
Recognizing HHD-free and Welsh-Powell

Opposition Graphs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioannina

P.O.Box 1186, GR-45110 Ioannina, Greece

{stavros, palios}@cs.uoi.gr

Abstract: In this paper, we consider the recognition problem on two classes of perfectly

orderable graphs, namely, the HHD-free and the Welsh-Powell opposition graphs (or WPO-

graphs). In particular, we prove properties of the chordal completion of a graph and show

that a modified version of the classic linear-time algorithm for testing for a perfect elimina-

tion ordering can be efficiently used to determine in O(min{nmα(n), nm + n2 log n}) time

whether a given graph G on n vertices and m edges contains a house or a hole; this leads

to an O(min{nmα(n), nm + n2 log n})-time and O(n + m)-space algorithm for recognizing

HHD-free graphs. We also show that determining whether the complement G of the graph G

contains a house or a hole can be efficiently resolved in O(nm) time using O(n2) space, which

in turn leads to an O(nm)-time and O(n2)-space algorithm for recognizing WPO-graphs.

The previously fastest algorithms for recognizing HHD-free and WPO-graphs required O(n3)

time and O(n2) space.

Keywords: HH-free graph, HHD-free graph, Welsh-Powell opposition graph, perfectly

orderable graph, recognition.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph (G,≺) contains no induced

P4 abcd with a ≺ b and d ≺ c (such a P4 is called an obstruction). In the early 1980s, Chvátal [3]

defined the class of graphs that admit a perfect order and called them perfectly orderable graphs. The

perfectly orderable graphs are perfect; thus, many interesting problems in graph theory, which are

NP-complete in general graphs, have polynomial-time solutions in graphs that admit a perfect order

[2, 6]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order [14]. Since the

recognition of perfectly orderable graphs is NP-complete, we are interested in characterizing graphs

which form polynomially recognizable subclasses of perfectly orderable graphs. Many such classes of

graphs, with very interesting structural and algorithmic properties, have been defined so far and shown

to admit polynomial-time recognitions (see [2, 6]); note however that not all subclasses of perfectly

orderable graphs admit polynomial-time recognition [9].

In this paper, we consider two classes of perfectly orderable graphs, namely, the HHD-free and the

Welsh-Powell opposition graphs. A graph is HHD-free if it contains no hole (i.e., a chordless cycle on

≥ 5 vertices), no house, and no domino (D) as induced subgraphs (see Figure 1). In [10], Hoáng and

1

hole house D P A P5

Figure 1: Some simple graphs.

Khouzam proved that the HHD-free graphs admit a perfect order, and thus are perfectly orderable.

It is important to note that the HHD-free graphs properly generalize the class of triangulated (or

chordal) graphs, i.e., graphs with no induced chordless cycles of length greater than or equal to four

[6]. A superclass of HHD-free graphs, which also properly generalizes the class of triangulated graphs,

is the class of HH-free graphs; a graph is HH-free if it contains no hole and no house as induced

subgraphs (see Figure 1). Chvátal conjectured and later Hayward [8] proved that the complement G

of an HH-free graph G is also perfectly orderable.

A graph is called an Opposition graph if it admits a linear order ≺ on its vertices such that there is

no P4 abcd with a ≺ b and c ≺ d. Opposition graphs belong to the class of bip∗ graphs (see [2]), and

hence are perfect [17]. The complexity of recognizing opposition graphs is unknown. It is also open

whether there is an opposition graph that is not perfectly orderable [2]. The class of opposition graphs

contains several known classes of perfectly orderable graphs. For example, bipolarizable graphs are,

by definition, opposition graphs; a graph is bipolarizable if it admits a linear order ≺ on its vertices

such that every P4 abcd has b ≺ a and c ≺ d [18]. Another subclass of opposition graphs, which

we study in this paper, are the Welsh-Powell opposition graphs. A graph is defined to be a Welsh-

Powell Opposition graph (or WPO-graph for short), if it is an opposition graph for every Welsh-Powell

ordering; a Welsh-Powell ordering for a graph is an ordering of its vertices in nondecreasing degree

[22].

Hoàng and Khouzam [10], while studying the class of brittle graphs (a well-known class of perfectly

orderable graphs which contains the HHD-free graphs), showed that HHD-free graphs can be recognized

in O(n4) time, where n denotes the number of vertices of the input graph. An improved result was

obtained by Hoàng and Sritharan [11] who presented an O(n3)-time algorithm for recognizing HH-free

graphs and showed that HHD-free graphs can be recognized in O(n3) time as well; one of the key

ingredients in their algorithms is the reduction to the recognition of triangulated graphs. Recently,

Eschen et al. [5] described recognition algorithms for several classes of perfectly orderable graphs,

among which a recognition algorithm for HHP-free graphs; a graph is HHP-free if it contains no hole,

no house, and no “P” as induced subgraphs (see Figure 1). Their algorithm is based on the property

that every HHP-free graph is HHDA-free graph (a graph with no induced hole, house, domino D, or

“A”), and thus a graph G is HHP-free graph if and only if G is a HHDA-free and contains no “P” as an

induced subgraph. The characterization of HHDA-free graphs due to Olariu (a graph G is HHDA-free

if and only if every induced subgraph of G either is triangulated or contains a non-trivial module [18])

and the use of modular decomposition [13] allowed Eschen et al. to present an O(nm)-time recognition

algorithm for HHP-free graphs.

For the class of WPO-graphs, Olariu and Randall [19] gave the following characterization: a graph G

is WPO-graph if and only if G contains no induced C5 (i.e., a hole on 5 vertices), house, P5, or “P”

(see Figure 1). It follows that G is a WPO-graph if and only if G is HHP-free and G is HH-free.

Eschen et al. [5] combined their O(nm)-time recognition algorithm for HHP-free graphs with the

2

O(n3)-time recognition algorithm for HH-free graphs proposed in [11], and showed that WPO-graphs

can be recognized in O(n3) time.

In this paper, we present efficient algorithms for recognizing HHD-free graphs and WPO-graphs. We

show that a variant of the classic linear-time algorithm for testing whether an ordering of the vertices of

a graph is a perfect elimination ordering can be used to determine whether a vertex of a graph G belongs

to a hole or is the top of a house or a building in G. We take advantage of properties characterizing

the chordal completion of a graph and show how to efficiently compute for each vertex v the leftmost

among v’s neighbors in the chordal completion which are to the right of v, without explicitly computing

the chordal completion. As a result, we obtain an O(min{nmα(n), nm+n2 log n})-time and O(n+m)-

space algorithm for determining whether a graph on n vertices and m edges is HH-free. This result,

along with results by Jamison and Olariu [12] and by Hoáng and Khouzam [10], enables us to describe

an algorithm for recognizing HHD-free graphs which runs in O(min{nmα(n), nm+n2 log n}) time and

requires O(n + m) space.

Additionally, for a graph G on n vertices and m edges, we show that we can detect whether the

complement G of G contains a hole or a house in O(nm) time using O(n2) space. In light of the

characterization of WPO-graphs due to Olariu and Randall [19] which implies that a graph G is a

WPO-graph if and only if G is HHP-free and its complement G is HH-free, and the O(nm)-time

recognition algorithm for HHP-free graphs of Eschen et al. [5], our result yields an O(nm)-time and

O(n2)-space algorithm for recognizing WPO-graphs.

The paper is structured as follows. In Section 2, we review the terminology that we use throughout

the paper and we present well known results that are useful for our algorithms. In Section 3, we present

the methodology and establish properties that enable us to efficiently determine whether a given graph

is HH-free. The recognition algorithms for HHD-free graphs and WPO-graphs are described and

analyzed in Sections 4 and 5, respectively. Section 6 summarizes our results and presents some open

problems.

2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,

V (G) and E(G) denote the set of vertices and of edges of G respectively. The subgraph of a graph G

induced by a subset S of G’s vertices is denoted by G[S]. A subset B ⊆ V (G) of vertices is a module

if 2 ≤ |B| < |V (G)| and each vertex x ∈ V (G) − B is adjacent to either all vertices or no vertex in

B. The neighborhood N(x) of a vertex x ∈ V (G) is the set of all the vertices of G which are adjacent

to x. The closed neighborhood of x is defined as N [x] := N(x) ∪ {x}. We use M(x) to denote the set

V (G)−N [x] of non-neighbors of x. Furthermore, for a vertex y ∈M(x), we use n(x, y) to denote the

number of vertices in the set N(x)∩N(y), i.e., the set of common neighbors of x and y, or equivalently,

the degree of the vertex y in the graph induced by the set N(x) ∪ {y}. The degree of a vertex x in a

graph G, denoted deg(x), is the number of edges incident on x; thus, deg(x) = |N(x)|.

A path v0v1 · · · vk of a graph G is called simple if none of its vertices occurs more than once; it is

called a cycle (simple cycle) if v0vk ∈ E(G). A simple path (cycle) is chordless if vivj /∈ E(G) for any

two non-consecutive vertices vi, vj in the path (cycle). A chordless path (chordless cycle, respectively)

on n vertices is commonly denoted by Pn (Cn, respectively). In particular, a chordless path on 4

vertices is denoted by P4. If abcd is a P4 of a graph, then the vertices b and c are called midpoints and

the vertices a and d endpoints of the P4 abcd.

