then, each peer adds or drops connections to other peers to
achieve its optimal degree.

25

3.2 Using Indexes

In the Local Indices technique [107], each node n maintains an index over the data of all
nodes within r hops of itself, called the radius of the index. When a node receives a query,
it can process it on behalf of all nodes within distance r from it. This way, the data of
many nodes can be searched by processing the query at few nodes. A system-wide policy
specifies the depths at which the query should be processed. All nodes at depths not listed
in the policy simply forward the query to the next depth. To minimize the overhead, the
hop-distance between two consecutive depths must be 2r 4+ 1. In contrast to iterative
deepening, where all nodes within the TTL process the query, with local indexes only
nodes at the specified depth process it. Local indexes also require flood with TTL = r,
whenever a node joins or leaves the network and whenever it updates its local data.

The objective of a Routing Index (RI) [31] is to allow a node to select the “best”
neighbors to forward a query to. The notion of goodness may vary but in general it
should reflect the number of documents that the neighbor is expected to provide. The
compound RI (CRI) maintains for each neighbor n of a node an index of the number of
documents that can be reached through n. A limitation of using CRIs is that they do not
take into account the difference in cost due to the number of hops required to retrieve a
document. The hop-count RI (HRI) stores aggregated RIs for each hop up to a maximum
number of hops, called the horizon of the RI. The exponentially aggregated RI stores the
number of documents weighted by the distance. The weight decreases exponentially with
the distance. Routing indexes impose an extra overhead for updates. Omne additional
problem with routing indexes is dealing with cycles. In the case of cycles in the p2p
network, a document may be reached from a node by following more than one path.

Depending on the content shared by the peers, many different types of data structures
can be used as routing indexes. For numerical data, [80] proposes using histograms as
hop-count routing indexes. For each neighbor n of a node, the corresponding histogram
is used to estimate the selectivity of the nodes on the path through n. Each query is then
forward to the neighbors with the largest estimated selectivity.

[86] propose using a data structure called attenuated Bloom filter as a routing index.
An attenuated Bloom filter of depth d is an array of d normal Bloom filters. Each neighbor
of a node is associated with one attenuated Bloom filter. The first filter in the array
summarizes documents available from that neighbor, that is, one hop along the link. The
i-th Bloom filter is the merger of all Bloom filters for all of the nodes a distance ¢ through
any path starting with that neighbor link. To map from an attenuated Bloom filter to
a potential value, one queries each level for a document’s name. The levels are assigned
geometrically decreasing potential values; the value of the potential function of a filter for
a given document is the sum of all of the potential values for the levels of the filter which
contain the document. To perform a query, the requesting node examines the 1st level of
each of its neighbors’ attenuated Bloom filters. If one of the filters matches, it is likely that
the desired data item is only one hop away, and the query is forwarded to the matching
neighbor closest to the current node in network latency. If no filter matches, the querying
node looks for a match in the 2nd level of every filter and so on. By doing so, the query is
forwarded to the nearest neighbor that potentially has a copy of the requested data item.

In [57], each node maintains a profile for each of its immediate neighbors. The profile
contains the list of the most recent past queries that the specific peer provided an answer

26

for. The node accumulates the list of past queries by two different mechanisms. In the
first mechanism, the peer is continuously monitoring and recording the query and the
corresponding QueryHit messages it receives. In addition, in the second mechanism, when
replying to a query, each peer broadcasts this information to its neighbor peers. This
operation increases the accuracy of the system, at the expense of O(d) extra messages
(where d is the average degree of the network) per answering node. Once the repository
is full, the node uses a Least Recently Used (LRU) policy to keep the most recent queries
in the repository. For each query it receives, the receiver peer uses the profiles of its peers
to find which ones are most likely to have documents that are relevant to the query. To
compute the ranking, the receiver peer compares the query to previously seen queries and
finds the most similar ones in the repository. One problem of this technique is that it is
possible for search messages to get locked into a cycle where each node forwards the query
only to its neighbors. To address this problem, a small random subset of peers is picked
and added to the set of best peers for each query. In this case, even if the best peers form
a cycle, with high probability the mechanism will explore a larger part of the network and
will learn about the contents of additional peers.

In Freenet [109], files are identified by binary file keys obtained by applying a hash
function to a string that describes the content of the file. Each node maintains a routing
table which is a set of (key, pointer) pairs, where pointer points to a node that has a
file associated with the key. A steepest-ascent hill-climbing with backtracking is used to
locate a document. Each node forwards a request for an item with key & to the node in
its routing table whose key is the one most similar to k.

4 Other Overlays

4.1 Multi-Layer Overlays

Besides pure peer-to-peer systems in which all nodes in the system have equal roles, in
hybrid peer-to-peer systems, the responsibilities assigned to peers differ. In super-peer
p2p systems, some peers, called the super peers, are serving as servers to the rest of the
peers. Super-peer networks strike a balance between the efficiency of centralized search,
and the autonomy, load balancing and robustness to failures and attacks provided by fully
distributed search. Furthermore, they take advantage of the heterogeneity of capabilities
(such as bandwidth and processing power) across peers.

A popular topology is having a super-peer serving as a server for a subset of the peers.
Peers submit queries to their super-peer and receive results from it. Super-peers are also
connected to each other as peers in a pure system are, routing messages over this overlay
network, and submitting and answering queries on behalf of their peers and themselves.
This creates a two-layer topology, one among the super-peers and one between the super-
peer and the peers assigned to it. Taking this design a step further, peers of a super-peer
can also organize themselves in a hybrid overlay, where some peers become super-peers of
the rest leading to multiple levels of peers with decreasing responsibilities.

Designing super-peer networks raises many issues. Some of them are discussed in [108].
One issue is determining the number of peers assigned to each super-peer, that is the size
of the clusters. In terms of cluster size, there is a clear trade-off between aggregate and
individual network and processing load. Increasing cluster size decreases aggregate load,

27

but increases individual load at each super-peer. Further, the reliability and availability
of p2p overlays with large clusters and thus only a few super-peers is small, since there are
a few points of failure and should the few super-peers leave, fail or be attacked, processing
at their clusters is affected. In general, introducing redundancy at the super-peer layer,
that is having more than one peer serving a cluster of peers, results in better availability,
reliability and load balance.

Work in [43] introduces Canon, a hierarchical DHT. The key idea behind Canon lies in
its recursive routing structure. The internal nodes in the hierarchy are called domains to
be distinguished from the actual system nodes. The nodes in a domain of a node n are all
the system nodes at the subtree rooted at n. The design of Canon ensures that the nodes
in any domain form a DHT routing structure by themselves. The DHT corresponding to
any domain is synthesized by merging its children DHTs by the addition of some links.
The challenge is to perform this merging in such a fashion that the total number of links
per node remains the same as in flat DHT designs, and that global routing between any
two nodes can still be achieved as efficiently as in flat designs. The Canon principle can
be applied to transform many different DHT designs into their Canonical versions.

Another proposal for a hierarchical DHT design is Coral [41]. Coral also provides
a distributed sloppy hash table abstraction (DSHT). Instead of storing actual data, the
system stores weakly-consistent lists of pointers that index nodes at which the data resides.
Instead of one global lookup system, Coral uses several levels of DSHTs called clusters.
Coral nodes belong to one DSHT at each level. Clusters are build based on latency. To this
end, Coral assigns round-trip-time thresholds to clusters to bound cluster diameter and
ensure fast lookups. The current design supports three clusters. The goal is to establish
many fast clusters with regional coverage, multiple clusters with continental coverage and
one planet-wide cluster. To insert a key/value pair, a node performs a put on all levels of
its clusters. This practice results in a loose hierarchical data cache, whereby a higher-level
cluster contains nearly all data stored in the lower-level clusters to which its members also
belong. To retrieve a key, a requesting node first performs a get on its lower level cluster
to take advantage of locality and if the search is not successful the search continues at
higher levels. Two conflicting criteria impact the effectiveness of a clustered DSHTSs. First,
clusters should be large in terms of membership. The more peers in a DSHT, the greater
its capacity and the lower the miss rate. Second, clusters should have small network
diameter to achieve fast lookup. That is, the expected latency between randomly-selected
peers within a cluster should be below the cluster specified threshold. Coral provides an
algorithm for self-organizing, merging and splitting clusters, to ensure acceptable cluster
diameters.

4.2 Hybrid Structured and Unstructured Overlays

Motivated by the fact that popular items are easy to locate in unstructured p2p systems,
while rare items require excessive flooding, the authors of [69] propose building hybrid
overlays. The hybrid search infrastructure utilizes selective publishing techniques that
identify and publish only rare items into the DHT while flooding is used for the popular
items.

Different heuristics can be used to identify which items are rare. One simple heuristic
is based on the observation that rare items are those that are seen in small result sets.

28

Although this scheme is simple, it suffers from the fact that many rare items may not have
been previously queried and returned in any result sets. Consequently, these items will
not be published to the DHT via such a caching scheme. Other techniques may be used
for these items, for example, maintaining statistics. This hybrid infrastructure can easily
be implemented: if not enough results are returned by flooding within a predetermined
time, the query is reissued as a DHT query.

4.3 Semantic Overlays

In semantic overlay networks, peers are connected to each other based on the likelihood of
them providing results for similar queries. There are several ways to capture such semantic
relationships between peers. One approach is to explicitly identify such relations by using
a content similarity clustering or classification algorithm to place in the same cluster or
class the peers that have similar content. Another way of creating semantic overlays is by
some form of caching. In this case, the overlay is built incrementally based on the results
of the queries submitted to the system.

In semantic overlays, each peer is connected with the other peers in its cluster through
a large number of links. To help route across semantic clusters, a few random links are
usually added between peers at different clusters. This resembles the creation of small-
worlds [104] which are networks having a large clustering coefficient and a small diameter.

4.3.1 Semantic Overlays through Content Clustering

In Semantic Overlay Networks (SONs) [32], nodes with semantically similar content are
clustered together. Queries are processed by identifying which SON (or SONs) are better
suited to answer them and each query is sent to a node in those SONs. Then, these nodes
forward the query only to other members of their SON. In this way, a query for an item
goes directly to the nodes that have similar content (which are likely to have answers for
it), thus reducing the time that it takes to answer the query. Furthermore, nodes outside
the cluster (and therefore unlikely to have answers) are not burdened by such queries. A
classifier is used for determining which cluster or clusters each incoming node should join
and which cluster should receive each query. The classification is based on the content
of each node. An important issue is the level of granularity for the classification. A
small granularity will not generate enough locality, while a large granularity will increase
maintenance costs.

A similar approach is taken by SETS [12]. Nodes are arranged in a topic-segmented
overlay. Each topic segment has a succinct description called the topic centroid. Topically
focused sets of nodes are joined together into a cluster connected through short distance
links. Long distance links connect pairs of nodes from different segments. When a search
query is initiated, it is forwarded to other nodes using a topic-driven routing protocol.
First, topic centroids are used to select a small set of relevant topic segments. Next, the
selected segments are probed in sequence. A probe to a particular segment proceeds in
two steps: First, the query is routed along long distance links to reach a random node
belonging to the target segment. Next, the short distance links are used to propagate the
query to an appropriate subset of the nodes within the segment.

Psearch [98] builds a semantic overlay so that the distance of two documents in the
network is proportional to the their dissimilarity in semantics. The document semantics

29

is produced using LSI. CAN is used as the semantic overlay by using the semantic vector
(generated by LSI) of a document as the key to store the document index in the CAN.
By doing so, the dimensionality of the CAN is set equal to that of LSI’s semantic space,
which typically ranges from 50 to 350. The actual dimensionality of the CAN, however,
is much lower because there are not enough nodes to partition all the dimensions of a
high-dimensional CAN. Along those unpartitioned dimensions, the search space is not
reduced. Further, semantic vectors are not uniformly distributed in the semantic space.
Due to the curse of dimensionality, it has been shown that limiting the search region in
high-dimensional spaces is difficult. These problems are addressed by leveraging the prop-
erties of the semantic space and trading accuracy for efficiency and/or storage overhead
when necessary. Taking advantage of the higher importance of low-dimensional elements
of semantic vectors, a rolling index scheme partitions the semantic space along more di-
mensions by rotating the semantic vectors. A content-aware node bootstrapping helps
distribute the indexes more evenly across nodes. Using samples of indexes and recently
processed queries to guide the search, the content-directed search algorithm substantially
reduces the search region in the high-dimensional semantic space.

A decentralized approach for building content-based overlays is proposed in [81, 80, 62].
The approach exploits the routing indexes maintained at each node. When a new node
enters the p2p system, its local index is used to route the node towards the nodes that
have similar routing indexes and thus similar content with it.

The authors in [63] propose workload-aware content clustering. The motivation is that
clustering based solely on the content of the nodes does not take into account the query
workload. For example, items that are rarely queried should affect the formation of content
clusters less than popular items. Workload-aware clustering builds upon the approach in
[80] that uses histogram-based routing indexes for constructing content-based overlays.
Workload-awareness is achieved by using a weighted edit distance between the histograms
serving as indexes of each peer to define the similarity of the peers’ content. The weight
is proportional to the estimated popularity of the corresponding items.

4.3.2 Semantic Overlays through Caching

Content Caching An example of a cached-based approach for building semantic over-
lays is caching in Freenet [109]. Freenet creates caches of similar content. This is achieved
through the cache replacement policy used in Freenet. When a node n enters the systems,
it chooses a seed, say a, randomly from the key space. By doing so, node n becomes
responsible for building a cluster for a. When the cache of node n is full and a new item
with key b arrives, b replaces the item in the cache that is the farthest apart from a. In
addition, if b is closest to a than the item that was evicted from the cache, an entry for b
is added to the routing table. An enhanced version, coined enforced-cluster with random
shortcuts, adds a few extra links to the routing table to peers not similar to a.

Locality of Interest Caching The approach described in [96] builds an interest-based
shortcut overlay of peers with similar interests based on the premise that there is locality
of interest among peers, so that peers used in the past by a peer to provide results to one
of its queries are likely to provide results to future queries as well. The shortcut overlay is
built on top of the p2p overlay, so that if an item cannot be located via shortcuts, it can

30

always be located via the underlying p2p overlay.

Shared interests are located based on the premise that peers that have content that a
peer looks for share similar interests with it. Shortcut discovery is through search. Each
peer creates a list of shortcuts incrementally: shortcuts are added and removed from the
list based on their perceived utility. If shortcuts are useful, they are ranked at the top
of the list. A peer locates content by sequentially asking all of the shortcuts on its list,
starting from the top, until content is found. Rankings can be based on many metrics,
such as probability of providing content, latency of the path to the shortcut, available
bandwidth of the path, amount of content at the shortcut, and load at the shortcut. A
combination of such metrics can also be used. The authors explore the possibility of
providing content (success rate) as a ranking (utility) metric. Success rate is defined as
the ratio between the number of times a shortcut was used to successfully locate content
to the total number of times it was tried. The higher the ratio of a shortcut, the higher the
shortcut is ranked. Shortcuts that have the lowest ranking are removed from the shortcut
list, when the list becomes full.

