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Abstract

We present a Bayesian method for mixture model training that simulta-
nzously treats the feature selection and the model selection problem. The
method is based on the integration of a mixture model formulation that
takes into account the saliency of the features and a Bayesian approach
to mixture learning that can be used to estimate the number of mixture
components. The motivation of the proposed method was the empirical
observation that the existence of irrelevant features deteriorates the per-
formance of the Bayesian approach for estimating the number of com-
ponents, therefore feature relevance should be taken into account. The
proposed learning algorithm follows the variational framework and it can
simultaneously optimize over the number of components, the saliency of
the features and the parameters of the mixture model. We provide ex-
perimental results on several data sets indicating the robustness of the
proposed method in the presence of imelevant features,

1 Introduoction

Mixture models constitute a widely used approach for clustering and density estimation,
The estimation of the parameters of mixture models with a predefined number of com-
ponents is usually achieved by maximizing the likelihood using EM algorithm or several
vanants [1]. A very important problem in mixture learning deals with the selection of
the number of components. It has been addressed using several approaches like cross-
;-alidation, statistical criteria and Bayesian methods [2, 3] which are of particular interest
Or us.

Apart from the selection of the number of components, another problem that naturally
arises, especially in high dimensional data, deals with the detection of the most salient fea-



tures for the task. A solution to this problem can be obtained by incorporating a feature
selection process into the training algorithm so that some features that are not useful for
partiioning the data into clusters {e.g they are just noise) can be discarded. Notice that
when we estimate a mixtere model, choosing the features and finding the number of com-
ponents are strongly dependent problems. Clearly for different feature subsets we might
get different number of clusters, e.g. see [4] for a discussion. This suggests that choosing
the features and selecting the number of clusters should be addressed simultaneously.

The problem of feature selection in mixture models is difficult due to the absence of class
information. Law et al. [5] have described a mixture model that incorporates a feature
saliency determination process where each feature is useful up to a probability, so when
this probability obtains a close to zero value the feature is effectively removed from con-
sideration. This approach is attractive since it does not require an explicit search over the
possible subsets of the features which generally is infeasible. To estimate the number of
components, Law et al. [5, 6] employ the MML criterion in the training procedure.

To address both featre and model selection, in this paper we present a Bayesian vari-
ational framework for training the above mixture model that maximizes a lower bound
of a marginal likelihood using the EM algorithm. This algorithm follows the variational
framework of Corduneanu and Bishop [3] for raining a Gaussian mixture model, and suit-
ably integrates the model proposed in [5], so that it can simultaneously optimize over the
number of components, feature saliency and the parameters of the mixture model. The
motivation for the proposed method was the empirical observation that the performance of
the variational method suggested in [3], deteriorates considerably by the existence of irrel-
evant features. Therefore feature relevance should be taken into account in the Bayesian
approach for model selection.

In our experiments we compare the proposed variational Bayesian mixture model with the
method of [3] (assuming diagonal covariances) and show that our method is more robust in
estimating the number of mixture components in the presence of irrelevant features.

In section 2 we describe the Bayesian mixture model with feature saliency, and give a
training algorithm based on variational leamning. Comparative experiments are described
in section 3. Finally, section 4 provides related work and discusses the strengths and draw-
backs of the proposed method.

2 A Bayesian Mixture Model with Feature Relevance

In this section we discuss a Bayesian method for leaming mixture models where the number
of components and feature saliency are automatically specified. Particularly, in section 2.1
we define the Bayesian mixture model with feature saliency, and in section 2.2 we present
a variational training method.

2.1 Bayesian Framework

Assume aset of data X = {z"|n = 1,..., N}, where each =" is a feature vector in the
d-dimensional space. We wish to cluster these data based on training a mixture model, We
further assume that each component density of the mixtwre is factorized over the features,
s0 that the features are considered to be independent given a component. Some of the
features might be irrelevant for clustering while others may be more useful. Instead of
assuming that there is a deterministic separation between useful and noisy features, we
assume that a feature is useful up to a probability. Thus given some component, we assume
that a feature of = is drawn from a mixture of two univariate sub—components, as in [5].
The first sub—component, that is different for each mixture component, generates ‘useful’
data, while the other sub—component, that is common to all mixture components, generates



Figure 1: Graphical model for the generation of the observed data assuming a mixture
density model and allowing noisy features.

“noisy’ data.

In our work the above model is integrated in the