Let G be a graph and let x, y be a pair of vertices. If G contains a path from vertex x to vertex y, we

say that x is connected to y. The graph G is connected if x is connected to y for every pair of vertices

3

Algorithm PEO(G, σ)

1. for each vertex u ∈ V (G) do

A(u)← ∅;

2. for i ← 1 to n− 1 do

3. u← σ(i);

4. X ← {x ∈ N(u) | σ−1(u) < σ−1(x)};

5. if X 6= ∅

6. then w ← σ(min{σ−1(x) | x ∈ X});

7. concatenate X − {w} to A(w);

8. if A(u)−N(u) 6= ∅ then return(“false”);

9. return(“true”);

Figure 2: The perfect elimination ordering testing algorithm.

x, y ∈ V (G). The connected components (or components) of G are the equivalence classes of the “is

connected to” relation on the vertex set V (G). The co-connected components (or co-components) of

G are the connected components of the complement G of the graph G.

A graph G has a perfect elimination ordering if its vertices can be linearly ordered (v1, v2, . . . , vn)

so that each vertex vi is simplicial in the graph Gi = G[{vi, vi+1, . . . , vn}] induced by the vertices

vi, vi+1, . . . , vn, for 1 ≤ i ≤ n; a vertex of a graph is simplicial if its neighborhood induces a complete

subgraph. It is well-known that a graph is triangulated if and only if it has a perfect elimination

ordering [2, 6, 20]. The notion of a simplicial vertex was generalized by Jamison and Olariu [12] who

defined the notion of a semi-simplicial vertex: a vertex of a graph G is semi-simplicial if it is not a

midpoint of any P4 of G. A graph G has a semi-perfect elimination ordering if its vertices can be

linearly ordered (v1, v2, . . . , vn) so that each vertex vi is semi-simplicial in the graph Gi, for 1 ≤ i ≤ n.

A graph is a semi-simplicial graph if and only if it has a semi-perfect elimination ordering (see [5]).

Let σ = (v1, v2, . . . , vn) be an ordering of the vertices of a graph G; σ(i) is the i-th vertex in σ, i.e.,

σ(i) = vi, while σ−1(vi) denotes the position of vertex vi in σ, i.e., σ−1(vi) = i, 1 ≤ i ≤ n. In Figure 2,

we include the classic algorithm PEO(G, σ) for testing whether the ordering σ is a perfect elimination

ordering; if the graph G has n vertices and m edges, the algorithm runs in O(n+m) time and requires

O(n + m) space [6, 20]. Note that, in Step 4 of the Algorithm PEO(G, σ), the set X is assigned the

neighbors of the vertex u which have larger σ−1()-values; that is, X = N(u) ∩ {σ(i + 1), . . . , σ(n)}.

Thus, in Step 6, the vertex w is the neighbor of u in G which is first met among the vertices to the

right of u along the ordering σ. Since neither the graph G nor the ordering σ changes during the

execution of the Algorithm PEO, we can without error replace Step 6 by

w ← Next NeighborG,σ [u];

where Next NeighborG,σ [] is an array whose values have been precomputed in accordance with the

assignment in Step 6 of the Algorithm PEO shown in Figure 2.

3 Recognizing HH-free graphs

The most important ingredient (and the bottleneck too) of the HHD-free graph recognition algorithm

of Hoàng and Sritharan [11] is an algorithm to determine whether a simplicial vertex v of a graph G is

4

high, i.e., it is the top of a house or a building1 (or belongs to a hole) in G, which involves the following

steps:

. They compute an ordering of the set M(v) of non-neighbors of v in G where, for two vertices

y, y′ ∈ M(v), y precedes y′ whenever n(v, y) ≤ n(v, y′); recall that, for y ∈ M(v), n(v, y) is the

number of common neighbors of v and y. As we will be using this ordering in the description of

our approach, we call it a DegMN-ordering of M(v).

. They perform chordal completion on G[M(v)] with respect to a DegMN-ordering of M(v).

. The vertex v is high if and only if the graph G′

v resulting from G after the chordal completion

on G[M(v)] is triangulated.

As we mentioned in the introduction, the algorithm of Hoàng and Sritharan runs in O(n3) time,

where n is the number of vertices of the input graph. In order to be able to beat this, we need to avoid

the chordal completion step. Indeed, we show how we can take advantage of the Algorithm PEO and

of properties of the chordal completion in order to compute all necessary information without actually

performing the chordal completion. In particular, we prove that the following results hold:

Lemma 3.1. Let G be a graph, v a vertex of G, and (y1, y2, . . . , yk) a DegMN-ordering of the non-

neighbors M(v) of v in G. Moreover, let G′

v be the graph resulting from G after the chordal comple-

tion on G[M(v)] with respect to the DegMN-ordering (y1, y2, . . . , yk) and let σ = (y1, y2, . . . , yk, x1,

x2, . . . , xdeg(v), v) where x1, x2, . . . , xdeg(v) is an arbitrary ordering of the neighbors of v in G. If Algo-

rithm PEO(G′

v, σ) returns “false” while processing vertex yi ∈M(v), then A(yi)−N(yi) ⊆ N(v).

Proof: Since the Algorithm PEO returns “false” while processing vertex yi ∈ M(v), then A(yi) −

N(yi) 6= ∅. Suppose that there exists a vertex yj ∈ M(v) belonging to A(yi) −N(yi). The vertex yj

was added to A(yi) at Step 7 of a prior iteration of the for-loop, say, while processing vertex y`. It

follows that σ−1(y`) < σ−1(yi) < σ−1(yj), and yi, yj ∈ N(y`). Since yj /∈ N(yi), we have that y` is

not simplicial in G′

v[{y`, y`+1, . . . , yk}]; a contradiction.

Lemma 3.2. Let G′

v and σ be as in the statement of Lemma 3.1. The vertex v belongs to a C5 or is

the top of a house in the graph G′

v if and only if Algorithm PEO(G′

v, σ) returns “false” while processing

vertex z, where z ∈M(v).

Proof: (⇐=) The Algorithm PEO(G′

v, σ) returns “false” while processing vertex z only if at Step 8

there exists a vertex x ∈ A(z) − N(z). From Lemma 3.1 we have that A(z) − N(z) ⊆ N(v); thus,

x ∈ N(v). The vertex x was added to A(z) at Step 7 of a prior iteration of the for-loop, say, while

processing vertex y; then, σ−1(y) < σ−1(z) < σ−1(x), and yz ∈ E(G′

v) and xy ∈ E(G′

v). Moreover,

since z ∈ M(v) and x /∈ N(z), we have that y ∈ M(v) and xz /∈ E(G′

v). Since σ−1(y) < σ−1(z), the

definition of the DegMN-ordering implies that n(v, y) ≤ n(v, z); because xy ∈ E(G′

v) and xz /∈ E(G′

v),

there exists a vertex x′ ∈ N(v) such that x′z ∈ E(G′

v) and x′y /∈ E(G′

v). But then, the vertices

v, x, x′, y, z induce either a C5 or a house: if xx′ /∈ E(G′

v) then v belongs to a C5; otherwise, v is the

top of a house.

(=⇒) Among the C5s of G′

v to which v belongs and the houses of G′

v with v as the top vertex,

consider the C5 or house whose vertices, say, y and z, that belong to M(v) are such that the quantity

|σ−1(y) − σ−1(z)| is minimized. Let x, x′ be the remaining two vertices of the C5 or house, where

x, x′ ∈ N(v), xy ∈ E(G′

v), xz /∈ E(G′

v), x′z ∈ E(G′

v), and x′y /∈ E(G′

v), and suppose without loss of

generality that σ−1(y) < σ−1(z) (Figure 4(a), where the dotted edge indicates a potential edge of G).

1A building is a graph on vertices v1, v2, . . . , vp, where p ≥ 6, and edges v1vp, v2vp, and vivi+1 for i = 1, 2, . . . , p− 1;

the vertex v1 is called the top of the building.

5

Algorithm Not-in-HHB(G, v)

1. Compute a DegMN-ordering σ = (y1, y2, . . . , yk) of the non-neighbors of v

in the graph G;

compute the array Next NeighborG′

v ,σ[] for the non-neighbors of v;

for each non-neighbor u of v do

A(u)← ∅;

2. for i ← 1 to k do

3. u← σ(i);

4. X ← N(u) ∩ N(v); {note: ∀x ∈ X, σ−1(u) < σ−1(x)}

5. if X 6= ∅

6. then w ← Next NeighborG′

v ,σ[u];

7. if w ∈M(v) then concatenate X to A(w); {note: w /∈ X}

8. if A(u)−N(u) 6= ∅ then return(“false”);

9. return(“true”);

Figure 3: The algorithm for determining whether a vertex v belongs to a hole or is the top of a house

or a building.