There are several design alternatives for shortcut discovery. New shortcuts may be
discovered through exchanging shortcut lists between peers, or through establishing more
sophisticated link structures for each content category similar to structures used by search
engines. In addition, multiple shortcuts, as opposed to just one, may be added to the list
at the same time.

The authors in [48] evaluate a number of policies for ranking the entries in the shortcut
cache using real traces collected from a peer-to-peer file sharing system [40]. In the LRU-
policy, the peer that was used most recently is placed at the top of the cache, while the least
recently used peer is the one removed from the cache, if needed. To locate an item, the
x most recently used peers are contacted first. In the history-based policy [102], a counter
is maintained along with each peer in the cache indicating how many times the peer was
used over a time frame. To locate an item, the £ most useful peers over the time frame
are contacted first. Results show that both LRU and history-based shortcuts provide a hit
ratio close to 30% even when only 5 peers are contacted, with the history-based approach
having a slightly better hit ratio. The hit ratio is influenced by the existence of a few
“generous” downloaders, that is, peers that provide the bulk of popular files. However,
experiments showed that semantic clustering exists, since even when this generous peers
were removed from the cache, there were still hits.

The authors in [48] also consider whether locality of interest is transitive. Specifically,
first, each peer contacts the peers in its cache. If this fails, it uses their caches. Results
show that the results attained when a peer contacts peers in the cache of its semantic
neighbors are comparable to those attained when the peer just contacts peers in its own
cache. This indicates that semantic links tend to automatically cluster semantically related
peers, so that a one-level cache is sufficient. Finally, the authors show that maintaining a
content cache, that is, a list of useful peers per file type, improves hit ratio.

4.3.3 Associative Overlays

Associative overlays [27] are based around the notion of a guide rule. A guide rule is a
set of peers that satisfy some predicate. For each guide rule that a peer belongs to, it
maintains a small list of other peers that belong to the same rule. A guided-search query

31

is propagated only to the guide-rules specified by the originating peer, and thus yields
more effective search probes. Inside a guide rule, a query performs a blind search.

Guide rules can be defined on properties extracted automatically or specified by the
user. The authors focus on automatically extracted guide rules of a very particular form,
which they call possession rules. Each possession rule has a corresponding data item, and
its predicate is the presence of the item in the local index, thus, a peer can participate in
a rule only if it shares the corresponding item. The premise is that on average, peers that
share items (in particular rare items) are more likely to satisfy each others’ queries than
random peers. More precisely, search using possession-rules exploits presence of pairwise
co-location associations between items.

For choosing which possession rules to use, two search algorithms are proposed: RAPIER
and GAS. RAPIER (Random Possession Rule) selects a possession-rule uniformly at ran-
dom from the list of previously-requested items by the querying peer. RAPIER works
better than blind search, if there is correlation between items. The random choice of
a guide rule is clearly non-optimal. Some guide rules may contribute much more to the
probability of a successful search than others. GAS (Greedy Guide Rule) is a theoretically-
grounded strategy, in which each peer prefers to invoke rules that would have been more
effective on its past selections. GAS approximates the strategy that would have performed
best on all previous queries.

4.4 Replication and Caching

Maintaining multiple copies of data items is a commonly used mechanism for improving the
performance and fault-tolerance of any distributed system. By placing copies of data items
closer to their requesters, the response time of queries can be improved. An additional
reason for replication is load balancing. For instance, by allocating many copies to popular
data items, the query load can be evenly distributed among the servers that hold these
copies. Similarly, by eliminating hotspots, replication can lead to a better distribution of
the communication load over the network links. Further, in the case of overlays, replication
can be used to control the associated routing load. Besides performance related reasons,
replication improves system availability, since the more the copies of an item, the more
site failures can be tolerated. Maintaining copies cal also improve the durability of items.

There are many issues related to replication. One issue is what to replicate. In p2p
systems, one may either replicate data items or index (catalog information). Another issue
is the granularity of replication. Further, a replication protocol should specify where and
when to replicate items.

The cost associated with replication includes the storage cost as well as the maintenance
cost in the case of updates. Updates are either initiated by the owner of the copy that was
updated (push-based updates) or by the holder of the copy (pull-based updates). Often
entries are associated with a time-out value, whose expiration signals the removal of the
entry, thus providing only soft-state consistency.

Replication depends on the query workload and the system availability. It also depends
on the underlying topology.

Caching vs Replication The difference between caching and replication is in general
subtle. Caching is usually initiated at the clients, in our case, the peers that made the

32

request for an item. Typically, in a client-server setting, the client (requester) keeps a copy
of the item, so that it can subsequently use it. In p2p systems, this copy may be used by
others peers as well. Replication is a server-based decision, in the sense that, the server
decides to make copies keeping statistics about requests received by its clients. Thus,
replication is typically proactive. Copies in the case of caching are implicitly removed by
some replacement policy, say LRU. In the case of replication, removing copies is a more
global decision, in general involving a larger set of nodes. Finally, in the case of replication,
information about the location of the replicas is maintained in catalogs, whereas usually
cached copies are not indexed.

Erasure Coding An erasure code provides redundancy without the overhead of strict
replication. Erasure codes divide an object into m fragments and recode them into n
fragments, where n > m. The ratio ;- is called the rate of encoding. A rate r code
increases the storage cost by a factor of % The key property of erasure codes is that the
original object can be reconstructed from any m fragments.

The authors of [105] quantify the availability gained using erasure codes. Then, they
show that erasure-resilient codes use an order of magnitude less bandwidth and storage
than replication for systems with similar mean time to failure (MTTF). They also show
that employing erasure-resilient codes increase the MTTF of the system by many orders
of magnitude over simple replication with the same storage overhead and repair times.

The authors of [88] argue that while gains from coding exist, they are highly depen-
dent on the characteristics of the nodes that comprise the DHT overlay. In fact, the
benefits of coding are so limited in some cases that they can easily be outweighed by some
disadvantages and the extra complexity of erasure codes.

4.4.1 Unstructured Overlays

The authors of [28] consider the general problem of what is the best way to replicate data
in unstructured p2p systems given that the total amount of storage in the network is
fixed. In particular, there are n nodes, m data items and a total budget of R > m copies
overall. Each data item 7 has a query frequency ¢;. The replica allocation problem refers
to determining the fraction p; of the total budget R to be alloted to item 3.

Two natural ways to perform replication is uniform and proportional replication. With
uniform replication, the same number of copies is created for all items, that is p; is the
same for all items, while with proportional replication, the number of copies created for
each item ¢ is proportional to the item’s popularity, i.e., to its query rate g;. It is shown
that both replication strategies have the same expected search size for successful queries.
However, they differ in other aspects. Proportional replication distributes the load evenly
to all copies, whereas in the case of uniform replication, copies receive load proportional to
their query rates. Proportional replication also makes popular items easier to find, at the
expense of making less popular ones harder to find. Thus, with proportional replication, a
much higher limit (TTL value) is required for locating them. On the other hand, uniform
allocation minimizes this limit.

It is also shown that in terms of search size, uniform and proportional replication lie
at two extremes where the ratio of allocation of two items is between 1 and the ratio of
their query rates. All replication strategies that lie between these extremes yield better

33

search sizes for successful queries with square-root replication achieving the optimal such
size. Square root replication allocates replicas to items proportional to the square root of
their query rate, (1/(¢;)).- The gain attained with square root replication grows with the
query skew.

To strike a balance between soluble and insoluble queries, assume that we fix the
resources consumed by insoluble queries by fixing the set of locatable queries and the
bound in the maximum search size. Square-root* replication lies between square root and
uniform replication and allocates a sufficient minimum number of copies to locatable data
item so that the search size is bounded. Since square-root* replication minimizes the
search size while fixing the maximum search size, by sweeping the lower bound on the
allocation of any one item, we obtain a range of optimal strategies for any given ratio of
soluble and insoluble queries. The extremes of these ranges are uniform allocation which
is optimal when insoluble queries completely dominate and square-root allocation which
is optimal when there are relatively few insoluble queries.

The authors also consider ways of implementing square root replication using simple
distributed protocols. They propose three such protocols: path replication, replication
with sibling-number memory and replication with probe memory.

Path replication sets the number of copies to be the size of the search, that is, the
number of nodes probed. A possible disadvantage of path replication is that the current
number of copies may “overshoot” or “undershoot” the fixed point by a large factor.
Thus, if queries arrive in large bursts or if the time between search and subsequent copy
generation is large compared to the query rate then the number of copies can fluctuate
and never reach the fix point. Replication with sibling-number memory (SNM) attempts
to remedy this by additional bookkeeping. Under SNM, with each new copy, we record
the number of sibling copies that were generated when it was generated and its generation
time. The algorithm also assumes that each node knows the historic lifetime distribution
as a function of the age of the copy. Thus, the age of the copy provides the sibling survival
rate. With replication with probe memory, each node records for each item it had seen at
least one probe for, the total number of probes it received and the combined size of the
searches which these searches were part of. Then, when searching for item i, the total
number of recent probes for i seen on nodes in the search path is accumulated. If this
count is lower than the threshold, this suggests that item i is over-replicated with respect
to square-root replication. Otherwise, it is under-replicated.

Steady state is achieved when the replica creation rate equals the deletion rate. To
achieve this, the lifetime of replicas must be independent of object identity or query rate.
Examples of deletion policies that have this property include assigning fixed lifetimes for
each replica, random deletions and First In First Out (FIFO) replacement. However,
popular policies such as Least Recently Used (LRU) or Least Frequently Used (LFU) do
not have this independence property.

When compared with optimal replication, the SNM algorithm arrives more quickly to
square-root replication and is not sensitive to delayed creation of followup copies.

If we fix the set of locatable items, that is, the items for which we want queries to be
soluble, the optimal algorithm is a hybrid of uniform and square-root. For each locatable
item, the uniform component assigns a number of permanent copies. The square-root
component - which can be implemented using any of the three algorithms previously pre-
sented - generates transient copies as results of searches. The maximum search size (TTL)

34

is set together with the number of permanent copies so that items with this minimum
number of copies would be locatable. The value of these two dependent parameters is
then tuned according to the mix of soluble and insoluble queries to obtain the optimal
balance between the cost of soluble and insoluble queries.

The authors of [70] provide an evaluation of two easily implementable replication strate-
gies, namely owner and path replication, under a realistic setting. Owner replication is
used in system such as Gnutella, while path replication is used in systems such as Freenet.
Under owner replication, when a search is successful, the object is replicated at the re-
quester node only. Path replication is implemented by replicating the object on all nodes
on the search path from the requester node to the provider node. The evaluation of these
two strategies is done in conjunction with a & random walkers search strategy. In this
case, the number of nodes between the requester node and the provider node is 1/k of the
total number of nodes visited. Since path replication tends to replicate objects to nodes
that are topologically along the same path, the authors also consider a third replication
strategy called random replication. Random replication counts the number of nodes on the
path between the requester and the provider, say p, then, randomly picks p of the nodes
that the k& walkers visited and replicates the object on them. The evaluation of the three
allocation strategies is done on a random graph network topology. The replica allocation
achieved by both path and random replication is as expected quite close to square-root
replication. Both replication strategies reduce the overall traffic by a factor of three to four
mainly by reducing the search size. Random replication improves over path replication
for the cost of a more involved implementation and a higher cost for creating replicas. In
general, path replication distributes query load for popular items across multiple nodes,
reduces latency and alleviates hot spots.

In Freenet, each node maintains a routing table whose entries are pairs of the form
(key, pointer) where pointer is the node that maintains a copy of the file associated with
key. At each node, a request for a file with key k is routed to the node in the routing table
whose key is the closest, i.e, most similar, to k. After a successful request, the associated
routing table entry (k, k_owner) is cached at all nodes on the path from the owner of the
file to the requester node, following path replication. In addition, each node on the path
caches the file itself on its own datastore. When a file causes the datastore to exceed its
size, the Least Recently Used (LRU) files are evicted to make room for it. Routing table
entries are also replaced using an LRU policy. The size of the routing table is chosen with
the intention that the entry for a file will be retained longer than the file itself.

It was shown that under low load the resulting network bares the characteristics of a
small world. However, this does not hold for larger loads. An enhanced cache replacement
policy to support the desired clustering was proposed in [109]. The goal of the enhanced-
clustering cache replacement is to create caches of similar content. First, when a node n
enters the systems, it chooses a seed s(n) randomly from the key space. When the cache
of node n is full and a new file with key w arrives, then, let v be the key that is the
farthest from the seed from the keys of all files in the datastore, v is replaced by u. In
addition, if distance(u, s(n)) < distance(v,s(n)), an entry for u is added in the routing
table. A variation of the above scheme is also proposed, called enforced-clustered with
random shortcuts. This method creates an entry for u in the routing table also in the case
of distance(u, s(n)) > distance(v, s(n)) with probability p (randomness). A good value of
p seems to be 0.03.

35

4.4.2 Structured Overlays

Replication in DHT for availability is achieved by replicating at the k servers immediately
after the item’s successor say on the Chord ring. Servers close to each other on the ID ring
are not likely to be physically close to each other, since the ID is based on a hash of its
IP address. This provides the desired independence of failures. Besides availability, these
replicas can be used to improve query latency by allowing to choose the replica holder with
the lowest reported latency. This works best when proximity in the underlying network
is transitive. Fetching from the lowest-latency replica has the side-effect of spreading the
load of serving a lookup over the replicas. Caching in DHT's is based on placing copies on
the lookup path.

[34] discuss CFS a storage layer built on top of a DHT, namely Chord. CFS provides
distinct mechanisms for replication and caching. Both caching and replication are per-
formed at a file block level. CFS places a block’s replicas at the r servers immediately after
the block’s successor on the Chord ring. The placement of block replicas makes it easy
for a client to select the replica likely to be fastest to download. CFS also caches blocks
to avoid overloading servers that hold popular data. A block is cached at all nodes on the
search path after each successful look-up. Cached blocks are replaced in least-recently-
used order. This has the effect of preserving the cached copies close to the successor, and
expands and contracts the degree of caching for each block according to its popularity.

The work in [45] primarily addresses replication for load balance in DHTs. This is
an alternative to attempts to balance load by using cryptographic hashes to randomize
the mapping between data item names and locations. Under an assumption of uniform
demand for all data items, the number of items retrieved from each server as well as the
routing load incurred by servers in these systems will be balanced. However, if demand for
individual data items is nonuniform, neither routing nor destination load will be balanced,
and indeed may be arbitrarily bad. Instead of creating replicas on all nodes on a source-
destination path, the protocol relies on individual server load measurements to precisely
choose replication points. The routing process is augmented with lightweight hints that
shortcut the original routing and direct queries towards new replicas.