Then, we show that Next NeighborG′

v ,σ[y] = z. Suppose for contradiction that Next Neigh-

borG′

v ,σ[y] = w 6= z. Then, σ−1(y) < σ−1(w) < σ−1(z), and since yw ∈ E(G′

v) and yz ∈ E(G′

v), the

definition of the graph G′

v implies that wz ∈ E(G′

v). Additionally, if xw /∈ E(G′

v), then due to the

ordering σ, n(y, v) ≤ n(w, v), which (because xy ∈ E(G′

v)) implies that there exists a vertex p ∈ N(v)

such that pw ∈ E(G′

v) and py /∈ E(G′

v); but then, the vertices v, x, y, w, p induce a C5 or a house to

which v belongs and |σ−1(y)−σ−1(w)| < |σ−1(y)−σ−1(z)|, in contradiction to the minimality of the C5

or house induced by v, x, y, z, x′. Thus, xw ∈ E(G′

v). Then, if x′w /∈ E(G′

v), the vertices v, x, w, z, x′

induce a C5 or a house to which v belongs and |σ−1(w)−σ−1(z)| < |σ−1(y)−σ−1(z)|, in contradiction

to the minimality of the C5 or house induced by v, x, y, z, x′. If however x′w ∈ E(G′

v) then, because

n(w, v) ≤ n(z, v) (since σ−1(w) < σ−1(z)) and because xw ∈ E(G′

v) whereas xz /∈ E(G′

v), there exists

a vertex q ∈ N(v) such that qz ∈ E(G′

v) and qw /∈ E(G′

v); but then, the vertices v, x′, w, z, q induce a

C5 or a house to which v belongs and |σ−1(w)−σ−1(z)| < |σ−1(y)−σ−1(z)|, in contradiction again to

the minimality of the C5 or house induced by v, x, y, z, x′. Therefore, w = z. Then, while processing

vertex y, the Algorithm PEO includes vertex x in X in Step 4 and later in Step 7 adds x in A(z);

then, while processing vertex z, the Algorithm PEO detects that A(z)−N(z) 6= ∅ since x /∈ N(z), and

returns “false.”

Lemma 3.1 implies that, while running Algorithm PEO(G′

v, σ), it suffices to collect in the set X

(Step 4) only the common neighbors of u and v; in turn, Lemma 3.2 implies that it suffices to execute

the for-loop of Steps 2-8 only for the non-neighbors of v. The above can be used to yield the Algorithm

Not-in-HHB, presented in Figure 3, which takes as input a graph G and a vertex v of G, and returns

“true” if and only if the vertex v does not belong to a hole, and it is not the top of a house or a

building in G. That is, we can show the following result.

Theorem 3.1. Algorithm Not-in-HHB(G, v) returns “false” if and only if the vertex v belongs to a

hole or is the top of a house or a building in G.

Proof: (=⇒) Suppose that the algorithm returns “false” while processing vertex z (i.e, when i =

σ−1(z)). This happens only if at Step 8 of the current iteration of the for-loop there exists a vertex

6

vv

xx x′x′

yy zz

N(v)N(v)

M(v)M(v)

(a) (b)

Figure 4:

x ∈ A(z)−N(z). Then, from Lemmata 3.1 and 3.2, we have that z ∈M(v) and A(z)−N(z) ⊆ N(v),

which implies that x ∈ N(v) and xz /∈ E(G). The vertex x was added to A(z) at Step 7 of a

prior iteration, say, while processing vertex y; thus, xy ∈ E(G), σ−1(y) < σ−1(z) which implies that

y ∈ M(v), and z is the Next NeighborG′

v ,σ[y] which implies that yz ∈ E(G′

v). As in the proof of

Lemma 3.2, we can show that there exists a vertex x′ of G such that x′ ∈ N(v), x′z ∈ E(G), and

x′y /∈ E(G) (Figure 4(a), where the dotted edge indicates a potential edge of G). For the vertices y, z

(which are adjacent in G′

v), we distinguish two cases:

(i) yz ∈ E(G). Then, if xx′ /∈ E(G), the vertex set {v, x, y, z, x′} induces a hole (in fact, a C5),

otherwise it induces a house with vertex v at the top.

(ii) yz /∈ E(G). The edge yz was added during the construction of the graph G′

v which was produced

so that each vertex yi ∈ M(v) becomes simplicial in the graph G[{yi, yi+1, . . . , yk}], 1 ≤ i ≤ k.

It follows that G has an induced path on at least three vertices connecting y and z all of

whose vertices are in M(v) and precede the vertices y and z in σ (see also Lemma 2 of [11]).

Let a1a2 · · · aq be a shortest such path where a1 = y and aq = z; then this path is chordless

(see Figure 4(b), where the dashed edge indicates an edge in E(G′

v) − E(G)). Since all the

vertices a2, . . . , aq−1 precede y in σ and since the Algorithm Not-in-HHB has not stopped before

processing z, then N(ai) ∩ N(v) ⊆ N(y) ∩ N(v), 1 < i < q. This implies that x′ /∈ N(ai) for

all i = 2, 3, . . . , q − 1. Let p = max{i | x ∈ N(ai)}; p is well defined since x ∈ N(a1), and

p < q since x /∈ N(aq) —recall that a1 = y and xy ∈ E(G), and aq = z and xz /∈ E(G).

Then, the vertices ap+1, . . . , aq−1 are not adjacent to x or x′, so that if xx′ /∈ E(G), the vertices

v, x, ap, . . . , aq−1, z, x′ induce a hole in G, whereas if xx′ ∈ E(G) they induce a house or a building

with v at its top.

In both cases, the vertex v belongs to a hole or is the top of a house or a building in the graph G.

(⇐=) Suppose that the vertex v belongs to a hole or is the top of a house or a building in G. If

v belongs to a C5 or is the top of a house, let v, x, y, z, x′ be the vertices inducing the C5 or house

(x, x′ ∈ N(v), y, z ∈M(v), xy ∈ E(G), and x′z ∈ E(G)), whereas if v belongs to a hole on more than

5 vertices or is the top of a building, let v, x, y, a1, . . . , ap, z, x′ be the vertices inducing the hole or

the building (x, x′ ∈ N(v), y, a1, . . . , ap, z ∈ M(v), xy ∈ E(G), and x′z ∈ E(G)). Moreover, suppose

without loss of generality that in either case σ−1(y) < σ−1(z).

The definition of the graph G′

v (i.e., in G′

v, every vertex yi ∈ M(v) is simplicial in the sub-

graph induced by {yi, yi+1, . . . , yk}) implies that even if y and z are not adjacent in G, they are

7

Algorithm Recognize-HH-free

1. for each vertex v of the input graph G do

if Algorithm Not-in-HHB(G, v) returns “false”

then return(“the graph is not HH-free”); {G contains a house or a hole}

2. return(“the graph is HH-free”);

Figure 5: The algorithm for determining whether a graph G is HH-free.

adjacent in G′

v. Then, there exists a sequence y=b1, b2, . . . , bq=z of vertices in M(v) such that

bi = Next NeighborG′

v ,σ[bi−1] for 2 ≤ i ≤ q (note that bi = Next NeighborG′

v ,σ[bi−1] implies that

σ−1(bi−1) < σ−1(bi) and bi−1bi ∈ E(G′

v)). The existence of such a sequence is shown as follows: if z is

the next-neighbor of y in G′

v, then the sequence is precisely y, z; otherwise, if b2 is the next-neighbor

of y, then yb2 ∈ E(G′

v) which from the fact that yz ∈ E(G′

v) and from the definition of G′

v implies

that b2z ∈ E(G′

v); next, we repeat the above argument for b2 and so on so forth; since there is a finite

number of vertices between y and z in σ, eventually, we will find a vertex bq−1 such that z is bq−1’s

next-neighbor in G′

v. Let r = max{i | x ∈ N(bi)}; r is well defined since x ∈ N(b1), and r < q since

x /∈ N(bq) —recall that b1 = y and xy ∈ E(G), and bq = z and xz /∈ E(G). Since x ∈ N(br) and

br+1 = Next NeighborG′

v ,σ[br], the processing of vertex br will result in the addition of vertex x in

the set A(br+1); then, the Algorithm Not-in-HHB will return “false” when it processes vertex br+1,

because x /∈ N(br+1), if not earlier.

In light of Theorem 3.1 and by observing that a building contains a hole, we obtain the very simple

HH-free graph recognition algorithm that is given in Figure 5.

3.1 Computation of the values of Next NeighborG′

v,σ[].

In order to avoid computing the graph G′

v, we take advantage of the following property of the chordal

completion of a graph:

Lemma 3.3. Let G be a graph, let (v1, v2, . . . , vk) be an ordering of its vertices, and let G′ be the

graph resulting from G after the addition of edges so that, for all i = 1, 2, . . . , k, vertex vi is simplicial

in the subgraph induced by the vertices vi, vi+1, . . . , vk. Then, the graph G′ contains the edge vrvj ,

where r < j, if and only if there exists an edge vivj in G such that i ≤ r and the vertices vi, vr belong

to the same connected component of the subgraph of G induced by the vertices v1, v2, . . . , vi, . . . , vr.

Proof: (=⇒) Suppose that vrvj ∈ E(G′). We will show the following:

Proposition. If vrvj ∈ E(G′), then there exists a vertex vi, where i ≤ r, such that vivj

is an edge of G and the vertices vi, vr belong to the same connected component of the

subgraph G[{v1, v2, . . . , vi, . . . , vr}].

We use induction on r.

Basis: r = 1. Then, since v1vj ∈ E(G′), it can only be that v1vj ∈ E(G) and the proposition holds

with vi being v1.

Inductive hypothesis: Suppose that the proposition holds for all r < r̂.

8

Inductive step: We show that the proposition holds for r = r̂. Hence, suppose that vr̂vj ∈ E(G′). If

vr̂vj is an edge of G, then the proposition clearly holds with vi being vr̂. Otherwise, the edge vr̂vj must

have been added while making a vertex vt simplicial; then, t < r̂ < j and vtvr̂, vtvj ∈ E(G′). Since

vtvr̂ ∈ E(G′) and t < r̂, then by the inductive hypothesis, there exists a vertex vp, where p ≤ t < r̂,

such that vpvr̂ is an edge of G and vp, vt belong to the same connected component of G[{v1, v2, . . . , vt}].