Beehive [84] is a general replication framework that operates on top of any DHT that
uses prefix-routing. The central observation behind Beehive is that the length of the
average query path will be reduced by one hop when an object is proactively replicated
at all nodes logically preceding that node on all query paths. For example, replicating
the object at all nodes one hop prior to the home-node decreases the lookup latency by
one hop. This can be applied iteratively to disseminate objects widely throughout the
system. Replicating an object at all nodes k& hops or lesser from the home node will
reduce the lookup latency by k hops. Beehive controls the extent of replication in the
system by assigning a replication level to each object. An object at level i is replicated
on all nodes that have at least ¢ matching prefixes with the object. Queries to objects
replicated at level ¢ incur a lookup latency of at most ¢ hops. Objects stored only at their
home nodes are at level logy(NN), while objects replicated at level 0 are cached at all the
nodes in the system. The goal of Beehive’s replication strategy is to find the minimal
replication level for each object such that the average lookup performance for the system
is a constant number of hops. Naturally, the optimal strategy involves replicating more
popular objects at lower levels (on more nodes) and less popular objects at higher levels.

36

An analytical model provides Beehive with closed-form optimal solutions indicating the
appropriate levels of replication for each object. Second, a monitoring protocol based on
local measurements and limited aggregation estimates relative object popularity, and the
global properties of the query distribution. These estimates are used, independently and
in a distributed fashion, as inputs to the analytical model which yields the locally desired
level of replication for each object. Finally, a replication protocol proactively makes copies
of the desired objects around the network.

[25] builds a multicast tree of replicas on top of a DHT, namely Tapestry. The goal is
to place replicas so that to satisfy both capacity constraints and latency requirements.

4.4.3 Updates

Updating cache entries and replicas in a p2p system mainly aims at providing soft-state
guarantees. Often each entry is associated with an expiration time. Further, flooding-style
rumor spreading protocols have been used to propagate replica updates. Such protocols
consider both push and pull based propagation. With push, the node where the update
originates propagates the update. With pull, the node that holds a copy of an item,
initiates a look-up for any updates.

A Dbasic issue in these protocols is when should a peer pull. Pulling too often cre-
ates substantial message overhead. Pulling infrequently may result in missing important
updates. Adaptive pull strategies try to minimize the communication overhead, while
maintaining good consistency levels by having each replica holder pull at specific inter-
vals. These intervals are determined by a time-to-refresh (TTR) parameter, which is
adaptively adjusted depending on the previous pull results [95]. If after the last pull the
item was found unchanged, TTR is increased so as to pull less frequently; otherwise, TTR
is decreased so as to check for updates more often.

The work in [35] consider a p2p system where peers have low online probabilities and
only local knowledge. The update strategy proposed for this environment is based on a
hybrid push/pull rumor spreading algorithm which offers probabilistic guarantees rather
than ensuring strict consistency. A generic analytical model is developed to investigate the
utility of this hybrid update propagation scheme from the perspective of communication
overhead.

The work in [67] also considers a hybrid update propagation method for metadata.
The proposed method combines periodic pull requests and on-demand pull requests ini-
tiated when a copy is found to be invalid. For push based updates, various variations of
flooding are studied including a novel variation of flooding, where updates of an item are
temporarily stored in the neighborhood of the initiator of the update.

The authors of [89] consider how to maintain the cache entries in the case of path
replication, where metadata are cached at intermediate nodes that lie on the path taken
by a search query. This is called Path Caching with Ezpiration (PCX) because cached
metadata entries typically have expiration times after which they are considered stale and
require a new search. The cache maintenance problem is challenging because the global
set of valid metadata changes constantly as peer nodes join and leave the network, content
is added to and deleted from the network, and replicas of existing content are added to
alleviate bandwidth congestion at nodes holding the content. Nodes that cache metadata
to serve queries in a more timely fashion need to know about changes to the metadata

37

to serve queries better. Keeping cached metadata up-to-date therefore requires tracking
which metadata items need to be updated, as well as tracking when interest in updating
particular items at each cache has subsided to avoid unnecessary update propagation for
the maintenance of these items. The proposed Controlled Update Propagation Protocol,
CUP, moderates update propagation, by allowing each node to receive and propagate
updates only when it has an economic incentive to do so. This occurs when the investment
return (or benefit) a node secures by propagation outweighs the cost of propagation and
thus, all overhead is recovered. The first class of policies is probabilistic where a node
computes the probability that a received update is justified using an estimate of the
number of nodes that depend on this node for answers to queries for the item. The second
class is history-based, where the node compares the ratio of query arrivals to update
arrivals in a sliding window of update arrivals. These policies favor the receipt of updates
for popular items since these items generate queries most often.

4.4.4 Other Issues

Proactive Replication A common way of maintaining replicas for durability is to
detect node failures and respond by creating additional copies of objects that were stored
on failed nodes and hence suffered a loss of redundancy. Reactive techniques can minimize
total bytes sent since they only create replicas as needed; however, they can create spikes
in network use after a failure. These spikes may overwhelm application traffic and can
make it difficult to provision bandwidth. In [93], a proactive approach is proposed that
creates additional copies not in response to failures, but periodically at a fixed low rate.
A distributed hash table, called Tempo, is introduced that allows each user to specify a
maximum maintenance bandwidth and uses it to perform proactive replication.

View Materialization When a query is not simply a keyword-one, we may cache the
result of the query along with the query itself. This is similar to view materialization.
There is not much research done in the context of p2p case but for the simple case of
conjunctive and disjunctive keyword-value queries. For example, assume that indexes a;,
aj, and a, are located on distinct nodes in the network. Computing a; A a; A aj, directly
from these indexes is much more expensive than intersecting the result of a prior a; A a;
operation together with a;. The authors of [14] propose a data structure, the view tree,
that can be used to store and retrieve such prior results.

4.4.5 Replication and Quality-of-Service

Replication and caching are two of the most important mechanisms for achieving Quality
of Service (QoS) in a p2p environment. Quality of Service is a notion that is widely used
in many settings. Here we focus on those aspects of quality of service that we consider
relevant to p2p global computing. These quality of service requirements are defined in
more detail in AEOLUS deliverable D3.1.1 [8]. In this section, we position them in terms
of replication and indicate how the research proposals surveyed have addressed them.
Replication increases the number of copies for each shared piece of data in the system.
By doing so, the probability that some or all the data is temporarily or permanently lost
significantly decreases, thus the dependability of the system in terms of reliability and

38

availability is increased. Additionally, by having more copies for popular data items, the
load for routing and answering queries can be evenly distributed among the servers that
hold the copies. This way, the per formance of query processing is increased in terms of
throughput and response time, since congestions in “hot” servers are avoided. ‘Moving”
data closer to their requesters as done by replication also improves the performance of
query processing. Caching makes query processing even faster since cached queries can be
locally answered further improving response time and consequently throughput. Finally,
per formability combines availability and performance by considering the impact of tran-
sient failures to system performance; it captures performance measures conditioned by the
probability distribution of resource availability.

Replication and caching may also improve data recall. In structured overlays data
recall is not an issue contrary to unstructured overlays. While unstructured overlays,
which adopt flooding-based techniques, are effective for locating popular data, they are
poorly suited for locating rare data. Thus, by replicating the rare data the probability of
locating the data during query processing increases, consequently increasing data recall.
However, replication may affect datafreshness. P2p systems consist of autonomous peers
that can arbitrarily delete or update their content, thus the replicated or cached data can
become stale if not updated properly. Updating replicas and cache entries in a p2p system
mainly aims at providing soft-state guarantees. Hence, query processing might encounter
out-of-date copies of data, thus failing to achieve result freshness.

We provide next a short summary of the replication approaches previously described
from the perspective of quality of service. The technique proposed in [14] uses result-
caching and manages to increase the performance of the system, in terms of throughput
and response time.

The performance of a system can also be improved by using a smart cache replacement
policy. [109] shows that an enhanced clustering cache replacement scheme can reduce the
query latency in Freenet, since it maintains a small average number of hops per successful
request. [25] builds a dynamic content distribution system, called the dissemination tree.
The system achieves good load balance and small delay penalties. This way, the response
time is reduced and the data freshness is ensured, since update propagation is fulfilled in
short time.

[28] and [70] describe replication strategies that achieve square root replication. These
strategies increase the dependability and the performance of a system, in terms of avail-
ability and response time respectively. The CFS storage system discussed in [34] provides
mechanisms for replication and caching. The algorithms that are used increase efficiency,
achieve load balance and low latencies and ensure the reliability and robustness of the
system. In [45] an adaptive replication protocol (LAR) is described. LAR is efficient at
redistributing load and improves query latency and reliability. In addition, it is robust in
the face of widely varying input and underlying system organization.

Beehive [84] is a proactive replication framework that can provide constant lookup
performance for common Zipf-like query distributions. As simulations show, Beehive can
achieve good latencies and ensure robustness since it adapts efficiently to sudden changes
in object popularity. Another proactive replication approach is described in [93]. The
approach increases the availability by periodically replicating data, at a fixed low rate.
This periodic replication also makes the system reliable and robust in the case of failures.
[105] provides a comparison between erasure coding and replication. Systems that employ

39

Table 2: Replication techniques and QoS goals

Response Result

Approach | Reliability | Availability | Throughput Time Performability | Quality | Robustness

14

i

25 v

28

NSO

34

=

45

70

SOOI NN
<

84

<

93 v

W R

N N KR

105

109

<

erasure-resilient codes can increase availability of data, by increasing the mean time to
failure.

Table 2 summarizes the focus of each of the above replication and caching approaches
in terms of QoS.

5 Query Processing

Most of the research work in p2p systems has focused on processing simple keyword-value
queries. In this part of the survey, we shall discuss the processing of more advanced queries
for data. Data may be numeric (multi-dimensional or single dimensional) and may have
structure, such as in the case of XML documents. Data may also follow a schema or be
schema-less.

There are many ways to define a p2p database system: In terms of distribution:

e There are may be a single storage or the data may be distributed at many nodes
(using either structured or unstructured data partitioning).

e There may be one or more centralized catalog/index or a distributed (either struc-
tured or unstructured) one.

In terms of information disclosure, an important issue is whether we know which data
exist or do we have to search both at the logical level (schema) and at the physical level
(data).

Normally, query processing in centralized database systems proceeds in the following
three phases: (1) parse (2) re-write and optimize, and (3) execute. In the first phase, the
query is parsed and translated into an internal representation. During the query rewriting
phase, a query is transformed by carrying out optimizations that are good independently
of the physical state of the system, for example, independently of the size of the relations
or the presence of indexes. The rewritten query is then optimized using information from
the system catalog including various statistics. The output of the query optimizer is a
query plan that specifies precisely how the query is to be executed. Finally, the query is

40

executed by the query execution engine. Typically, the execution engine provides generic
implementations of every basic operator.

In adaptive query processing, the optimization and execution steps of processing a
query are interleaved, possibly many times, over the execution of a query. The goal of
adaptive query processing is to make query processing more robust to optimizer mistakes,
unknown statistics and changes in input characteristics and system conditions.

Analogously, the normal steps in distributed query processing are: (1) parsing, (2)
localization, by replacing global relations by appropriate combinations of their local coun-
terparts, (3) re-writing and global optimization and (4) local optimization and execution at
each single site. A central question is how these steps should be performed in a p2p setting
and especially localization, since there may be no globally available catalog information.

So far, the focus has been on processing each query independently. For example, PIER
suggests using distinct routing trees for each query in the system, in order to balance
the network load. There is also the possibility of multiquery optimization that considers
optimizing the execution for a set of queries, for instance by sharing computation and
communication cost among them.

6 Processing of Relational Operators

6.1 Relational Queries

A query engine for executing complex queries on top of DHT-based P2P systems is de-
scribed in [49]. Although the approach introduces database facilities in P2P systems, the
database storage semantics are relaxed since there is no need for data to be loaded into
a database. Instead, sets of P2P files are manipulated as relations, allowing the query
engine to query the natural attributes of data, such as the name, id and host, intelligently
while providing the storage semantics that users are common with. The system consists
of three layers. The local data store that provides mechanisms for scanning sets of objects
and accessing their natural attributes, the DHT layer that is used as an indexing and
routing mechanism and the query processing layer that provides two query interfaces, an
SQL one and a graph scripting one. In order to manage multiple data structures, required
for query processing, a hierarchical name space is implemented, on top of the flat identifier
space provided by the DHT, by partitioning the identifiers in multiple fields and then have
each field identify objects of the same granularity. The routing protocol is also modified
in order to be able to route queries to a desired subset of nodes. A node forwards a query
to all neighbors that make progress in the identifier space towards any of the identifiers
covered by the query.

The basic idea of [49] is materialized in PIER [53]. PIER is a massively distributed
query engine based on overlay networks, which is intended to bring database query pro-
cessing facilities to widely distributed environments. It is built on top of a DHT, which is
divided into 3 modules, the Routing Layer, the Storage Manager and the Provider. The
architecture of PIER is shown in Fig. 13. An instance of each DHT and PIER component
runs at each participating node. The Routing layer provides basic functions for executing
lookup, join and leave operations and a locationMapChange function provided to notify
higher levels asynchronously when the set of keys mapped locally has changed. The stor-
age manager is responsible for the temporary storage of DHT-based data and provides

41

Network Other User L.
[Monitoring } [Apps } Applications

Query
Optimizer Relaiond
ion
Execution PIER
Engine
Provider
Storage DHT
Manager
Overlay Routing

Figure 13: The architecture of PIER

functions for storing, retrieving and removing an item. Finally, the provider is responsible
for tying the routing layer and storage manager together while providing a useful interface
to applications.

Each object in the DHT has a namespace, resourcelD, and instancelD. The namespace
and resourcelD are used to calculate the DHT key, via a hash function. The namespace
identifies the application or group an object belongs to. For query processing, each names-
pace corresponds to a relation. Namespaces do not need to be predefined, they are created
implicitly when the first item is put and destroyed when the last item expires. The re-
sourcelD is generally intended to be a value that carries some semantic meaning about
the object. The query processor by default assigns the resourcelD to be the value of the
primary key for base tuples. Items with the same namespace and resourcelD will have the
same key and thus map to the same node. The instancelD is an integer randomly assigned
by the user application, which serves to allow the storage manager to separate items with
the same namespace and resourcelD. During the query process, PIER attempts to contact
the nodes that hold data in a particular namespace. A multicast communication primitive
is used by the provider for this purpose. The provider supports scan access to all the data
stored locally on the node through an Iscan iterator. When run in parallel on all nodes
serving a particular namespace, this serves the purpose of scanning a relation. Finally,
the provider supports the newData function used to inform the application when a new
data item has arrived in a particular namespace.

PIER is also used in [68], where a hybrid search infrastructure is described. In that
approach flooding is used for highly replicated items, while PIERSearch engine processes
queries for rare items. PIERSearch is a DHT-based search engine implemented using PIER
and consists of two main components, the publisher and the search engine. For each item
in the system, the publisher generates tuples conforming to a schema consisting of two
tables, the Itemn table and the Inwverted table. The Item table contains a tuple for each
item that is being shared, having the fileID as a unique file identifier of the item which
is also used as the index key for the DHT. For each keyword of an item, the Inverted
table contains a tuple with the keyword and the fileID of the item. Inverted tuples with

42

Query Processor

Loca DB Schema Integration —1 P2P Network

AN

Other AmbientDB instances

RDBMS

Figure 14: The architecture of AmbientDB

the same keyword are hosted by the same node. For a given keyword query, the Search
Engine forms a relational query which is executed by its local PIER engine on its behalf.
In particular, for a two-keyword query, the corresponding relational plan retrieves two sets
of Inverted tuples, one for each keyword and executes a join of the two sets of tuples by
fileIDs. Ttem tuples with the resulting fileIDs form the answer set. This query plan can
be extended for queries with more than two search keywords simply by adding an extra
self-join with the Inverted relation for each additional keyword. When such a query is
executed, PIER routes the query plan via the DHT to all sites that host a keyword in the
query and executes a distributed join. The node that hosts the first keyword in the query
plan sends the matching Inverted tuples to the node that hosts the next keyword. The
receiving node performs a symmetric hash join (SHJ) between the incoming tuples and
its local matching tuples and sends the results to the next node. On the node hosting the
last keyword in the query plan, the matching fileIDs are streamed back to the query node,
which fetches the Item tuples from the DHT based on the incoming fileIDs.

AmbientDB [16] is a query processing architecture for executing queries in a declar-
ative, optimizable language, over an ad-hoc P2P network. The system consists of the
distributed query processor, allowing the execution of queries on all connected nodes, the
P2P protocol used to connect all AmbinetDB nodes, the local DB component, where each
node may store its local tables and the schema integration engine that couples different
data delivered by different nodes. The architecture of AmbientDB is shown in Fig. 14.
AmbientDB provides a standard relational data model and a standard relational algebra
as query language. Query execution is performed by a three level translation. Initially,
a user query is posed in an abstract global algebra, which is a relational algebra, provid-
ing the operators for selection, join, aggregation and sort. During the second phase, the
abstract table types of an abstract query plan are translated to concrete types, starting
from the leaves and continuing to the root of the query graph, which is required to yield
a local result table. The third phase consists of translating the concrete query plan into
wave plans, where each individual concrete operator maps onto one or more waves. Waves
are tuple streams that can move either upward or downward in the routing tree used to
connect all nodes through TCP/IP connections. Each node may receive tuples from its
parent, process them with regards to local data and propagate data to its children. It may
also receive data from its children, merge them with each other as well as with local data
and pass the resulting tuples back to the parent. Each wave, in turn consists of a graph

43

Cache Export
Manager Dictionary
Object Local
Management Dictionary

User Interface

Figure 15: The architecture of PeerDB

of dataflow algebra operators. Dataflow operators may read multiple tuple streams but
always produce just one output stream, such that each wave-plan can be executed by one
separate thread.

PeerDB [78] is a prototype peer-based data management system that allows relational
data sharing. It employs an IR approach to discover matching relations and agents to
assist query processing. The system consists of three layers, the P2P layer that provides
P2P capabilities, such as data exchanging and resource discovery, the agent layer that
exploits agents and the data management layer that provides the data storage, processing
capabilities and an SQL interface for users to pose queries. The architecture of PeerDB
is shown in Fig. 15. For each relation created by the user, meta-data are maintained
for each relation name and attributes in a Local Dictionary. These are essentially key-
words/descriptions provided by the users upon creation of the table, and serve as a kind
of synonymous names of relation names and attributes. There is also an Fxport Dictio-
nary that reflects the meta-data of relations that are sharable to other nodes. The query
processing strategy consists of two phases that are completely assisted by agents. In the
first phase, agents are sent out to the peers to locate relations that are potentially similar
to the query relations. These relations (meta-data, database name, and location) are then
returned to the query node. In phase two, the query is directed to the nodes containing
the selected relations and the answers are finally returned and cached.

6.2 Range Queries

Range queries involve queries for single or multi attribute data whose attribute values are
contained within a range defined by the query. To support such queries in P2P systems
data must be indexed in such way that the load is distributed equally between peers and
that queries are processed efficiently. Thus, data is partitioned among peers so that each
peer is responsible for a part of the whole data range. Single attribute/dimension data is as-
signed to the peer responsible for the data range containing the attribute value ([46], [111]).
For multi attribute/dimension data different techniques are applied: (i) each attribute is
indexed and queried separately ([13], [21], [82]), (ii) multiple attributes/dimensions are

44

mapped to one attribute/dimension and are indexed and queried based on the mapping
([44], [23]), (iii) frequently queried attributes/dimensions are indexed separately and rarely
queried attributes/dimensions are grouped and mapped to one attribute/dimension ([54]),
(iv) all the attributes/values are indexed and queried together at the peer responsible for
the multi dimensional region containing the region defined by the attributes/dimensions
of the queried data ([55], [44], [90]). Since the goal is to efficiently answer range queries,
data ranges/regions as defined above are mapped to peers in such a way that neighbor-
ing ranges/regions are indexed at related peers (neighbors, parent, children, etc.). The
above mapping is achieved by use of overlay structures that support such mapping (trees,
CAN, Skip Lists) or by modifying the hash function of some DHT (CHORD using Lo-
cality/Order Preserving Hash Functions). In general, query processing locates a peer
holding a range/region that contains or intersects the queried range/region and proceeds
by following links to related peers until the whole range is covered. Another approach is
splitting the range defined by the query into sub-ranges covered by each peer and creating
sub-queries for the sub-ranges. The answer of the range query is the union of the answers
provided by the sub-queries.

The Distributed Segment Tree (DST) [111] incorporates a distributed tree structure
above a DHT overlay for supporting single attribute range queries. The segment tree data
structure is a full binary tree that represents a range of length L. Each node represents an
interval[s;,k,t;,k], (I € [0,logL] and k € [0,2] — 1]). Clearly, the root node interval equals
to the segment tree range and the leaf node interval is one. Each non-leaf node has two
two children whose ranges union covers the range of the parent node. All nodes in the
same level span the whole range of the tree. Using a range splitting algorithm, the range of
the segment tree is split into a minimum of node intervals and the DST is constructed. In
DST, the segment tree structure is distributed onto DHT in a way similar to that adopted
in PHT [23], the node interval [s, t] is assigned to the DHT node associated with the
key Hash([s, t]). Thus, information about any node of the segment tree can be efficiently
located through a DHT lookup operation. To insert a key into a DST, the given key is
inserted to a specific leaf node and all the ancestors of that leaf node, because the node
interval of any ancestor covers that specific key. A downward load stripping mechanism
[111] is utilized so as to remove some keys from nodes that are overloaded, usually at the
upper levels of the tree.

Given a range query [s, t], a node splits the range into a union of minimum node
intervals of segment tree, using the range splitting algorithm. It then uses DHT lookup
to retrieve the keys maintained on the corresponding DST nodes. The final query result
is the union of the keys returned. Since the lookups are performed in parallel, the latency
complexity is O(1). As an effect of the downward load splitting mechanism, a query may
need to access more nodes in the lower levels of the tree so as to retrieve keys that have been
deleted from overloaded nodes. Since this operation is done in parallel the performance
loss is not very significant.

The work reported in [46] addresses the problem of answering range selection queries on
single attribute data in P2P systems. The approach assumes that peers cache horizontal
partitions of various relations and that a global schema is known to all the peers in the
system. A peer can submit a query in the form of an SQL statement with the restriction
that the selects on a relation can be only on one attribute at a time. The approach is
based on CHORD and on Locality Sensitive Hashing. In particular, the peer nodes are

45

hashed using a hash function, such as SHA-1 over their IP address into the identifier
space. The range specifying a data partition is also hashed into the same identifier space
using locality sensitive hashing. From the properties of locality sensitive hashing (LSH)
similar ranges are hashed to the same identifier with high probability. Each data partition
identifier i is mapped to the peer node with the least identifier greater than or equal to i in
the circular identifier space. A peer is thus responsible for all hash buckets corresponding
to identifiers from the identifier of its predecessor node (excluding it) to itself. To locate
a given identifier, each peer in Chord also maintains information about other peers in the
identifier ring that are at logarithmically increasing distances. Using this information, the
peer holding a requested identifier is located and the bucket corresponding to the requested
identifier is searched for the most similar range.

Mercury [13] is a scalable routing protocol for supporting multiattribute range queries.
Mercury creates a routing hub for each attribute of the database schema. Fach hub is
a logical set of nodes, and so a physical node can participate in multiple logical hubs.
Each new data file, according to its attributes, is sent to all the corresponding hubs. In
reverse, each query that is referred to a set of attributes is propagated to only one of the
corresponding hubs. A hub in Mercury organizes its nodes into a Chordlike ring. Each
node in the hub is responsible for a range of values for the specific attribute. So, when a
query is posed in a hub, it is routed to the node that is responsible for the first value of
the range and via successor pointers that each node maintains, the query is spread along
the ring, until it arrives to the node that is responsible for the last value of the range.
Also, a node maintains pointers to its predecessor to keep consistent the ring with lower
cost when a node’s join or leave occurs.

MAAN (Multi- Attribute Addressable Network) [21] is an extension of Chord (see section
2.1.1). MAAN uses the Chord structure and the SHA1 hashing to assign an m-bit identifier
to a node and to the attribute value with string type, but for attributes with numerical
value, MAAN uses uniform locality preserving hash functions. MAAN uses the following
routing algorithm in order to route single-attribute range queries. Suppose a node n
submits a range query ([, v), with 1 and v being the lower and the upper bound, respectively.
First, the query will be forwarded to node n;, where 1 has been hashed to, as if n was
querying for 1 in the Chord ring. Then, all the resources of n; that satisfy the range
query are gathered. Next, the query is forwarded to the immediate successor of node n;
in the ring and so on, until the query reaches node n,, where v has been hashed to. Thus,
routing a query in a Chord ring with n nodes requires O(logn) hops for forwarding the
query to n; and O(k) hops for routing the query from n; to n, (assuming that there are
k nodes between n; and n,), which gives a total routing cost of O(logn + k). MAAN also
supports multi-attribute range queries. In the multi-attribute setting, data consists of a
set of attributes and their respective values. MAAN registers attribute-value pairs and the
resource information of that pair, by hashing each attribute value. When a node queries for
interested resources, it composes a multi-attribute range query which is the combination
of sub-queries on each attribute dimension. Next, all sub-queries are intersected at the
query originator, in order to have a final answer.

In [82], an approach is presented that tries to ensure both access load balance and
efficient range query processing in a DHT-based peer-to-peer network. HotRoD is intro-
duced, a locality-preserving load-balancing DHT-based architecture that incorporates a
novel locality-preserving hash function, used for data placement and a replication mech-

46

anism for popular values/ranges, aiming at distributing access load fairly among peers.
Data objects are database tuples of a k-attribute relation R, placed in range partitions
over an m-bit identifier space in an order-preserving way. Each peer keeps track of the
number of times it was accessed during a time interval and the average low (avgLow) and
high (avgHigh) bounds of the ranges of the queries it processed, at this time interval. A
peer is considered to be overloaded or hot when its access count exceeds the upper limit
of its resource capacity. In this case, the corresponding arc of peers (i.e. successive peers
on the ring, which correspond to the range [avgLow, avgHigh]) is considered hot as well
and is replicated and rotated over the identifier space, in order to reduce costly jumps
during range query processing. Thus, the identifier space can be visualized as a number
of replicated, rotated, and overlapping rings. A HotRoD instance consists of a regular
CHORD ring and a number of virtual rings where values are addressed using a multi-
rotation hash function, mrhf(). For every value v of attribute A, the multi-rotation hash
function is defined as: mrhf(v,d) = hash(v) + random([]-s)mod2™. hash(v) is the hash
function of the underlying DHT, § is an index variable used to distinguish the different
instances of A’s values, s = (1/pmaz(4))-2m, called the rotation unit, random[1p,eq(4) +1]
is a pseudo-random permutation of the integers in [1, pag(4)] and ppag(a) refers to the
maximum number of instances that each value of attribute A can have. Thus, when the
6" instance of a value v is created, or else the (6 — 1)** replica of v, it is placed on the peer
whose identifier is closer to mrhf(v,1) shifted by § - s clockwise. The algorithm used for
the query processing of a range query [vlow(A), vhigh(A)], on attribute A (case of single-
attribute relation R), initiated at peer pin;: is the following. Initially, peer pin;+ randomly
selects a number, r from 1 to p(vlow(A)), the current number of replicas of vlow(A). Then,
it forwards the query to peer p;: succ(mrhf(vliow(A), r)). Peer p; searches for matching
tuples and forwards the query to its successor, po. Peer py repeats similarly as long as it
finds replicas of values of R at the current ring. Otherwise, po forwards the range query
to a (randomly selected) lower-level ring and repeats. Processing is completed when all
values of R have been looked up.

SCRAP (Space-filling Curves with Range Partitioning) is another approach, proposed
in [44], for supporting multidimensional range queries. SCRAP uses a two-step solution in
order two partition data: (1) data are mapped down into a single dimension by using space-
filling curve and (2) this single-dimensional data is range partitioned across a dynamic set
of participant nodes. For instance, if there is a two-dimensional datum (i.e., a datum with
two attributes), e.g. <x, y>, with z = 01001 and y = 10110, then one way to map it
down into one dimension is to interleave the bits in z and y alternatively (z-ordering),
thus <01001, 10110> will become 0110010110. In the second step, data are partitioned
among the participating nodes as follows. Every node is responsible for a continuous
range of one-dimensional values. When a node is inserted into the system, the range
of an existing node must be divided so that one half of this range will be appointed
to the new node. When a node leaves the system, one of its neighbors takes over its
range. Routing of multidimensional range queries in SCRAP is also done in two steps:
(1) the multidimensional query is turned into a single-dimensional query and (2) each
single-dimensional query is routed to nodes which are responsible for the relevant range
that appears in the message. The first step is done by the use of well-known algorithms,
such us the space-filling curves algorithm. The second step is done by using a well-known
structured P2P topologies, such as skip-lists (see section 2.1.3). First, the node that is

47

P(=R00...0)

oo PO1 PHT node (Lat,Lon) (LatLon) Z-curve
@ label binary key

oLt &2 P00 (1,0 (001,000) 000010

PO1G A P100 PO100 (04) (000,100) 010000

d 5 & 5 piiop PIHOL 1,5) (001,101) 010011

40 poion po110 POLLL P0101 0,7) (000,111) 010101

01 [(1g) (001110) 010110

i9) 23] e (17) (001111) 010111

Figure 16: (left) A sample two-dimensional PHT. (right) A table with the data items (and
their z-curve keys)

responsible for the minimum value of the query’s range is reached. Then, the nodes that
are responsible for the rest of the range are found through that node’s skip pointers.