Similarly, by the inductive hypothesis for the edge vtvj of G′, there exists a vertex vq, where q ≤ t < j,

such that vqvj is an edge of G and vq, vt belong to the same connected component of G[{v1, v2, . . . , vt}].

Therefore, the vertices vp, vq belong to the same connected component of G[{v1, v2, . . . , vt}]. Then,

the existence of the edge vpvr̂ in G and the fact that p ≤ t < r̂ imply that vp, vr̂ belong to the same

connected component of G[{v1, v2, . . . , vr̂}]; moreover, since vpvj is an edge of G and p ≤ t < r̂ < j,

the proposition holds with vi being vp.

The induction then implies that the proposition holds for all edges vrvj ∈ E(G′), where r < j.

(⇐=) Suppose now that for vertices vr, vj of G, where r < j, there exists a vertex vi, where i ≤ r,

such that vivj is an edge of G and the vertices vi, vr belong to the same connected component of the

subgraph G[{v1, v2, . . . , vr}]. We will show that vrvj ∈ E(G′).

If vrvj ∈ E(G), then clearly vrvj ∈ E(G′). Suppose now that vrvj /∈ E(G). Since the vertices vi, vr be-

long to the same connected component of G[{v1, v2, . . . , vr}], there exists a simple path vrvp1
vp2
· · · vp`

vi

from vr to vi in G[{v1, v2, . . . , vr}]; then, clearly, pt < r for all t = 1, 2, . . . , `. Since vivj is an edge

of G, then vrvp1
vp2
· · · vp`

vivj is a simple path from vr to vj in G, and hence in G′. For ease of

notation, let us set vp0
= vr, vp`+1

= vi, and vp`+2
= vj , so that the path from vr to vj becomes

vp0
vp1

vp2
· · · vp`+1

vp`+2
.

Let ps be the minimum among p1, p2, . . . p`+1, i.e., vps
is the leftmost (with respect to σ) vertex

among vp1
, vp2

, . . . vp`+1
; then, since for all t = 1, 2, . . . , ` + 1 it holds that pt < r < j, we have

that ps < ps−1 and ps < ps+1. The definition of the graph G′ implies that vps
is simplicial in

G′[{vps
, vps+1, . . . , vk}]; since vps

is adjacent in G′ to vps−1
and to vps+1

, G′ contains the edge vps−1
vps+1

.

Thus, vp0
vp1
· · · vps−1

vps+1
· · · vp`+2

is a simple path in G′ from vr to vj , i.e., we obtained a path in G′

from vr to vj where the leftmost vertex vps
has been removed. The process of removing the leftmost

(w.r.t. σ) vertex among the vertices of the path can be repeated over and over, and in each case we

obtain a shorter simple path in G′ from vr to vj . Since pt < r < j for all t = 1, 2, . . . , ` + 1, eventually

all the vertices vp1
, vp2

, . . . , vp`+1
will be removed and we will have that vp0

vp`+2
= vrvj is a path (=

edge) in G′, as desired.

We note that the above lemma implies Lemma 2 of [11] as a corollary. Lemma 3.3 implies that for

the computation of the value Next NeighborG′

v ,σ[yr], where σ = (y1, y2, . . . , yk), it suffices to find the

leftmost (w.r.t. σ) vertex among yr+1, yr+2, . . . , yk which is adjacent in G to a vertex in the connected

component of G[{y1, y2, . . . , yr}] to which yr belongs. This can be efficiently done by processing

the vertices in the order they appear in σ. In detail, the algorithm to compute the contents of the

array Next NeighborG′

v ,σ[] is presented in Figure 6.

It is important to observe that, at the completion of the processing of vertex yj , the sets of vertices

maintained by the algorithm are in a bijection with the connected components of G[{y1, y2, . . . , yj}];

while processing yj , we consider the edges yiyj where i < j, and we union the set containing yj (which

has vertex yj as its rightmost vertex with respect to σ) to another set iff yj is adjacent to a vertex in

that set. The correctness of the algorithm is established in the following lemma.

Lemma 3.4. The Algorithm Compute-Next Neighbor correctly computes the values of Next Neigh-

borG′

v ,σ[yi] for all the vertices yi ∈M(v) (i.e., all the vertices that are not adjacent to v in G).

9

Algorithm Compute-Next Neighbor(G, σ, v)

1. {let y1, y2, . . . , yk be the non-neighbors of v in the order they appear in σ}

make a set containing the vertex y1;

2. for j = 2, 3, . . . , k do

3. make a set containing the vertex yj ;

4. for each edge yiyj of G, where i < j, do

5. yr ← the rightmost (w.r.t. σ) vertex in the set to which yi belongs;

6. if yr 6= yj

7. then {yi and yj belong to different sets}

8. Next NeighborG′

v ,σ[yr]← yj ;

9. union the sets to which yi and yj belong;

Figure 6: The algorithm for computing the contents of the array Next NeighborG′

v ,σ[].

Proof: First, we show that, for a vertex yr ∈M(v), the Algorithm Compute-Next Neighbor assigns a

value to the entry Next NeighborG′

v ,σ[yr] if and only if the vertex yr is adjacent in the graph G′

v to a

vertex in {yr+1, yr+2, . . . , yk}.

The entry Next NeighborG′

v ,σ[yr] is assigned a value if, during the processing of a vertex yj , where

j > r, there exists an edge in G connecting yj to a vertex yi, and yr is the rightmost (w.r.t. σ) vertex

among the vertices in the set containing yi. Since the vertices yi and yr belong to the same set, which

corresponds to the same connected component of the subgraph G[{y1, y2, . . . , yj−1}], and since yr is the

rightmost vertex in the set, then yi, yr belong to the same connected component of G[{y1, y2, . . . , yr}].

Due to this and due to the fact that yryj ∈ E(G), where r < j, Lemma 3.3 implies that the chordal

completion of the subgraph G[M(v)] induced by the non-neighbors of v in G, and thus the graph G′

v,

contains the edge yryj .

Suppose now that a vertex yi is adjacent in G′

v to a vertex in {yi+1, yi+2, . . . , yk}; we show that

the Algorithm Compute-Next Neighbor assigns a value to the entry Next NeighborG′

v ,σ[yi]. Let ys

be the leftmost (w.r.t. σ) vertex among the vertices in {yi+1, yi+2, . . . , yk} which are adjacent in G

to a vertex in the connected component of G[{y1, y2, . . . , yi}] to which yi belongs. Then, right before

processing ys, the rightmost (w.r.t. σ) vertex in the set to which yi belongs is precisely yi. Suppose

for contradiction that this is not the case and let ys′ be the rightmost vertex, where s′ > i. Then,

there exists a simple path in G from yi to ys′ ; let it be yp0
yp1

yp2
· · · yph

, where yp0
= yi and yph

= ys′ .

Clearly, pt < s′ for all t = 1, 2, . . . , h − 1. Let t̂ = min{ t ∈ {1, 2, . . . , h} | pt > i }; t̂ is well defined

since ph = s′ > i. Then, ypt̂
ypt̂−1

∈ E(G) and ypt̂−1
, yi belong to the same connected component of

G[{y1, y2, . . . , yi}] (since yp0
yp1
· · · ypt̂

is a path in G and pt ≤ i for all t = 0, 1, . . . , t̂ − 1). However,

this comes to a contradiction with the definition of ys, because i < pt̂ < s. Therefore, right before

processing vertex ys, yi indeed is the rightmost (w.r.t. σ) vertex in the set to which it belongs, and

thus the entry Next NeighborG′

v ,σ[yi] will be assigned a value (it will be set equal to ys during the

processing of vertex ys).

The proof will be complete if we show that, whenever the Algorithm Compute-Next Neighbor

assigns a value to an entry Next NeighborG′

v ,σ[yr], it assigns the correct value. Observe that whenever

the algorithm executes an assignment Next NeighborG′

v ,σ[yr] ← yj , then r < j and there exists an

edge yiyj in G such that i < j and the vertices yi, yj belong to the same connected component

of the subgraph G[{y1, y2, . . . , yr}]. Then, Lemma 3.3 implies that the chordal completion of the

subgraph G[M(v)] induced by the non-neighbors M(v) of v, and thus the graph G′

v as well, contains

10

the edge yryj . We need to show that yr is not adjacent in the chordal completion of G[M(v)] to any

vertex yt, where r < t < j. Suppose for contradiction that there existed such a vertex yt. Then,

by Lemma 3.3, there exists a vertex ys such that s < r, ysyt ∈ E(G), and ys, yr belong to the

same connected component of G[{y1, y2, . . . , yr}]. But then, while processing the vertex yt, yt will be

included in the set containing yr, in contradiction to the fact that, while processing yj (which is done

after processing yt since t < j), the rightmost (w.r.t. σ) vertex in the set containing yr is precisely yr;

recall that r < t. Therefore, all the assignments to the entries of the array Next NeighborG′

v ,σ[] are

correct.