The Place Lab [23] application supports queries over a two-dimensional latitude-
longitude coordinate domain. To index this domain using PHTSs, space-filling curves that
map multi-dimensional data into a single dimension are used. All latitudes and longitudes
are normalized and represented by a simple binary format. The z-curve linearization tech-
nique is used to map each two-dimensional data point into an one-dimensional key space.
Z-curve linearization is performed by interleaving the bits of the binary representation
of the latitude and longitude. This z-curve keys and their prefixes are used as the node
labels.

For a one-dimensional PHT, given two keys L and H (L < H), a range query L <K <
H is evaluated by locating the PHT node corresponding to the longest common prefix of
L and H and then performing a parallel traversal of its subtree to retrieve all the desired
items.

A multi-dimensional query for all matching data within a rectangular region defined by
(latMin, lonMin) and (latMax, lonMax) is performed as follows. The linearized prefix that
minimally encompasses the entire query region is determined. This is done by computing
the z-curve keys zMin and zMax for the two end-points of the query, and the longest
common prefix of these keys: zPrefix. Then, the PHT node corresponding to zPrefix is
looked up and a parallel traversal of its sub-tree is performed. Unlike the simpler case
of one-dimensional queries, not all nodes between the leaf for the minimum key and the
leaf for the maximum key contribute to the query result. Hence, starting at the PHT
node corresponding to zPrefix, if this node is a leaf node, then the range query is applied
to all items within the node. If the node is an interior node, both its subtrees are check
in parallel to evaluate whether they contribute any results to the query. This is done by
determining whether there is any overlap in the rectangular region defined by the subtree’s
prefix and the range of the original query. If an overlap exists, the query is propagated
recursively down the subtree. Thus the query algorithm requires no more than d sequential
steps, where d is the depth of the tree.

In BATON* [54] a balanced search tree is maintained where each node has at most
m children. Data is partitioned among peers by assigning at each node a range of values
so that the range of values managed by a node is to the right of the ranges managed by

48

its first [m/2] children and to the left of the ranges managed by its last [m/2] children.
Each node maintains a set of links that includes a pair of links to adjacent nodes with
ranges to the left and to the right of the range associated to the node. To answer a single
attribute range query, initially the search is performed for a node whose range intersects
with the query range. Then the query proceeds left and/or right to cover the remainder
of the searched range, by following adjacent links until the whole query range is covered.

BATON* can also support queries over multiple attributes. The method for answering
queries over multiple attributes is based on the observation that such queries, most of the
time, involve only a small number of attributes. The range of data indexed by BATON*
is divided into several sections used to separately index attributes that frequently appear
in queries and groups of attributes that rarely appear in queries. To index a group of
attributes their values are converted into one-dimensional values by use of Hilbert Space
Filling Curve. Grouping rarely used attributes reduces the number of indexes created for
the same data if each attribute is indexed separately. A multi-attribute query is defined as
a set of subqueries, in which each subquery involves one attribute. The final result of the
query is computed by answering one of the subqueries and using the rest of the subqueries
as filters. If the selected subquery involves a separately indexed attribute answering it
is straightforward. If the subquery involves an attribute indexed together with other
attributes, the subquery is mapped into smaller subqueries (by using the Hilbert Space
Filling Curve), which can be answered in parallel.

In VBI-Tree [55], a balanced binary tree is maintained for indexing multi-dimensional
data. The attribute space is hierarchically partitioned among nodes so that each node is
associated with a data region that contains the region associated to its children. A range
query on multi-dimensional data defines a region in the attribute space. The algorithm
for answering range queries in VBI-Tree seeks nodes with regions that intersect the query
region. Thus, the query is firstly forwarded to a node whose region intersects with the
query region. This node executes the query locally and forwards the query to other
nodes whose region possibly intersects the query range by using the routing information
it maintains. The same procedure is repeated to every node receiving the query avoiding
forwarding a query to the node from which it initially received the query.

Another approach for supporting multidimensional range queries, proposed in [44],
is MURK (MUlti-dimensional Rectangulation with Kd-trees). MURK partitions data by
dividing the data space into “rectangles” and each node takes over a single rectangle. To
achieve this, kd-trees are used, where each rectangle corresponds to a leaf in the kd-tree.
Initially, there is only one node in the system, which is responsible for all data. Each time
that a new node is inserted, the data space is partitioned in one of the dimensions in turn
(as in CAN -see section 2.1.1, when a node joins the system). This kind of partitioning
is done (1) for preserving the data locality in all dimensions and (2) so that the load is
shared among all nodes equally. When a node leaves the system, then its space is taken
over by a neighboring node and the kd-tree is reformulated. Routing in MURK is done as
in CAN (see section 2.1.1). Every node is aware of the boundaries of its neighbors and it
is connected with them via links. In that way, a grid-like structure is created. The query
is forwarded to the node that reduces the Manhattan distance to the point where the data
is located, by the largest amount. In that way, the routing cost for a uniform 2d grid of
n nodes is ©(y/n).

A method to evaluate range queries based on the multidimensional CAN system is

49

Table 3: Range queries in P2P

Single or multi
attribute/dimension | Attribute indexing Overlay
[111] Single attribute Tree (DST)
[46] Single attribute CHORD
Each attribute
[13] Multi attribute separately CHORD
Each attribute
[21] Multi attribute separately CHORD
Each attribute
[82] Multi attribute separately CHORD
Map to one
SCRAP [44] | Multi dimensional dimension SkipNet
Map to one
[23] Two dimensional dimension Tree (PHT)
Frequently queried
attributes
[54] Multi dimensional separately, rarely | Tree (BATON*)
queried mapped to
one dimension
Region defined by
[55] Multi attribute all attributed Tree (VBI)
Region defined by
MURK [44] | Multi dimensional all dimensions Tree (kd-tree)
Zone defined by
[90] Multi dimensional all dimensions CAN

used in [90]. Nodes cache the results of range queries and use them to answer future range
queries. The system maintains a global database schema, that is known from all the nodes.
Nodes store range partitions of the data files and cooperate with each other to answer
queries, instead of asking direct the database. The system uses a 2d virtual space; two
dimensions for each CAN dimension. The virtual space is partitioned among the nodes.
A node is responsible for a part of the virtual space, accordingly to the range of the data
files that stores. This part is called zone. A data file is referred to a range. This range is
assigned to a point in the virtual space. This specific point belongs to a zone, and so the
data file is stored to the node that is responsible for that zone. A query for a particular
range is assigned to a point in the virtual space. The query is routed to the node that is
responsible for the zone that includes this point. The routing is executed such in CAN.
The query is first propagated to the neighbor that is closest to the point, and so on. When
a node gets the result for its query, it caches the result to use it in the future, for itself or
for another node.
Table 3 summarizes the approaches for processing range queries in p2p systems.

6.3 Top-k and Skyline

Top-k Queries In [76] a distributed top-k algorithm for peer-to-peer infrastructures
is presented. The algorithm retrieves the k most relevant results for queries on RDF

50

metadata, in a Super-peer (SP) network where Super-peers are arranged in the HyperCup
topology. Each peer computes local rankings for a given query, results are merged and
ranked again at the SPs and routed back to the query originator. On this way back
each involved SP again merges results from local peers and neighboring SPs and forwards
only the top-k results, until the aggregated top-k results reach the peer that issued the
corresponding query. While results are routed through the SPs, the SPs maintain statistics
which peers/SPs returned the best results. This information is subsequently used to
directly route queries that were answered before mainly to those peers able to provide top
answers. For local ranking, score aggregation and merging, topic similarity in taxonomy
and TFxIDF methods are used.

The algorithm in [11]is similar to [76] with the difference that each peer sends only its
top-1 result to its SP. The SPs do not merge the results from local peers and neighboring
SPs but only forward the top-1 result. After the SP that issued the query has computed
the current best result, repeats the procedure by routing the query to the peers that have
contributed to the result produced so far, until the top-k results are computed. Statistics
are maintained and used in the same manner as in [76].

Skyline Queries In [106] a distributed skyline query processing algorithm is presented.
Data space is normalized and directly mapped to a d-dimensional CAN overlay, by using
the normalized attribute values as coordinates. A constrained skyline query (Queries for
skyline within a subset of records that satisfies multiple hard constrains. For example, find
the cheapest hotel within the price range 100 to 200 which lies at the closest distance from
the sea within distance 500m - 1000m) defines a query region in CAN, which is recursively
partitioned so that each partition is covered by one CAN zone. The way data is mapped
to CAN and a dynamic zone encoding, define a skyline partial order over the set of zones
covering the partitions. With the aid of the partial order each zone (peer) in the query
region is able to determine its final result based only on its own data and on the data from
the zones that precede it in the order. This way participating peers are pipelined during
query execution and as the query propagates progressively results are generated.

6.4 Similarity and Partial-match Queries

Similarity Queries A similarity preserving hash function is proposed [15] for indexing
vector data into a DHT which, with high probability, maps vectors that are at a small
distance from each other to keys that also are at a small distance from each other. A peer
that has a query computes a set of keys which are at a distance r from the key of the query
and queries all the nodes which own these keys using the lookup primitive supported by
the underlying DHT. These nodes return objects that are within the similarity threshold
defined by the query. The distance r is affected by the similarity threshold and the desired
search accuracy.

Partial-match Queries In [110] a distributed index for efficiently answering full-text
partial-match queries on peer-to-peer networks is proposed. The index, named Distributed
Pattern Tree (DPTree), manages a tree hierarchy of popular query patterns. Every node
of the DPTree is associated with a pattern, maintains an index to the list of documents

o1

matching the pattern and is represented by a cluster of strongly connected peers respon-
sible for the pattern. All the keywords of the pattern of a parent node are contained in
the pattern of the child node. The root of the DPTree is a pattern of a single keyword.
The root nodes are positioned in the overlay using a DHT, while the single-word patterns
that they manage serve as the key. During a series of query sessions, every DPTree node
collects its query history and mines the frequent patterns periodically. The DPTrees, ini-
tially consisting of only roots, are then expanded dynamically as new frequent patterns
are discovered. A keyword-based search starts from the roots whose pattern matches one
of the keywords of the query and is propagated along the pattern trees until the patterns
that best match the query are reached.

6.5 Aggregation Queries

A new information management service, called Astrolable, is described in [101]. Astrolable
is used to monitor the dynamically changing state of a collection of distributed resources,
stored in a P2P system, by continuously computing summaries of the data in the system
using on-the-fly aggregation. Astrolable agents run on each peer and communicate with
each other through an epidemic peer-to-peer protocol known as gossip. Periodically, each
agent selects some other agent and exchanges state information with it. The resources
are organized into a hierarchy of domains, called zones. The structure of Astrolabe’s
zones can be viewed as a tree. The leaves of this tree represent the peers, while the root
contains all peers. Associated with each zone is a unique identifier, a pathname, and
an attribute list (MIB) which contains the information associated with the zone. The
Astrolabe attributes are not directly writable, but generated by aggregation functions.
Each zone has a set of aggregation functions that calculate the attributes for the zone’s
MIB. An aggregation function for a zone is an SQL program that takes a list of the MIBs
of the zone’s child zones, and produces a summary of their attributes. Applications invoke
Astrolabe interfaces through calls to a library. The library has an SQL interface that
allows applications to view each node in the zone tree as a relational database table, with
a row for each child zone and a column for each attribute. The programmer can then
simply invoke SQL operators to retrieve data from the tables.

[9] presents a sampling-based technique for approximate answering of ad-hoc aggre-
gation queries in unstructured P2P systems. The approach followed here is based on
the skewed sampling of relational data and the assumption that certain aspects of the
P2P network are known to all peers, such as the average degree of the nodes, a good
estimate of the number of peers in the system, and certain topological characteristics of
the network structure. The query processing strategy consists of two phases. In the first
phase, a random walk is initiated from the query node, long enough to ensure that the
visited peers represent a close sample from the underlying stationary distribution. The
information retrieved from the visited peers, such as the number and aggregate of tuples
(e.g., SUM/COUNT/AVG, etc.) that satisfy the selection condition is sent back to the
query node. Then an analysis is followed to determine the skewed nature of the data that
is distributed across the network, such as the variance of the aggregates of the data at
nodes, the amount of correlation between tuples that exists within the same nodes and
the variance in the degrees of individual nodes in the P2P network. Once this data has
been analyzed, an estimation is made on how much more samples are required and in

52

what way should these samples be collected so that the original query can be optimally
answered within the desired accuracy with high probability. The second phase is then
straightforward, a random walk is re-initiated and tuples are collected according to the
recommendations made by the first phase.

[39] presents a model for multidimensional data distributed in a P2P network and
a query rewriting technique, that allows a local peer to propagate aggregation queries.
The model supports P2P OLAP queries, a class of queries involving aggregate functions,
defined over generalizations of fact tables and dimensions that are distributed in a P2P
network. Each node involved in the system defines a context where it becomes the local
peer and all its dimensions and fact tables are considered local henceforth. The rest of
the nodes that connect with the local peer, are considered acquaintances of the local
peer within this context. Because a multidimensional database normally consists in a
collection of views of aggregated data, a careful translation process is needed in this case,
in order to transform any summary concept that appears in a peer acquaintance into a
summary concept meaningful to the requesting peer. For this reason, a LAV (Local As
View) integration approach is used, which does not rely on mapping exclusively. Instead,
a systematic revise and map strategy is used for defining how an instance of a dimension in
an acquaintance is viewed from the local peer. Whenever a query is submitted to a node,
that node fixes a context where all its fact tables and rollup functions become local. The
posed query is then rewritten for propagation, introducing references to the appropriate
mapping tables and revised rollup functions. Thus, the query result depends on the
node where the query is posed and may change as changes in the revision and mapping
process occur. Moreover, if the mapping is incomplete, the rewriting technique employs
a bottom-up homomorphism preserving completion approach that allows the system to
always produce a query result.

7 Processing of XML and RDF Queries

7.1 Processing RDF

We shall first present a short introduction to the RDF model and the query languages for
RDF data and metadata. Then, we discuss issues related to storing and querying RDF
data in peer-to-peer systems.

7.1.1 RDF Data Model and Query Languages

RDF (Resource Description Framework) is a framework for describing metadata. It en-
ables interoperability between machines by interchanging information about information
resources. Resources are identified by RDF with Uniform Resource Identifiers (URIs) as
in [1]. The base element of RDF is the ¢riple: a resource (subject) is linked to another
resource (object) through an arc labeled with another resource (predicate). Alternatively,
the subject is called a resource, the predicate is called property (of that resource) and the
object is called value (of that property). The arc always goes from a resource to a value,
thus creating a directed labeled graph (if more than one triples are linked together). The
RDF Model Specification defines syntax for expressing RDF statements using an XML
encoding i.e., an RDF document is created using syntax rules for XML documents. Any

53

Resource Property Vaue
(Subject) (Predicate) (Object)

@ Itgric.dat

Figure 17: Graph represented RDF statement

<?xml version="1.0"?>
<RDF xmins :rdf ="http:// www.w3.org /TR/ REC -rdf -syntax#"
xmins :cru ="http:// www.cs.uoi.gr /example#'>
< rdf Descriptionabout=" " cru:File">
< cru:Name >ltgrid.dat </cru:Name >>
</ rdf :Description>
</RDF >

Figure 18: XML-encoded RDF statement

XML parser can check well-formedness and validity of RDF files but due to its semantics
orientated constructs and graph structure, specific RDF-aware XML parsers are required.
For example, Figs. 17 and 18 show both the graph representation and the XML encoding
of the sentence “The name of the file is ltgrid.dat”. The graph in Fig. 17 indicates that
the Resource node has the value file, the Property node has the value name and the Value
node has the value ltgrid.dat.

In addition to plain RDF data, RDF schema vocabularies are used to define the labels
of nodes (classes) and edges (properties) that can be used to describe and query resources
in specific user communities. These labels can be organized into appropriate taxonomies,
carrying inclusion semantics. RDF schemata are used to declare classes and property-
types, typically authored for a specific community or domain. The upper part of Fig.
19 illustrates such a schema for a cultural application. The scope of the declarations is
determined by the namespace of the schema, e.g., ns! (http://www.culture.gr/schema.rdf).

Namespaces are used in order to avoid conflicts between similar names of classes or
properties that have different semantic meaning (as different users may create two se-
mantically different classes and label them with the same name). Classes and property
types are uniquely identified by prefixing their names with their schema namespace, as for
example, ns1Artist or nsicreates. To simplify our presentation, we henceforth omit the
namespace prefixes. Moreover, classes can be organized into a taxonomy through simple
or multiple specialization. The root of this hierarchy, is a built-in class called Resource.
For instance, Painter and Painting are subclasses of Artist and Artifact respectively, both
specializing Resource. RDF classes do not impose any structure to their objects and class
hierarchies simply carry inclusion semantics. RDF property types serve to represent at-
tributes of resources as well as relationships (or roles) between resources. For example,
creates defines a relationship between the resource classes Artist (its domain) and Artifact
(its range), while fname is an attribute of Artist with type Literal. As RDF literals we
can have any primitive datatype defined in XML as well as XML markup which is not
further interpreted by an RDF processor. As we can see in Fig. 19, property types may
also be refined: paints is a specialization of creates, with its domain and range restricted
to the classes Painter and Painting, respectively.

54

Several RDF query languages have been developed for querying RDF data and RDF
schemata. Some of them are:

e RDQL [74]: RDQL is a query language for RDF proposed by the developers of the
Jena Java RDF toolkit [73]. RDQL operates at the RDF triple level, without taking
RDF Schema information into account (like RQL [60] does) and without providing
inferencing capabilities.

e RQL [60]: RQL is a typed language, following a functional approach. It is defined
by a set of basic queries and iterators. These basic queries are the building blocks
of the query language. Then, such queries and iterators can be used to build more
complex queries through functional composition, by preserving type integrity con-
straints which are specific for each operation, allowing arbitrary nesting in a query.
RQL supports generalized path expressions featuring variables on labels for both
nodes (i.e., classes) and edges (i.e., properties).

e SeRQL [18]: SeRQL (”Sesame RDF Query Language”, pronounced ”circle”) is being
developed by Aduna as part of Sesame [19].

e RVL [71]: RVL is a view definition language capable of creating not only virtual re-
source descriptions, but also virtual RDF /S schemata from (meta)classes, properties,
as well as, resource descriptions available on the Semantic Web. RVL exploits the
functional nature and type system of the RQL query language in order to navigate,
filter and restructure complex RDF/S schema and resource description graphs.

7.1.2 RDF Data in P2P

As we discussed above, RDF data items are essentially (subject, predicate, object) triples.
Thus, to store RDF data in a P2P system, we have to store these three elements. The
problem is to find an efficient way for storing and retrieving this kind of data. One way is
to store all three elements in one place. However, in this way we may not take advantage
of the full capabilities of the system. Another way is to store each element at a different
place and create links among them.

It is even a greater challenge to store RDF schemata in a P2P system. We have to take
care of the subsumptions of schemata (both horizontal and vertical) as well as to preserve
the semantic meanings between each class and each property. These two necessities make
RDFS storage and retrieval a very challenging and difficult goal.

The system in [97] has been developed on top of an unstructured network. It is used
for querying RDF data using SeRQL [20] as the query language. Queries pass, via a
parser, from the query generator to an RDF API (one for each different RDF warehouse).
Intermediate SAIL defines the parts of the query that will be forwarded to the relevant
information sources. Queries are forwarded only to resources that are expected to provide
answers. To index complex queries, join indexes are used so as to forward them to the
destination resource. Additional database tables are created that contain results of a
join over a specific property. At runtime, the system accesses the database, rather than
computing a join, which is less expensive. The resulting indexing structure is a join
index hierarchy. The most general element in the hierarchy is an index table for elements

55

© .
.
=
nsl #creates
L
=] rdf #Literal
o
% ! nsl
nsl¥name + %
s) -
] :
[=} "Pi " nsL #lnanie | . >
[} ’ . nsl #paints .
= @ sl #hpame % nsl #creates .
W 4, & ns2#rodin & ns2 #orucifixion
[a) . .
m .

@ nsl #fnaine .
nsl #sculpts
& ns2 #claudel > & ns2#eternal
"Claudel "
nsl #lname

soremmmmos > typeOf (instance) nsl:http:// www.culturegr /schema.rdf
= subClassOf (isA) ns2:http:// www.museum.gr
I subPropertyOf (isA) ns3:http:// www.museum.gr /artstyles.xml

Figure 19: Graph represented RDF statement

connected by a certain path of length n. Every following level contains all the paths of
a particular length, from 2 paths of length n - 1 at the second level of the hierarchy, to
n paths of length 1 to the bottom level of the hierarchy. Join index hierarchies are also
used for defining resources that contain results to a sub-query. The resulting expression
is decomposed to a set of expressions, which describe simpler paths. Then, these paths
are forwarded to resources that contain relevant information, by using a hierarchy of join
indexes. To get the final results, the answers acquired from the individual resources ate
joined. To answer a query, all possible sub-paths of the query path need to be found. For
each one of these sub-paths, the resources that contain answers are located, the results
from each resource are retrieved and joined to a single result, to answer the whole path.
The system in [22] has been developed for querying RDF and range data. It uses a
DHT structure: MAAN [21], an extension of chord. The query language used is RDQL.
Each RDF triple is stored at three places based on the MAAN storage mechanism. First,
a triple is stored based on its subject, second on its predicate and third on its object.
Every triplet has an expiration time. The peer that inserts a triplet must update it before
the expiration time of the triplet runs out. If the peer that has stored the triplet does not
accept any updates concerning the specific triplet, it will delete it. Replication is supported
by maintaining copies of triplets at neighbor peers. Atomic queries can be answered based
on the exact value of an element of the triple, that is, at least an element of the triple
must have an exact value. Disjunctive range queries can be answered by using a list of
constraints that limit the value range of the variables based on the support provided by

56

MAAN for processing range queries. Conjunctive multi-predicate queries can be solved
by using a recursive algorithm that searches for candidate subjects for each predicate and
calculates the intersection of these subjects before returning the result of the query.

The system in [77] uses a hypercube structure to store and query RDF/S data and
is compatible with any query that is in line with RDF/XML conventions. Super-peers
are placed in a hypercube topology and they are responsible for the efficient search of
RDF metadata and the maintenance of the hypercube structure. Simple peers are are
respounsible for storing the RDF metadata. They are connected to each super-peer forming
a star topology. Super-peers maintained a data structure, called SP/P routing table, with
information about the schema of the peer, the properties of the schema and the value
of the properties. The SP/P table is used for the insertion of a peer and its connection
with a super-peer, as well as for the efficient routing of the queries, only to nodes which
are relevant with these queries. Each super-peer also keeps an SP/SP table which is
the sum of its SP/P indexes for routing queries among super-peers. When a peer leaves
the network, all the respective registrations of the SP/P table of the leaving node of the
super-peer that is responsible for the specific peer are removed. When a peer registers the
network, the metadata of the peer are compared against the current registrations of the
SP/P table of the super-peer with which the peer connects to. If the metadata already
exist in the super-peer, then only the id of the peer is inserted into the SP/P table, else all
the metadata that are not present at the super-peer are inserted. An update in the SP/P
table causes the update of the SP/SP tables of the hypercube, in a way, similar to the way
with which an efficient broadcast can take place in a hypercube. When a new super-peer
registers the network, the super-peer, that is responsible for the position in the hypercube,
in which the new super-peer is inserted, transfers one half of its SP/SP table to the new
super-peer, while the neighbors of these super-peers are updated appropriately. When a
super-peer leaves the network, it transfers the SP/SP and SP/P tables to the super-peer
that is responsible for the vacant position in the hypercube, that is about to be created
and all the neighbors of the two node are appropriately updated. For routing a query, the
elements of the query are compared against the SP/SP and SP/P tables and the query is
forwarded to the peers that can answer these elements.

The system in [26] uses, also, a hypercube structure for storing and querying RDF/S
data. It uses the QEL language. It extends [77] to support publish/subscribe systems.
Peers can subscribe queries, advertise their content and notify the network when new
resources become available. The routing of advertisements is based on the SP/SP and
the SP/P tables. To route subscriptions, super-peers store a hierarchy of subscriptions.
Subscriptions that are contained in parent peers are placed at the children peers of the
hierarchy. The rest of the routing procedure is based on the SP/SP and SP/P tables as the
routing of advertisements. As for the routing of notifications, when a notification reaches
a super-peer, it is compared with the root subscription of the local hierarchy subscription
of the specific super-peer. If there is a match, then the notification is compared against
the children of the root subscription and so on. For every such comparison where the
notification matches the compared subscription, the notification is sent to the super-peer,
from which the compared subscription came from, thus following the path of the subscrip-
tion in the opposite direction. Update of advertisements can be done in a way similar to
the way for updating the SP/SP and SP/P tables described above.

Piazza [47] is a system for querying semantic (RDF/S, OWL, XML) and non-semantic

o7

relational data. It can be implemented on top of any type of overlay network. The
query language used in Piazza is XQuery. When a new peer is added to the system, it is
semantically related to some portion of the existing network. Queries are always posed
from the perspective of a given peer’s schema, which defines the preferred terminology of
the user. When a query is posed, Piazza provides answers that utilize all semantically
related XML data within the system. To exploit data from other peers, there must be
semantic mappings between the peers. Mappings are specified between small numbers
of peers, usually pairs. There are three main cases, depending on whether the mapping
are between pairs of OWL/RDF nodes, between pairs of XML/XML Schema nodes, or
between nodes of different types. Mappings play two roles; the first role is as storage
descriptions that specify which data is actually stored at a peer and the second role
is as schema mappings, which describe how the terminology and structure of one peer
correspond to those in a second peer. This allows to separate between the intended domain
and the actual data stored at the peer. A query at a particular peer must be expanded
and translated into appropriate queries over semantically related Query answering may
require that we follow semantic mappings in both directions. In one direction, composing
semantic mappings is simply query composition for an XQuery-like language. In the other
direction, composing mappings requires using mappings in the reverse direction, which is
known as the problem of answering queries using views.

The project in [61] considers the efficient query processing of RDF/S data either on
top of a DHT (e.g. chord) structure or on top of a hybrid network (unstructured network
with super-peers). The query language for RDF/S data is RQL and RVL. Two ways of
structuring peers are described. The first one uses a hybrid P2P semantic network, where
peers are organized in a hierarchy, under specific super-peers. Children peers contain RDF
schemata that are subsumed in the RDF schemata of their parent peers. Peers that are
described by the same schema are placed under the same super-peer, so that each super-
peer knows which schemata are in its hierarchy. When a peer issues a query that can not
be answered by the same peer, the query is forwarded to the super-peer that the specific
peer belongs to. If this super-peer does not contain the schema of the query, then the
super-peer forwards the query to one of the other super-peers, randomly. This procedure
continues until the super-peer that has the specific schema is found. Then, the query is
forwarded to the hierarchy of thus super-peer. The second way of structuring peers is a
semantic network based on DHT P2P system, like Chord. In this case, keys of the hash
functions are assigned to whole sub-schemata. In order to preserve the semantic network,
there is a need to derive appropriate hash functions for the assignment of the keys, so
that peers that have similar schemata can be found in successive steps. In this case, to
answer a sub-query, all peers (of the entire network) must be asked in successive steps.
The results of these queries must be joined, so that we can get a complete answer of the
query.

The project in [33] studies the problem of integrating RDF and XML data on an un-
structured super-peer network. The query languages used, for this purpose are XQuery
and RDQL. Super-peers contain global RDF ontologies, while simple peers contain local
schemata and local data sources. Peers are connected to super-peers through P2P map-
pings. The architecture has four main components: (a) an XML to RDF wrapper used to
transform the XML schema into a local RDF schema, (b) local XML and RDF schemata
(residing at peers), (c) global RDF ontologies residing at super-peers and (d) mapping

58

tables used to store mappings between local schemata and the global ontology. Whenever
a new peer joins the network, the peer gets registered and indexed in the super peer by
establishing mappings from its local schema to the global ontology. The mappings are
established through a process of schema matching and stored in the mapping table of the
peer. During the process of schema matching, the global ontology is extended by integrat-
ing the local schemata. The domain structure and document structure of local schemata
are encoded in the mappings. The current architecture provides two query processing
modes. In the data-integration mode, the user poses a query (source query) on the global
ontology in the super peer, which is then reformulated into multiple subqueries (target
queries) over the XML and RDF sources in the peers (one subquery for each source). By
executing the target queries and integrating their results, the system returns an answer to
the user at the site of the super-peer. In the hybrid P2P mode, the user can pose a source
query on the local XML or RDF source in some peer. Locally, the query will be executed
on the local source to get a local answer. Meanwhile, the source query is reformulated into
a target query over every other peer through transitive mappings, that is, compositions of
mappings from the original peer to the super-peer and mappings from the super-peer to
the other target peers. By executing the target query, each peer returns an answer to the
original peer, called the remote answer. The local and remote answers are integrated and
returned to the user at the site of the originating peer. Query translation is achieved by
using the mappings in conjunction with a collection of query rewriting algorithms.