3.2 Time and Space Complexity

Let us assume that the graph G has n vertices and m edges and that vertex v of G has k non-neighbors

in G. The execution of the Algorithm Not-in-HHB(G, v) for vertex v takes O(n+m) time and space plus

the time and space needed for the computation of the entries of the array Next NeighborG′

v ,σ[]. So, let

us now turn to the time and space complexity of the Algorithm Compute-Next Neighbor(G, σ, v). If we

ignore the operations to process sets (i.e., make a set, union sets, or find the rightmost (w.r.t. σ) vertex

in a set), then the rest of the execution of the Algorithm Compute-Next Neighbor takes O(n + m)

time. The sets are maintained by our algorithm in a fashion amenable for Union-Find operations,

where additionally the representative of each set also contains a field storing the rightmost (w.r.t. σ)

vertex in the set. Then,

• making a set which contains a single vertex yi requires building the set and setting the rightmost

(w.r.t. σ) vertex in the set to yi;

• finding the rightmost (w.r.t. σ) vertex in the set to which a vertex yj belongs requires performing a

Find operation to locate the representative of the set from which the rightmost vertex is obtained

in constant time per Find operation;

• unioning two sets requires constructing a single set out of the elements of the two sets, and

updating the rightmost (w.r.t. σ) vertex information; since we always union a set with the set

containing yj , where yj is the rightmost vertex in any of the sets, then the rightmost vertex of

the resulting set is yj , and this assignment can be done in constant time per union.

As the Algorithm Compute-Next Neighbor creates one set for each one of the vertices y1, y2, . . . , yk,

it executes k make-set operations; this also implies that the number of union operations is less than

k. The number of times to find the rightmost (w.r.t. σ) vertex in a set is O(m) since the algorithm

executes one such operation for each edge connecting two non-neighbors of v. Hence, if we use disjoint-

set forests to maintain the sets, the time to execute the above operations is O(mα(k)) [4], where α()

is a very slowly growing function; if instead we use the linked-list representation, then the time is

O(m + k log k) [4]. In either case, the space required (in addition to the space needed to store the

graph G) is O(k). Thus, the computation of the values of the array Next NeighborG′

v ,σ[] for the k

non-neighbors of the vertex v takes a total of O(n + min{mα(k), m + k log k}) time and O(k) space.

Therefore, we have:

Theorem 3.2. Let G be a graph on n vertices and m edges. Determining whether a vertex v of G

belongs to a hole or is the top of a house or a building can be done in O(n+ min{mα(k), m + k log k})

time and O(n + m) space, where k is the number of non-neighbors of v in G.

Then, since the Algorithm Recognize-HH-free consists of applying the Algorithm Non-in-HHB on every

vertex of the input graph, we obtain the following corollary:

11

Corollary 3.1. Determining whether a graph G on n vertices and m edges contains a hole or a house

(i.e., is not HH-free) can be done in O(min{nmα(n), nm + n2 log n}) time and O(n + m) space.

3.3 Providing a Certificate

The Algorithm Recognize-HH-free can be made to provide a certificate (a hole or a house) whenever

it decides that the input graph G is not HH-free. In particular, we augment the Algorithm Not-in-

HHB(G, v) as follows:

◦ When processing vertex u, we add a reference to u to each element of the set X formed in Step 4,

so that for each vertex w, each element of the set A(w) carries a reference to the vertex during

whose processing this element was added to A(w) (see Step 7).

Our approach follows the proof of Theorem 3.1. The Algorithm Recognize-HH-free answers that the

graph G is not HH-free when a call to Algorithm Not-in-HHB(G, v) for a vertex v returns “false,” i.e.,

when in Step 8 the difference A(u)−N(u) is non-empty for a vertex u which is not adjacent to v in G.

Let x ∈ N(v) be an element in A(u)−N(u); the vertex x is associated with a vertex y ∈M(v) during

whose processing vertex x was added to A(u) (then, clearly, u is Next NeighborG′

v ,σ[y])2. Then, we

can obtain a hole or a house of G by doing the following:

1. We traverse the neighbors of vertex u and find a vertex x′ which is adjacent to v and not

adjacent to y; such a vertex always exists, since n(y, v) ≤ n(u, v) (note that y precedes u in σ)

and x ∈ N(y) ∩N(v) whereas x /∈ N(u) ∩N(v).

2. We consider the subgraph of G induced by vertex u and the vertices preceding u in σ, and we apply

BFS on it starting at y until u is reached; let a1a2 · · · aq, where a1 = y and aq = u, be the path

in the BFS-tree from y to u, which is thus chordless. Moreover, {a1, a2, . . . , aq−1} ∩ N(x′) = ∅

(otherwise, the algorithm would have exited while processing a vertex preceding u; see proof of

Theorem 3.1).

3. We compute p = max{ i | x ∈ N(ai) }. Then, if xx′ /∈ E(G), the vertices v, x, ap, . . . , aq−1, u, x′

induce a hole in G; if xx′ ∈ E(G), the vertices v, x, ap, u, x′ induce a house in G if p = q − 1,

whereas if p ≤ q − 2, the vertices x, ap, . . . , aq−1, u, x′ induce a hole.

The correctness of the computation follows from the proof of Theorem 3.1. Regarding the time

and space complexity, we first note that the augmentation of the Algorithm Not-in-HHB does not

asymptotically increase the time and space complexity of the Algorithm Recognize-HH-free. In turn,

it is not difficult to see that all three steps of the certificate computation take linear time and space,

if we assume that we have an adjacency-list representation of the input graph and that we use two

auxiliary arrays to mark the neighbors of v and of y. Therefore, we have:

Theorem 3.3. The Algorithm Recognize-HH-free can be easily augmented to provide a certificate

whenever it decides that the input graph G is not HH-free; if G has n vertices and m edges, the

certificate computation takes O(n + m) time and O(n + m) space.

2 It must be noted that vertex x may have been added in A(u) more than once by different vertices; yet, x and any

of these vertices suffice for our purposes.

12

4 Recognition of HHD-free Graphs

Our HHD-free graph recognition algorithm is motivated by the corresponding algorithm of Hoàng and

Sritharan [11], which in turn is motivated by the work of Hoàng and Khouzam [10] and relies on the

following characterization of HHD-free graphs proved by Jamison and Olariu:

Theorem 4.1. (Jamison and Olariu [12]) The following two statements are equivalent:

(i) The graph G is HHD-free;

(ii) For every induced subgraph H of the graph G, every ordering of vertices of H produced by LexBFS

is a semi-perfect elimination.

In fact, we could use the Algorithm Not-in-HHB(G, v) in Hoàng and Sritharan’s HHD-free graph

recognition algorithm in order to determine if vertex v is high, and we would achieve the improved

time and space complexities stated in this paper. However, we can get the much simpler algorithm

which we give below.

Algorithm Recognize-HHD-free

1. if the input graph G is not HH-free

then return(“the graph is not HHD-free”);

2. Run LexBFS on G starting at an arbitrary vertex w, and let (v1, v2, . . . , vn) be the resulting

ordering, where vn = w.

3. for i = 1, 2, . . . , n− 5 do

if vi is not semi-simplicial in G[{vi, vi+1, . . . , vn}]

then return(“the graph is not HHD-free”);

4. return(“the graph is HHD-free”).

Note that, after Step 1, we need only check whether the input graph G contains a domino; this is why,

we only process the n − 5 vertices v1, v2, . . . , vn−5 in Step 3. Additionally, it is important to observe

that, for all i = 1, 2, . . . , n, the ordering (vi, vi+1, . . . , vn) is an ordering which can be produced by

running LexBFS on the subgraph G[{vi, vi+1, . . . , vn}] starting at vertex vn. The correctness of the

algorithm follows from Theorem 4.1 and the fact that if the currently processed vertex vi in Step 3

is semi-simplicial then clearly it cannot participate in a domino (note that none of the vertices of a

domino is semi-simplicial in any graph containing the domino as induced subgraph).

4.1 Time and Space Complexity

According to Corollary 3.1, Step 1 takes O(min{nmα(n), nm + n2 log n}) time and O(n + m) space.

Step 2 takes O(n + m) time and space [6, 20]. The construction of the subgraphs G[{vi, vi+1, . . . , vn}]

in Step 3 can be done in a systematic fashion by observing that G[{v1, . . . , vn}] = G and that

G[{vi+1, . . . , vn}] can be obtained from G[{vi, . . . , vn}] by removing vertex vi and all its incident

edges; if the graph G is stored using a (doubly-connected) adjacency-list representation with pointers

for every edge ab connecting the record storing b in the adjacency list of a to the record storing a

in the adjacency list of b and back, then obtaining G[{vi+1, . . . , vn}] from G[{vi, . . . , vn}] takes time

proportional to the degree of vi in G[{vi, . . . , vn}] and hence O(deg(vi)) time, where deg(vi) denotes

the degree of vertex vi in G. Additionally, in order to check whether a vertex is semi-simplicial, we

take advantage of the following result of Hoàng and Khouzam (which was also used in [11]):

13

Theorem 4.2. (Hoàng and Khouzam [10]) Let G be a graph and x be a semi-simplicial vertex of G.

If x is not simplicial, then each big co-component of the subgraph G[N(x)] is a module of G.

(A connected component or co-component of a graph is called big if it has at least two vertices; we also

note that if a vertex x is simplicial then none of the co-components of the subgraph G[N(x)] is big.)

Since computing the subgraph induced by the neighbors of vertex vi in G[{vi, . . . , vn}], computing its

co-components, and testing whether a vertex set is a module in G[{vi, . . . , vn}] can all be done in time

and space linear in the size of G[{vi, . . . , vn}], Step 3 takes a total of O
(∑

i

(
n+m+deg(vi)

))
= O(nm)

time and O(n + m) space. Finally, Step 4 takes constant time. Therefore, we obtain the following

theorem.

Theorem 4.3. Let G be an undirected graph on n vertices and m edges. Then, it can be determined

whether G is an HHD-free graph in O(min{nmα(n), nm + n2 log n}) time and O(n + m) space.