GridVine [5] uses a two-layer approach to storing and retrieving RDF data and RDF
Schemata: the logical layer that supports operations for maintaining the semantic overlay
network (e.g. schema management, attribute-based search and schema mapping) and the
underlying physical layer which is a structured network, namely P-Grid. In GridVine,
statements are stored as RDF triples and refer to data items shared in the P-Grid in-
frastructure. Simple RDF data are stored three times by hashing subject, predicate and
object separately. For storing RDF Schemata, GridVine defines two new meta-schema
classes: P — GridDataltem and P — GridDataltemProperty. All classes of the schemata
have to be sub-classes of the meta-class P — GridDataltem and all properties have to
be sub-properties of the meta-class P — GridDataltemProperty. This way, the user can
introduce new schemata and reconciliate them with the existing schemata. To answer a
query, where not all of the three attributes of a triple are known, P-Grid hashes the known
attribute in order to find the peer that is responsible for this attribute. Then the peer
search its local database and reports with all the findings. Note that GridVine does not
allow queries in which none of the attributes of a triple is known. GridVine uses semantic
gossiping as a reconciliation method among two different schemata. All peers that describe
their data according to the same schema are said to be in the same semantic neighbor-
hood. Each peer has the possibility to create a mapping (link) between two schemata,
thus creating a network that can be seen as a direct graph.

Remindin’ [99] is an algorithm for forwarding and answering RDF queries, built on top
of the SWAP platform. Remindin’ uses SeRQL queries. The algorithm works as follows.
Assume a user of a peer issues a query. First, the query is evaluated locally, against the
local repository of the peer. The query is also forwarded to other peers to be evaluated
across the network. For forwarding a query, Remindin’ selects a set of peers that appear
more promising than the others to answer the given query. There are some cases where no
such peer can be selected. In such cases, the query is broadened so that all peers can be

59

Table 4: Taxonomy of RDF systems

Overlay Support Load Query Range Routing
Type Schema | Balance | Planning | Queries | through | Replication
[97] Unstructured v Vv Index
RDFPeers [22] | Structured 4 4 4
7 Structured v Vv Index
26 Structured Vv 4 Index
Unstructured Semantic
Piazza [47] Structured Vi V4 Mapping
Unstructured
SQPeers [61] Structured 4 4
Semantic
PERSINT [33] | Unstructured 4 4 Mapping
Semantic
GridVine [5] Structured 4 4 4 Mapping 4
and Index
Remindin’ [99] | Unstructured N v Index

selected. Next, the original query will be forwarded to a subset of the selected peers. To
avoid cycles, the message containing the query has a unique id and stores the id’s of visited
peers. When a peer receives a query it will try to answer it and it will store an index
pointing at the originator of the query. The answer is returned directly to the querying
peer (only if it is not empty). If the number of maximum hops is not reached yet, the
query will be forwarded to a selected set of peers (using the same peer selection described
before). On the arrival of answers at the querying peer, relevant answers are selected and
included into the repository.

A summary of the approaches to processing RDF data in p2p systems described above
is provided in Table 4.

7.2 Processing XML

We shall first present a short introduction to XML documents and languages for querying
then. Then, we survey the various approaches that have been proposed for storing and
querying XML documents in peer-to-peer systems.

7.2.1 XML Data Model and Query Languages

XML [2] has evolved as the new standard for data representation and exchange in the
Internet. XML is a self-descriptive language that was designed so as to focus on the
description and the structure of the data. Its flexibility in describing heterogeneous data
makes it very popular for distributed applications and systems where the data are either
native XML documents or XML descriptions of data or services that are represented in
different formats in the underlying sources (i.e. in relational databases). Furthermore,
XML supports more expressive query languages that address both the structure and the
content of the data and therefore, they convey more semantics to the queries.

60

<xml>
<catalog>
<book>) catalog
<title>.. </title>
<author>...</author>
e S
00! .
<tifle>...</title> book book journal
<editor>...</editor>
</book>
<journa> _ _
<title>,..</title> titte author title editor title
</journal>
</catalog>

@ (b)

Figure 20: Example of (a) an XML document and (b) its corresponding XML tree

XML employs a tree-structured model for representing data. The main building blocks
of an XML document are the elements that may contain other elements, attributes and
content. Elements are hierarchically structured and provide information about the data
they describe. Attributes are used to provide additional information about the elements.
Typically, an XML document is modeled as a node-labeled tree T'(V, E) (Fig. 20). Each
node e; € V corresponds to an XML element with a label assigned from some some string
literals alphabet that captures element’s semantics. Edges (e;, ;) € E are used to capture
the containment of element e; under e;. Leaf elements in T' typically contain values.

Queries in XML query languages typically specify patterns of selection predicates on
multiple elements that have some specified tree structured relationships. XPath is a lan-
guage for specifying these tree-structured relationships within an XML document. It
uses path expressions for addressing different parts of the XML tree. The simplest and
most commonly used path expressions involve the parent-child and descendant-or-self axes
(i.e.“/” and “//” operators) and the wildcard operator (“*”). These expressions are rep-
resented as a sequence of element tags and describe a navigation through the XML tree.
An XPath expression //t1/t2/.../ty is evaluated sequentially by finding an element ¢; any-
where in the document, and nested in it an element ¢5, and so on until we find ¢,,. The
result of the XPath expression on a given XML document is the set of ¢, nodes found in
the tree.

7.2.2 Querying XML Documents in P2P Systems

There many approaches to processing XML documents in a p2p setting including building
structured, unstructured and clustered overlays [65]. In the case of structured overlays,
an important issue is providing an appropriate mapping of XML documents to nodes.
In unstructured overlays, the focus is on building efficient data structures for routing
indexes for XML documents. Clustered overlays create groups of nodes that hold similar
documents.

Structured Overlays. XP2P [17] maps XML fragments along with ancestor and chil-
dren fragments onto the Chord ring by using the fingerprinting hashing technique. Queries
are fingerprinted and looked up by the Chord functionality; if all the child fragments are
unfolded full match is attained. Otherwise, gradual pruning is used for a partial match.
For //, a bottom-up technique is followed and hints through children fragments are ex-

61

Table 5: Querying XML data in P2P systems

Name Data Type Query Type Overlay Type
XML Partial & full Structured
XP2P [17] XPath [/,//] and (Chord)
positional filters
[42] XML XPath [/,//,*] and Structured
value predicates (Chord)
[94] XML XPath [/,//,*] Structured
(P-Grid)
Multi-level Unstructured
Bloom filters XML Path queries (interconnected
[64] [/,//,7] hierarchies)
Mutant Query XML SQL Structured
Plans [79] (o, 7, join) (CAN)
XQuery Unstructured
XPeer [91] XML FLWR (hierarchies
of superpeers)
[66] XML XPath [/,//] Unstructured
(routing indexes)
[103] XML XPath [/,//] Structured
(CAN)
Hierarchical/ Partial/ Structured
INS/Twine orthogonal complete tree (Chord or
[10] attribute- pattern queries any DHT)
value pairs
KADOP [6] AXML Tree-pattern Structured
queries (Pastry)
BRICKS [87] XML XPath, Structured
XQuery (DHT-based)
MediaPeer XML XQuery Unstructured
[38, 37 hybrid
[52, 59, 58] XML XPath Unstructured
(routing indexes)
XMIDDLE XML & XPath Ad-hoc networks
[72] DOM of mobile devices

62

ploited to avoid exhaustive search.

In [42], elements and attributes are the keys hashed into Chord along with structural
(all possible paths leading from the root to key) and value summaries. All simple paths
are extracted from the query and looked up in Chord starting from their last tag to the
first, retrieving at each step the set of candidate peers from the catalog. Their intersection
yields the final result set.

In [94], for each path expression inserted, all of its possible suffixes are hashed into P-
Grid, using an order-preserving hash function. Each data item stores the key, the original
fragment and its URI to the source XML document/fragment. For query processing the
longest simple path is hashed and looked up in P-Grid. Broadcasting in sub-tries is
deployed to retrieve all the results. The final results are checked against the original query
before being returned.

In [103], the system presumes that all peers know the schema of the data. Each
dimension in the virtual multi-dimensional space corresponds to either a path level or a
unique attribute on a specific path level. The virtual space is viewed as a hyper-rectangle
and each piece of XML is mapped to a logical node according to its coordinates that
are derived by hashing each element name and attribute that corresponds to each of the
dimensions. When the queries consist of absolute location paths with only parent-child
axis, is done by CAN, which is enhanced in order to find the closest hyper-rectangle. If
the query is more complex, it is transformed into one or more absolute location paths and
the same mechanism is deployed.

INS/TWINE [10] transforms data into a canonical form of attribute-value trees. Each
data item is split into all possible prefixes that are hashed into Chord along with the whole
data item. A data item matches a query if the AV Tree formed by the query is the same as
the AVTree of the original description, with zero or more truncated attribute-value pairs.
A query is resolved by searching for its longest prefix.

In KADOP [6], each resource published in the system is stored locally in the Ac-
tive XML repository within the Active XML layer of a peer. The peer offers web services to
access and retrieve the resource when its identifier is known. KADOP indexes its resources
with a DHT using tag names, precise words, concept names etc, as keys, while resource
identifiers make up the associated values.

BRICKS [87] uses a datastore component that follows the DOM model, splitting the
XML documents into sets of nodes. A query engine and an optional index manager are
located on top of the datastore. The sets of nodes are associated with a hash key and
inserted into the DHT. A distributed UDDI is used for resource discovery. A peer sends
the relevant parts of the queries to peers that might have relevant results. If some nodes
are matched, then the references to the nodes will be sent to the originator of the query.

Unstructured Overlays In [52, 59, 58], the system uses routing indexes that are in-
crementally updated based on query feedback so as to adapt to changing workloads and
topologies. Statistical information maintained at the routing indexes is used to optimize
query execution based on a cost model. Path trees are used as routing indexes, which are
pruned to accommodate lower memory constraints. Two dimensional histograms are used
for the efficient evaluation of value predicates, where the first dimension is the classical
division into buckets and the second is a time axis of expected returned results within a
number of hops.

63

XMIDDLE [72] defines a set of possible access points for the private tree on each device,
so that other devices can link to these points to gain access to this information; essentially,
the access points address branches of trees that can be modified and read by peers. In
order to share data, a host needs to explicitly link to another host’s tree, by using XLink.
The applications on the devices are enabled to manipulate the XML information through
the DOM API, which provides primitives for traversing, adding and deleting nodes to an
XML tree. XMIDDLE provides an approach to sharing that allows on-line collaboration,
off-line data manipulation, synchronization and application dependent reconciliation.

In [66], path indexes are used as the internal organization of the routing indexes, which
maintain pointers from each path to the corresponding peers that contain it. Since the
information included in a path index can grow excessively, aggregating paths with common
prefixes is proposed to accommodate the routing index in a given space overhead. The
indexes are distributed either by slowing each peer to potentially know and communicate
with every other peer or by letting peers enter into bilateral agreements with some other
peers called its neighbors.

Clustered Content-based Overlays In [64], each peer in the hierarchies, stores a local
index summarizing its own content and one routing indexes that summarize the contents
of the peers forming its subtree. The roots additionally store the other roots routing
indexes. Multi-level Bloom filters that preserve the hierarchical relationships of XML
data by inserting the elements of the XML tree to a different level of the filter, are used
as indexes. Queries are routed through the hierarchies by consulting the routing indexes
of each peer.

In [79], the data of the peers are assumed to belong to some categorization hierarchies
relevant to a domain, called a multihierarchic namespace. Groups of peers choose what
data to host based on their own interests, thus defining their interest areas. The interest
areas describe index coverage of other groups’ data and are encoded into URNs. The
associated index servers to each interest area are contacted to find relevant data. A
mutant query plan is an algebraic query plan graph, encoded in XML that may also include
verbatim XML-encoded data, references to resource locations (URLSs), and references to
abstract resource names (URNs). An MQP starts as a regular query operator tree at the
client peer and is then passed around among peers accumulating partial results, until it is
fully evaluated into a constant piece of XML data.

XPeer [91] logically organizes peers into clusters that are formed on a schema-similarity
basis, whenever this is possible. Superpeers are organized into trees, where each peer hosts
schema, information about its children. Peers export a tree-shaped DataGuide description
of their data, which is automatically inferred by a tree search algorithm. Queries are
translated it into location-free algebraic expressions and sent to the superpeer network
for the compilation of a location assignment. After the location assignment, the query is
passed back to the peer that issued it for execution: the query is split into single-location
subqueries that are sent to the corresponding peers.

In MediaPeer [38, 37|, peers are clustered to superpeers according to their metadata
information and superpeers may be in turn clustered forming overlay trees. Every peer
provides an XML Schema abstraction (set of tree structures) of the local data. Every
XQuery is translated to a collection of path-sets routed by each SP to peers that contain
relevant data. The forwarding decisions are taken based on the index structures maintained

64

at each SP in the overlay network. Each SP index is organized as an adaptable trie with
a more reduced size for the SPs at upper levels.

A summary of the approaches to processing XML documents in p2p systems described
above is provided in Table 5.

References

1]
[2]

3]

[12]

[13]

http://www.w3.org/RDF.

World wide web consortium. extensible markup language (xml) 1.0 (second edition).
hitp://www.w3.org/TR/REC-zml.

K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. Sizth International Conference on Cooperative Information Systems (CooplS
2001), Lecture Notes in Computer Science, 2172:179-194, 2001.

K. Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search Trees.
Workshop on Distributed Data and Structures (WDAS-2002), 2002.

K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt. Gridvine: Building
internet-scale semantic overlay networks. In International Semantic Web Conference

(ISWC), pages 107-121, 2004.

S. Abiteboul, I. Manolescu, and N. Preda. Constructing and Querying Peer-to-Peer
Warehouses of XML Resources. 21st International Conference on Data Engineering
(ICDE 2005), 2005.

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in
power-law networks. Physical Review, E 64, 2001.

AEOQLUS Project. Deliverable D3.1.1. Distributed Data Management: State-of-the-
art Survey, 2006.

B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki. Approximating Aggregation
Queries in Peer-to-Peer Networks. ICDE 2006, 2006.

M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A Scalable Peer-to-
Peer Architecture for Intentional Resource Discovery. Pervasive 2002, 2002.