4.2 Providing a Certificate

If the Algorithm Recognize-HH-free answers that the input graph G is not HH-free in Step 1 (in which

case the Algorithm Recognize-HHD-free answers that the graph is not HHD-free), then the graph G

contains a hole or a house and a certificate can be obtained by the augmented algorithm described in

Section 3.3 in time and space linear in the size of G (Theorem 3.3). The Algorithm Recognize-HHD-

free may also answer that G is not HHD-free in Step 3 as well, if an induced domino is detected in

G. In order to locate such a domino, we replace Step 3 of the Algorithm Recognize-HHD-free by the

following steps:

3. for i = n− 5, n− 6, . . . , 1 do

if vi is not semi-simplicial in G[{vi, vi+1, . . . , vn}]

then

3.1 find a P4 xviyz in G[{vi, vi+1, . . . , vn}];

3.2 construct three auxiliary arrays of size n each, which mark the neighbors of x, z, and

vi, respectively, in G[{vi, vi+1, . . . , vn}];

3.3 for each vertex a ∈ {vi+1, vi+2, . . . , vn} do

if a is adjacent to x and non-adjacent to vi

then {a differs from vi, x, y, z, and az /∈ E(G)}

for each neighbor b of a in G[{vi, vi+1, . . . , vn}] do

if b is adjacent to z and non-adjacent to vi

then break; {b differs from vi, x, y, z, a, and bx, by /∈ E(G)}

3.4 print(Domino: vi, x, y, z, a, b);

return(“the graph is not HHD-free”).

We note that in the augmented algorithm the vertices are processed in reverse order compared to what

they used to. This has the advantage that the vertex vi, which is first found not to be semi-simplicial,

is guaranteed to belong to all the induced dominoes in the graph G[{vi, vi+1, . . . , vn}]; in fact, we show

that any P4 of G[{vi, vi+1, . . . , vn}] with vi as a midpoint participates in a domino with vi being a

corner vertex (Lemma 4.2). Additionally, since after Step 1 of Algorithm Recognize-HHD-free, the

input graph G and all induced subgraphs are HH-free, if vertex a is adjacent to x and is not adjacent

to vi then a is not adjacent to z (no matter whether a is adjacent to y or not); for the same reason, if

b is adjacent to a, z and is not adjacent to vi, then b is not adjacent to x or y, and a is adjacent to y.

Thus, the vertices vi, x, y, z, a, b induce a domino in G. The above discussion and Lemma 4.2 establish

14

the correctness of the augmented algorithm. In order to prove Lemma 4.2, we take advantage of the

following well known property of a LexBFS ordering [6]

P1: Let (v1, v2, . . . , vn) be an ordering of the vertices of a graph G obtained by running LexBFS on G

starting at vertex vn. Then, for any vertices vi, vj , vk such that i < j < k and vk ∈ N(vi)−N(vj),

there exists a vertex vt such that t > k and vt ∈ N(vj)−N(vi).

as well as another property which we establish in Lemma 4.1.

Lemma 4.1. Let G be an HH-free graph and let (v1, v2, . . . , vn) be an ordering of the vertices of G

obtained by running LexBFS on G starting at vertex vn. If for three vertices vp, vq, vr of G it holds

that p < q < r and vpvq ∈ E(G), vpvr ∈ E(G), and vqvr /∈ E(G), and if vs is the rightmost vertex in

the ordering which belongs to N(vq)−N(vp), then vrvs ∈ E(G).

Proof: We note that vs is well defined: according to Property P1, the facts p < q < r and vqvr /∈ E(G)

imply that there exists a vertex vt such that t > r and vt ∈ N(vq)−N(vp). Suppose for contradiction

that vrvs /∈ E(G). To simplify the notation, let vi0 = vp, vi1 = vq, vi2 = vr, and vi3 = vs; clearly,

i0 < i1 < i2 < i3, and

vi1vi0 ∈ E(G) (1)

vi2vi0 ∈ E(G) vi2vi1 /∈ E(G) (2)

vi3vi0 /∈ E(G) vi3vi1 ∈ E(G) vi3vi2 /∈ E(G). (3)

Let us consider the following iterative process:

1. j ← 3;

2. while vij
vij−1

/∈ E(G) do

3. A← N(vij−1
)−N(vij−2

);

4. vij+1
← rightmost vertex (w.r.t. the LexBFS ordering) among the elements of A;

5. j ← j + 1;

It is important to note that every time the condition of the while-loop is checked, we have that vij

is well defined, and ij−2 < ij−1 < ij : initially, we have vij
= vi3 , which, as we explained above, is

well defined, and i1 < i2 < i3; furthermore, if ij−2 < ij−1 < ij , then if the while-loop condition is

found true, Property P1 applied on vij−2
, vij−1

, and vij
implies that the set A contains at least one

element vt with t > ij , and thus vij+1
is well defined and ij < ij+1, i.e., ij−1 < ij < ij+1. Since there

are only finitely many vertices to the right of vi3 in the LexBFS ordering, eventually a vertex vi`
will

be found such that vi`
vi`−1

∈ E(G) and i` > i3. The above iterative process and the definition of the

set A imply:

vij
vij−1

/∈ E(G) ∀j = 3, 4, . . . , `− 1; (4)

vi`
vi`−1

∈ E(G); (5)

vij
vij−2

∈ E(G) ∀j = 4, 5, . . . , `; (6)

vij
vij−3

/∈ E(G) ∀j = 4, 5, . . . , `. (7)

Next, we show that, for each k = 3, 4, . . . , `, vertex vik
is not adjacent to any of vi0 , vi1 , . . . , vik−3

.

Consider any k in the above range; we show by induction on j = k−3, k−2, . . . , 0 that vik
vij

/∈ E(G).

For the basis case, we have j = k−3; then, vik
vik−3

/∈ E(G) due to Eq. (3) if k = 3 and due to Eq. (7) if

k ≥ 4. For the inductive hypothesis, we assume that vik
vij

/∈ E(G) for some j such that 1 ≤ j ≤ k−3;

for the inductive step, we need to show that vik
vij−1

/∈ E(G). If vik
vij−1

∈ E(G), then Property P1

applies on the vertices vij−1
, vij

, vik
(note that ij−1 < ij < ik and that vij

vik
/∈ E(G)) and implies that

15

vivi

vivi

vjvj

vj
vj

vkvk

vk

v`v`

v`v`

vpvp

vpvp

vqvq

vq

vq

vrvr

vrvr

(a) (b)

(c) (d)

Figure 7: Cases 1–4 of Lemma 4.2.

there exists a vertex vt ∈ N(vij
)−N(vij−1

) where t > ik; however, since ij+2 < ik < t, the existence

of vt contradicts the definition of vij+2
as the rightmost vertex with respect to the LexBFS ordering

which belongs to N(vij
)−N(vij−1

) (see line 4 of the iterative process given above). Thus, for all k, j

such that 3 ≤ k ≤ ` and 0 ≤ j ≤ k − 3, vik
vij

/∈ E(G). Taking also into account Eqs (1)-(7), we

conclude that the vertices vi0 , vi1 , . . . , vi`
, where ` ≥ 4, induce a hole in the graph G[{vi, vi+1, . . . , vn}],

in contradiction to the fact that G contains no holes. Therefore, vrvs ∈ E(G).

Lemma 4.2. Let G be an HH-free graph and let (v1, v2, . . . , vn) be an ordering of

the vertices of G obtained by running LexBFS on G starting at vertex vn. Suppose

further that, for each j = i + 1, i + 2, . . . , n, vertex vj is semi-simplicial in the

graph G[{vj , vj+1, . . . , vn}] whereas vertex vi is not semi-simplicial in the graph

Gi = G[{vi, vi+1, . . . , vn}]. Then, for every P4 vpvivqvr in Gi, the graph Gi (and

hence G as well) contains a domino as shown in Figure 8.

vi vp

vq

vr

Figure 8:

Proof: Since the graph Gi contains the P4 vpvivqvr, clearly i < p, q, r ≤ n. We consider the following

cases based on the relative order of the vertices vp, vq, vr in the LexBFS ordering: case 1 covers the

case q < r, whereas cases 2, 3, and 4 (which are similar to each other) cover all the possibilities if

q > r.

1. q < r: Lemma 4.1 applies on vi, vp, vq: if p < q, it implies that the rightmost vertex in

the LexBFS ordering that is adjacent to vp and non-adjacent to vi is also adjacent to vq (see

Figure 7(a)); if q < p, it implies that the rightmost vertex in the LexBFS ordering which is

adjacent to vq and non-adjacent to vi is also adjacent to vp. In either case, let that rightmost

vertex be vj ; clearly, vj differs from any of vp, vq, vr. Then, vjvr /∈ E(G), otherwise the vertices

vi, vp, vq, vr, vj would induce a house in G. Lemma 4.1 then applies on vq, vr, vj (no matter

whether j < r or r < j) and implies that there exists a vertex, say, v`, to the right of vj and vr

in the LexBFS ordering such that v`vj ∈ E(G), v`vr ∈ E(G), and v`vq /∈ E(G); see Figure 7(a).

Then, v`vp /∈ E(G), otherwise the vertices vi, vp, vq, vr, v` would induce a house or a C5 in

G. Furthermore, v`vi /∈ E(G), otherwise Property P1 would apply on the vertices vi, vp, v` (or

vi, vq, v` if q < p) and would contradict the fact that vj is the rightmost vertex that is adjacent

to vp (vq, respectively) and non-adjacent to vi. Then, the vertices vi, vp, vq, vr, vj , v` induce a

domino as shown in Figure 8.

16

vi vp

vq

vk

vr

a

b

Figure 9:

vi vp

vq

vk

vr

v`

a′

b′

Figure 10:

2. p < r < q: Lemma 4.1 applies on vi, vp, vq and it implies that the rightmost vertex, say,

vj , in the LexBFS ordering that is adjacent to vp and non-adjacent to vi is also adjacent to vq

(Figure 7(b)). Then, vjvr /∈ E(G), otherwise the vertices vi, vp, vq, vr, vj would induce a house in

G. Property P1 on vp, vr, vj implies that there exists a vertex vk such that k > j, vkvr ∈ E(G),

and vkvp /∈ E(G). Then, vkvi /∈ E(G), otherwise Property P1 would apply on vi, vp, vk implying

that there would exist a vertex vt such that t > k and vt ∈ N(vp) − N(vi), in contradiction to

the definition of vj since j < k < t. We distinguish the following two cases:

(a) vkvq ∈ E(G): Then, Gi contains the P4 vpvivqvk, where i < p < q < k; Case 1 above applies

and implies that this P4 along with two vertices, say, a and b, participate in a domino (see

Figure 9). The vertex vr is adjacent to both vq and vk; thus, it differs from both a and

b. Additionally, vr has to be adjacent to at least one of a, b, otherwise a house would be

induced; however, it cannot be adjacent to a otherwise vi, vp, vq, vr, a would induce a house.

Thus, vr is adjacent to b and the vertices vi, vp, vq, vr, a, b induce a domino as shown in

Figure 8.

(b) vkvq /∈ E(G): Then, if vkvj ∈ E(G), the vertices vi, vp, vq, vr, vj , vk induce a domino as

shown in Figure 8. Suppose that vkvj /∈ E(G); see Figure 7(b). Lemma 4.1 applies on

vr, vq, vk and implies that the rightmost vertex, say, v`, in the LexBFS ordering that is

adjacent to vq and non-adjacent to vr is also adjacent to vk. Then, v`vi /∈ E(G), otherwise

the vertices vi, vq, vr, vk, v` would induce a house in G. If v`vp ∈ E(G), then the vertices

vi, vp, vq, vr, vk, v` induce a domino as shown in Figure 8. Suppose now that v`vp /∈ E(G).

Then, Gi contains the P4 vpvivqv`, where i < p < q < `; Case 1 above applies implying

that this P4 along with two vertices, say, a′ and b′, participate in a domino (see Figure 10);

since vrvp /∈ E(G) and vrvq ∈ E(G), vr differs from either of a′, b′, whereas vk may coincide

with b′. If vk = b′ then because vra
′ /∈ E(G) (otherwise the vertices vi, vp, vq, vr, a

′ would

induce a house in G), the vertices vi, vp, vq, vr, a
′, vk induce a domino as shown in Figure 8.

Let us consider now that vk 6= b′; recall that vk is adjacent to vr, v` and non-adjacent

to vq. Since the vertices vq, vr, vk, v`, a
′, b′ cannot form a domino (that would have been

a domino in Gi+1), at least one of vr, vk is adjacent to at least one of a′, b′. Clearly,

vra
′ /∈ E(G), otherwise G would contain an induced house. Then, if vrb

′ ∈ E(G), the

vertices vi, vp, vq, vr, a
′, b′ induce a domino as shown in Figure 8. If vrb

′ /∈ E(G), then

vka′ ∈ E(G); otherwise, vkb′ ∈ E(G) (recall that at least one of vr, vk is adjacent to at

least one of a′, b′) and the vertices vq, vr, vk, a′, b′ would induce a hole. Then, the vertices

vi, vp, vq, vr, a
′, vk induce a domino as shown in Figure 8.

3. r < p < q: Lemma 4.1 applies on vi, vp, vq and it implies that the rightmost vertex, say, vj ,

in the LexBFS ordering that is adjacent to vp and non-adjacent to vi is also adjacent to vq (see

17

Figure 7(c)). Then, vjvr /∈ E(G), otherwise the vertices vi, vp, vq, vr, vj would induce a house in

G. Property P1 on vi, vr, vp implies that there exists a vertex vk such that k > p, vkvr ∈ E(G),

and vkvi /∈ E(G); note that k may be smaller than q, between q and j, or even larger than

j. Then, vkvp /∈ E(G), otherwise the vertices vi, vp, vq, vr, vk would induce a house or a C5

depending on whether vk is adjacent to vq or not. We distinguish the following two cases:

(a) vkvq ∈ E(G): Then, Gi contains the P4 vpvivqvk; Case 1 or Case 2 above applies (depending

on whether k > q or not) and implies that this P4 along with two vertices, say, a and b,

participate in a domino (see Figure 9). From now on, this case is identical to Case 2(a).

(b) vkvq /∈ E(G): Then, if vkvj ∈ E(G), the vertices vi, vp, vq, vr, vj , vk induce a domino as

shown in Figure 8. Suppose that vkvj /∈ E(G). Lemma 4.1 applies on vr, vq, vk: if q < k, it

implies that the rightmost vertex in the LexBFS ordering that is adjacent to vq and non-

adjacent to vr is also adjacent to vk; if q > k, it implies that the rightmost vertex in the

LexBFS ordering that is adjacent to vk and non-adjacent to vr is also adjacent to vq. In

either case, this rightmost vertex, say, v`, is adjacent to both vq and vk, and non-adjacent

to vr. From now on, this case is identical to Case 2(b).

4. r < q < p: Lemma 4.1 applies on vi, vq, vp and it implies that the rightmost vertex, say, vj ,

in the LexBFS ordering that is adjacent to vq and non-adjacent to vi is also adjacent to vp (see

Figure 7(d)). Then, vjvr /∈ E(G), otherwise the vertices vi, vp, vq, vr, vj would induce a house in

G. Property P1 on vi, vr, vp implies that there exists a vertex vk such that k > p, vkvr ∈ E(G),

and vkvi /∈ E(G). Then, vkvp /∈ E(G), otherwise the vertices vi, vp, vq, vr, vk would induce a

house or a C5 depending on whether vk is adjacent to vq or not. We distinguish the following

two cases:

(a) vkvq ∈ E(G): Then, Gi contains the P4 vpvivqvk, where i < q < p < k; Case 1 above applies

and implies that this P4 along with two vertices, say, a and b, participate in a domino (see

Figure 9). Again, from now on, this case is identical to Case 2(a).

(b) vkvq /∈ E(G): Then, if vkvj ∈ E(G), the vertices vi, vp, vq, vr, vj , vk induce a domino

as shown in Figure 8. Suppose that vkvj /∈ E(G). Lemma 4.1 applies on vr, vq, vk and

implies that the rightmost vertex, say, v`, in the LexBFS ordering that is adjacent to vq

and non-adjacent to vr is also adjacent to vk. This case too, from now on, proceeds as

Case 2(b).

In all cases, we obtained a domino as shown in Figure 8.

Time and Space Complexity. Let n and m be the number of vertices and edges of the input graph G.

Since we process the vertices vi in the order they are visited by LexBFS starting with vertex vn−5,

we need a representation of the subgraph G[{vn−5, vn−4, . . . , vn}] and we need to be able to con-

struct efficiently a representation of the subgraph G[{vi, vi+1, . . . , vn}] from a similar representation of

G[{vi+1, vi+2, . . . , vn}]. The former can be easily done in O(n + m) time and space from a copy of the

adjacency-list representation of the graph G from which we remove all unnecessary records and lists.

The latter can be done as follows: we traverse the adjacency list of vertex vi for the graph G; we select

among vi’s neighbors (in G) those that belong to {vi+1, vi+2, . . . , vn} and we construct from them the

adjacency list of vi for G[{vi, vi+1, . . . , vn}]; for each neighbor u of vi included in the adjacency list

of vi, we add a record storing vi in the adjacency list of u. Thus, obtaining G[{vi, vi+1, . . . , vn}] from

G[{vi+1, vi+2, . . . , vn}] takes time proportional to the degree deg(vi) of vertex vi in G; as a result, the

construction of the subgraphs for all the vertices vi takes O(n + m) time and space. Then, checking

whether a vertex vi is semi-simplicial in G[{vi, vi+1, . . . , vn}] is done as described in Section 4.1 in

18

O(n+m) time and space by taking advantage of Theorem 4.2. Thus, the processing of all the vertices

for semi-simpliciality takes a total of O(nm) time and O(n + m) space, just as it was the case in the

original version of Algorithm Recognize-HHD-free.

Let us now focus on the time and space complexity of Steps 3.1-3.3 which are executed exactly once

when and if a vertex vi is found not to be semi-simplicial in the graph G[{vi, vi+1, . . . , vn}]. Step 3.1 is

executed as follows: the way to test the semi-simpliciality of the vertex vi in the graph G[{vi, vi+1, . . . , vn}]

(which is described in Section 4.1) implies that, because vi has been found not to be semi-simplicial,

we have found a vertex z and a co-component C of the subgraph of G[{vi, vi+1, . . . , vn}] induced by

the neighbors of vi such that z is adjacent to some but not all the vertices of C; we partition the set C

into a set A of neighbors and a set B of non-neighbors of z (clearly, A 6= ∅ and B 6= ∅); then, for each

vertex in A, in turn, we mark its neighbors in an auxiliary array M of size n and check whether there

exists a vertex in B which is not marked in M ; as soon as such a vertex is found, we stop; since the

set A ∪ B forms a co-component of G[N(vi) ∩ {vi+1, . . . , vn}], we are sure to find vertices x ∈ B and

y ∈ A such that xy /∈ E(G), and the four vertices x, y, z, vi induce a P4 xviyz in G[{vi, vi+1, . . . , vn}].