W.T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive Distributed Top-k
Retrieval in Peer-to-Peer Networks. 21st International Conference on Data Engi-
neering, pages 174-185, 2005.

M. Bawa, G. S. Manku, and P. Raghavan. Sets: search enhanced by topic segmen-
tation. In SIGIR, pages 306-313, 2003.

A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable Multi-
Attribute RangeQueries. SIGCOMM 04, 2004.

65

[14]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Bhattacharjee, S. S. Chawathe, V. Gopalakrishnan, P. J. Keleher, and B. D.
Silaghi. Efficient Peer-To-Peer Searches Using Result-Caching. In IPTPS, pages
225-236, 2003.

I. Bhattacharya, S. R. Kashyap, and S. Parthasarathy. Similarity Searching in Peer-
to-Peer Databases. 25th IEEE International Conference on Distributed Computing
Systems, pages 329-338, 2005.

P. Boncz and C. Treijtel. AmbientDB : Relational Query Processing in a P2P
Network. International Workshop on Databases, Information Systems and Peer-to-
Peer Computing (DBISP2P), 2003.

A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath Lookup Queries in
P2P networks. ACM WIDM 04, 2004.

J. Broekstra and A. Kampman. SeRQL: An RDF Query and Transformation Lan-
guage. International Semantic Web Conference (ISWC 2004), 2004.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. International Semantic Web Conference
(ISWC 2002), 2002.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. The Semantic Web - ISWC 2002,
2342:54-68, 2002.

M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: a multi-attribute addressable
network for grid information services. Proceedings of the 4th International Workshop
on Grid Computing, 2003.

M. Cai, M. Frank, B. Yan, and R. MacGregor. A subscribable peer-to-peer
RDF repository for distributed metadata management. Journal of Web Semantics,
2(2):109-130, 2004.

Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, J. Hellerstein, and
S. Shenker. A Case Study in Building Layered DHT Applications. In SIGCOMM,
2005.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
gnutella-like p2p systems scalable. In SIGCOMM, pages 407-418, 2003.

Y. Chen, R. H. Katz, and J. Kubiatowicz. Dynamic Replica Placement for Scalable
Content Delivery. In IPTPS, pages 306-318, 2002.

P. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Publish/Subscribe for RDF-
based P2P Networks. 1st European Semantic Web Symposium, 2004.

E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to peer networks:
Harnessing latent semantics. In INFOCOM, 2003.

66

[28]

[29]

[30]

[31]

[38]

[39]

[40]

[41]

[42]

[43]

E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer Net-
works. In SIGCOMM, pages 177-190, 2002.

B. F. Cooper. An optimal overlay topology for routing peer-to-peer searches. In
Middleware, pages 82-101, 2005.

A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and J. Shanmugasun-
daram. P-Ring: An Index Structure for Peer-to-Peer Systems. Cornell University
Technical Report, 2004.

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
ICDCS, 2002.

A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems. In
Stanford Univ. TR 2003-75, 2003.

I. F. Cruz, H. Xiao, and F. Hsu. Peer-to-Peer Semantic Integration of XML and RDF
Data Sources. Third International Workshop on Agents and Peer-to-Peer Computing
(AP2PC 2004), 2004.

F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica. Wide-Area
Cooperative Storage with CFS. In SOSP, pages 202-215, 2001.

A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated
Peer-to-Peer Systems. In ICD(CS, 2003.

V. V. Dimakopoulos and E. Pitoura. Performance analysis of distributed search in
open agent systems. In IPDPS, page 20, 2003.

F. Dragan, G. Gardarin, and L. Yeh. MediaPeer: a Safe, Scalable P2P Architecture
for XML Query Processing. 16th International Workshop on Database and Expert
Systems Applications (DEXA 2005), 2005.

F. Dragan, G. Gardarin, and L. Yeh. Routing XQuery in A P2P Network Using
Adaptable Trie-Indexes. IADIS International Conference WW W /Internet, 2005.

M. M. Espil and A. A. Vaisman. Aggregate Queries in Peer to Peer OLAP.
DOLAP’04, 2004.

F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and Laurent Massoulié. Clus-
tering in peer-to-peer file sharing workloads. In 8rd International Workshop on
Peer-to-peer systems (IPTPS), 2004.

M. J. Freedman and D. Maziéres. Sloppy hashing and self-organizing clusters. In
IPTPS, pages 45-55, 2003.

L. Galanis, Y. Wang, S.R. Jeffery, and D.J. DeWitt. Locating Data Sources in
Large Distributed Systems. 29th International Conference on Very Large Data Bases
(VLDB), 2003.

P. Ganesan, P. Krishna Gummadi, and H. Garcia-Molina. Canon in g major: De-
signing dhts with hierarchical structure. In ICDCS, 2004.

67

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

P. Ganesan, B. Yang, and H. Garcia-Molina. One Torus to Rule Them All: Multi-
dimensional Queries in P2P Systems. In WebDB, pages 19-24, 2004.

V. Gopalakrishnan, B. D. Silaghi, B. Bhattacharjee, and P. J. Keleher. Adaptive
Replication in Peer-to-Peer Systems. In ICDCS, pages 360-369, 2004.

A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate Range Selection Queries in
Peer-to-Peer Systems. CIDR 2003, 2003.

A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management
Infrastructure for Semantic Web Applications. WWW 2003, 2003.

S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and Laurent Massoulié. Ex-
ploiting semantic clustering in the edonkey p2p network. In SIGOPS FEuropean
Workshop, 2004.

M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica. Com-
plex Queries in DHT-based Peer-to-Peer Networks. First International Workshop
on Peer-to-Peer Systems, 2002.

N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. Technical Report MSR-TR-
2002-92, Microsoft Research, 2002.

N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scalable
Overlay Network with Practical Locality Properties. Fourth USENIX Symposium
on Internet Technologies and Systems (USITS ’03), 2003.

K. Hose, M. Karnstedt, K-U. Sattler, and E-A. Stehr. Adaptive Routing Filters for
Robust Query Processing in Schema-Based P2P Systems. 9th International Database
Engineering and Application Symposium (IDEAS 05), 2005.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the Internet with PIER. Proceedings of the 29th VLDB Conference, 2003.

H. V. Jagadish, B. C. Ooi, Q. H. Vu, K. L. Tan, Q. H. Vu, and R. Zhang. Speeding
up Search in Peer-to-Peer Networks with A Multi-way Tree Structure. In SIGMOD,
2006.

H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou. VBI-Tree: A Peer-
to-Peer Framework for Supporting Multi-Dimensional Indexing Schemes. In ICDE,
2006.

H.V. Jagadish, B. C. Ooi, and Q.H. Vu. BATON: a balanced tree structure for
peer-to-peer networks. VLDB 2005, pages 661-672, 2005.

V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mechanism
for peer-to-peer networks. In CIKM, pages 300-307, 2002.

M. Karnstedt, K. Hose, and K-U. Sattler. Distributed Query Processing in P2P
Systems with Incomplete Schema Information. 3rd International Workshop on Data
Integration over the Web (DIWeb2004), 2004.

68

[59]

[60]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

M. Karnstedt, K. Hose, and K-U. Sattler. Routing and Processing in Schema-Based
P2P Systems. DEXA Workshops, 2004.

G. Karvounarakis, V. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. 11th International World Wide Web
Conference (WWW), 2002.

G. Kokkinidis, L. Sidirourgos, and V. Christophides. Query Processing in RDF/S-
based P2P Database Systems. Semantic Web and Peer-to-Peer Springer-Verlag,
2006.

G. Koloniari, Y. Petrakis, and E. Pitoura. Content-based overlay networks for xml
peers based on multi-level bloom filters. In DBISP2P, pages 232-247, 2003.

G. Koloniari, Y. Petrakis, E. Pitoura, and T. Tsotsos. Query workload-aware overlay
construction using histograms. In CIKM, pages 640-647, 2005.

G. Koloniari and E. Pitoura. Content-based Routing of Path Queries in Peer-to-
Peer Systems. International Conference on Extending Database Technology (EDBT),
2004.

G. Koloniari and E. Pitoura. Peer-to-peer management of xml data: issues and
research challenges. SIGMOD Record, 34(2):6-17, 2005.

N. Koudas, M. Rabinovich, D. Srivastava, and T. Yu. Routing XML Queries. 20th
International Conference on Data Engineering (ICDE’04) (poster), 2004.

E. Leontiadis, V. V. Dimakopoulos, and E. Pitoura. Cache updates in a peer-to-peer
network of mobile agents. In Peer-to-Peer Computing, pages 10-17, 2004.

B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. Enhancing P2P
File-Sharing with an Internet-Scale Query Processor. VLDB, 2004.

B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The case for a hybrid p2p
search infrastructure. In IPTPS, pages 141-150, 2004.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Unstruc-
tured Peer-to-Peer Networks. In ICS, pages 84-95, 2002.

A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
Semantic Web Through RVL Lenses. 2nd International Semantic Web Conference
(ISWC), 2003.

C. Mascolo, L. Capra, and W. Emmerich. An XML-based Middleware for Peer-to-
Peer Computing. International Conference on Peer-to-Peer Computing, 2001.

B. McBride. Jena: Implementing the RDF Model and Syntax specification. 2nd
Int’l Semantic Web Workshop, 2001.

L. Miller, A. Seaborne, and A. Reggiori. Three implementations of SquishQL, a
simple RDF query language. In First Int’l Semantic Web Conference, 2002.

69

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. ACM SIGCOMM 2001, pages
149-160, 2001.

W. Nejdl, W. Siberski, U. Thaden, and W.T. Balke. Top-k Query Evaluation
for Schema-Based Peer-to-Peer Networks. International Semantic Web Conference,
pages 137-151, 2004.

W. Nejdl, M. Wolpers, W.Siberski, C. Schmitz, M. Schlosser, and I. Brunkhorst.
Super-Peer-Based Routing Strategies for RDF-Based Peer-to-Peer Networks. Jour-
nal of Web Semantics, 1(2):177-186, 2004.

B. C. Ooi, Y. Shu, and K.-L. Tan. Relational Data Sharing in Peer-based Data
Management Systems. ACM SIGMOD, 23 3, 2003.

V. Papadimos, D. Maier, and K. Tufte. Distributed Query Processing and Catalogs
for Peer-to-Peer Systems. ICIDR Conference, 2003.

Y. Petrakis, G. Koloniari, and E. Pitoura. On using histograms as routing indexes
in peer-to-peer systems. In DBISP2P, pages 16-30, 2004.

Y. Petrakis and E. Pitoura. On constructing small worlds in unstructured peer-to-
peer systems. In EDBT Workshops, pages 415-424, 2004.

T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, Load Balancing and
Efficient Range Query Processing in DHTs. In EDBT, pages 131-148, 2006.

W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Workshop on
Algorithms and Data Structures, 1989.

V. Ramasubramanian and E. Gin Sirer. Beehive: O(1) Lookup Performance for
Power-Law Query Distributions in Peer-to-Peer Overlays. In NSDI, pages 99-112,
2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. ACM SIGCOMM’01, pages 161-172, 2001.

S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In INFOCOM,
2002.

T. Risse and P. Knezevic. A Self-organizing Data Store for Large Scale Dis-
tributed Infrastructures. International Workshop on Self-Managing Database Sys-
tems (SMDB ’05), 2005.

R. Rodrigues and B. Liskov. High Availability in DHTs: Erasure Coding vs. Repli-
cation. In IPTPS, pages 226-239, 2005.

M. Roussopoulos and M. Baker. CUP: Controlled Update Propagation in Peer-to-
Peer Networks. In USENIX Annual Technical Conference, General Track, pages
167-180, 2003.

70

[90]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi. A Peer-to-peer Framework
for Caching Range Queries. 20th International Conference on Data Engineering
(ICDE’04), 2004.

C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A Self-organizing XML
P2P Database System. First International Workshop on P2P and DB, 2004.

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP-Hypercubes, Ontolo-
gies and Efficient Search on P2P Networks. International Workshop on Agents and
Peer-to-Peer Computing, 2002.

E. Sit, A. Haeberlen, F. Dabek, B. Chun, H. Weatherspoon, R. Morris, M. Frans
Kaashoek, and John Kubiatowicz. Proactive Replication for Data Durability. In
IPTPS, 2006.

G. Skobeltsyn, M. Hayswirth, and K. Aberer. Efficient Processing of XPath Queries
with Structured Overlay Network. J4th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), 2005.

R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining temporal coherency of
virtual data warehouses. In IEEE Real-Time Systems Symposium, 1998.

K. Sripanidkulchai, B. M. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. In INFOCOM, 2003.

Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan Houben, and Jeen Broek-
stra. Index Structures and Algorithms for Querying Distributed RDF Repositories.
WWW 2004, 2004.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In SIGCOMM, pages 175-186, 2003.

C. Tempich, S. Staab, and A. Wranik. Remindin’: Semantic query routing in peer-
to-peer networks based on social metaphors. In Proceedings of the 13th international
conference on World Wide Web, (WWW 2004), New York, NY, USA, May 17-20,
pages 640649, 2004.

D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer search methods.
In WebDB, pages 61-66, 2003.

R. van Renesse and K. Birman. Scalable Management and Data Mining using As-
trolabe. 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and M. van Steen. Exploiting semantic
proximity in peer-to-peer content searching. In 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems (FTDCS 2004), 2004.

Q. Wang and M. T. Ozsu. A Data Locating Mechanism for Distributed XML Data
over P2P Networks. Technical report CS-2004-45, University of Waterloo, 2004.

71

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

D. J. Watts and S. H. Strogatz. Collective Dynamics of Small-World Networks.
Nature, 393:440-442, 1998.

H. Weatherspoon and J. Kubiatowicz. Erasure Coding Vs. Replication: A Quanti-
tative Comparison. In IPTPS, pages 328-338, 2002.

P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. El Abbadi. Parallelizing
Skyline Queries for Scalable Distribution. EDBT 2006, 2006.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In
ICDCS, pages 5-14, 2002.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In
ICDCS, pages 5-14, 2002.

H. Zhang, A. Goel, and R. Govindan. Using the Small-World Model to Improve
Freenet Performance. In INFOCOM, 2002.

D. J. Zhao, D. L. Lee, and Q. Luo. DPTree: A Distributed Pattern Tree Index for
Partial-Match Queries in Peer-to-Peer Networks. EDBT 2005, pages 515-532, 2005.

C. Zheng, G. Shen, S. Lind, and S. Shenker. Distributed Segment Tree: Support of
Range Query and Cover Query over DHT. In IPTPS, 2006.

M. Zhong and K. Shen. Popularity-Biased Random Walks for Peer-to-Peer Search
under the Square-Root Principle. In IPTPS, 2006.

72