The above description implies that for any vertex x′ ∈ A processed before x, it holds that B ⊆ N(x′)

and thus the processing of x′ takes O(deg(x′)) time; in turn, the processing of x takes O(deg(x) + 1)

time. Thus, Step 3.1 can be completed in O(n+m) time and space. Step 3.2 takes O(n) time: we need

to initialize the arrays and to traverse the adjacency lists of vertices x, z, and vi in G[{vi, vi+1, . . . , vn}].

Finally, Step 3.3 can be executed in O
(∑n

j=i+1(deg(vj)+1)
)

= O(n+m) time and O(1) space; due to

the auxiliary arrays, adjacency testing can be done in O(1) time per test. Thus, we have the following

theorem.

Theorem 4.4. The Algorithm Recognize-HHD-free can be easily augmented to provide a certificate

whenever it decides that the input graph G is not HHD-free; if G has n vertices and m edges, the

certificate computation takes O(n + m) time and space.

5 Recognition of WPO-graphs

Our algorithm for recognizing WPO-graphs relies on the fact that a graph G is a WPO-graph if and only

if G is HHP-free and its complement G is HH-free, which follows from the following characterization

due to Olariu and Randall [19].

Theorem 5.1. (Olariu and Randall [19]) A graph G is a WPO-graph if and only if G contains no

induced C5, P5, house, or “P”.

Eschen et al. [5] described an O(nm)-time algorithm for recognizing whether a graph G on n vertices

and m edges is HHP-free by using the modular decomposition tree of G and Theorem 4.2 due to Hoàng

and Khouzam [10]. We next show that we can detect whether the complement G of G contains a hole

or a house in O(nm) time. Combining these two algorithms, we get an O(nm)-time algorithm for

recognizing WPO-graphs.

Let G be a graph and let v be an arbitrary vertex of G. We construct the graph Ĝv from G as

follows:

◦ V (Ĝv) = V (G)

◦ E(Ĝv) = { vy | y ∈M(v) }

∪ {xy | x ∈ N(v), y ∈M(v), and xy /∈ E(G) }

∪ {xx′ | x, x′ ∈ N(v) and xx′ /∈ E(G) }

19

Note that in G the neighbors of v are the vertices in M(v), i.e., the non-neighbors of v in G, and the

non-neighbors are the vertices in N(v). Thus, the graph Ĝv is precisely G with any edges between

vertices in M(v) removed. Then, it is not difficult to see that the following result holds.

Lemma 5.1. The vertex v belongs to a hole or is the top of a house or a building in G if and only if

v belongs to a hole in Ĝv.

Because in Ĝv there are no edges between vertices adjacent to v, the vertex v cannot be the top of a

house or a building. Thus, we can run the Algorithm Not-in-HHB(Ĝv, v) and the vertex v belongs to

a hole in Ĝv if and only if the algorithm returns “false.” Assuming that the graph G has n vertices

and m edges, the graph Ĝv has n vertices and O(n + n deg(v) + deg2(v)) = O(n deg(v)) edges, where

deg(v) is the degree of the vertex v in G; then, the construction of Ĝv takes O(m+n deg(v)) time and

O(n deg(v)) space, and the execution of Not-in-HHB(Ĝv, v) runs in O(n+min{n deg(v) α(n), n deg(v)+

deg(v) log deg(v)}) = O(n + n deg(v) + deg(v) log deg(v)) = O(n deg(v)) time (Theorem 3.2; note that

k = deg(v)). Thus, we can determine whether the vertex v belongs to a hole in Ĝv in O(m+n deg(v))

time and O(n deg(v)) space.

Therefore, in light of Lemma 5.1, we have the following result.

Theorem 5.2. Let G be an undirected graph on n vertices and m edges. Then, it can be determined

whether the complement G is an HH-free graph in O(nm) time and O(n2) space.

From Theorem 5.2 and the result of Eschen et al. [5] (i.e., HHP-free graphs can be recognized in O(nm)

time and O(n + m) space), we obtain the following theorem.

Theorem 5.3. Let G be an undirected graph on n vertices and m edges. Then, it can be determined

whether G is a WPO-graph in O(nm) time and O(n2) space.

6 Concluding Remarks

We have presented recognition algorithms for the classes of HHD-free graphs and WPO-graphs running

in O(min{nmα(n), nm + n2 log n}) and O(nm) time, respectively, where n is the number of vertices

and m is the number of edges of the input graph. Our proposed algorithms are simple, use simple data

structures, and require O(n + m) and O(n2) space, respectively. Moreover, we show how our HH-free

and HHD-free graph recognition algorithms can be augmented to yield a certificate (a hole, a house,

or a domino) whenever they decide that the input graph is not HH-free or HHD-free; in either case,

the certificate computation takes O(n + m) time and space.

Figure 11 shows a diagram of class inclusions for a number of classes of perfectly orderable graphs

and the currently best time complexities to recognize members of these classes. For definitions of the

classes shown, see [2, 6]. In the diagram, there exists an arc from a class A to a class B if and only if

B is a proper subset of A. Hence, if any two classes are not connected by an arc, then each of these

classes contains graphs not belonging to the other class (there are such sample graphs for each pair of

non-linked classes). Figure 11 shows also the depicted classes of graphs partitioned based on the time

complexities of the currently fastest recognition algorithms: see [2] and [1, 5, 7, 15, 16, 21].

We leave as an open problem the designing of O(nm)-time algorithms for recognizing HH-free and

HHD-free graphs; note that an O(nm)-time algorithm for recognizing HH-free graphs directly implies

an O(nm)-time recognition algorithm for HHD-free graphs. Additionally, in light of the O(nm)-time

recognition of P4-comparability, P4-simplicial, bipolarizable, and WPO-graphs, it would be worth

investigating whether the recognition of brittle and semi-simplicial graphs is inherently more difficult.

20

Perfectly Orderable

P4-comparability

Brittle

P4-simplicial

HHD-free

Weak Bipolarizable

Bipolarizable

Chordal

Split

P4-sparse

P4-reducible

P4-free

P4-indifference

O(n m)

O(n+m)

NP-complete

 Split-perfect

O(min{m2, n3 log2n})

WPO-graphs

HHP-free

 O(min{nm � (n), nm + n2 log n})

Figure 11: Class inclusions and recognition time complexities.

References

[1] A. Brandstädt and V.B. Le, Split-perfect graphs: Characterizations and algorithmic use, SIAM J. Discrete

Math. 17, 341–360, 2004.

[2] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: A survey, SIAM Monographs on Discrete Math-

ematics and Applications, 1999.

[3] V. Chvátal, Perfectly ordered graphs, Annals of Discrete Math. 21, 63–65, 1984.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms (2nd edition), MIT

Press, Inc., 2001.

[5] E.M. Eschen, J.L. Johnson, J.P. Spinrad, and R. Sritharan, Recognition of some perfectly orderable graph

classes, Discrete Appl. Math. 128, 355–373, 2003.

[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., 1980.

[7] M. Habib, C. Paul, and L. Viennot, Linear time recognition of P4-indifference graphs, Discrete Math. and

Theoret. Comput. Sci. 4, 173–178, 2001.

[8] R. Hayward, Meyniel weakly triangulated graphs I: co-perfect orderability, Discrete Appl. Math. 73, 199–

210, 1997.

[9] C.T. Hoàng, On the complexity of recognizing a class of perfectly orderable graphs, Discrete Appl. Math.

66, 219–226, 1996.

[10] C.T. Hoàng and N. Khouzam, On brittle graphs, J. Graph Theory 12, 391–404, 1988.

[11] C.T. Hoàng and R. Sritharan, Finding houses and holes in graphs, Theoret. Comput. Sci. 259, 233–244,

2001.

[12] B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. Appl. Math. 9, 364–376, 1988.

21

[13] R.M. McConnell and J. Spinrad, Linear-time modular decomposition and efficient transitive orientation,

Proc. 5th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’94), 536–545, 1994.

[14] M. Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete

Math. 80, 327–333, 1990.

[15] S.D. Nikolopoulos and L. Palios, Recognizing Bipolarizable and P4-simplicial graphs, Proc. 29th Workshop

on Graph Theoretic Concepts in Computer Science (WG’03), LNCS 2880, 358–369, 2003.

[16] S.D. Nikolopoulos and L. Palios, Algorithms for P4-comparability graph recognition and acyclic P4-

transitive orientation, to appear in Algorithmica, 2004.

[17] S. Olariu, All variations on perfectly orderable graphs, J. Combin. Theory Ser. B 45, 150–159, 1988.

[18] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74, 159–171, 1989.

[19] S. Olariu and J. Randall, Welsh-Powell opposition graphs, Inform. Process. Lett. 31, 43–46, 1989.

[20] D.J. Rose, R.E. Tarjan, and G.S. Lueker, Algorithmic aspects of vertex elimination on graphs, SIAM J.

Comput. 5, 266–283, 1976.

[21] A.A. Schäffer, Recognizing brittle graphs: remarks on a paper of Hoàng and Khouzam, Discrete Appl.

Math. 31, 29–35, 1991.

[22] D.J.A. Welsh and M.B. Powell, An upper bound on the chromatic number of a graph and its applications

to timetabling problems, Comput. J. 10, 85–87, 1967.

22

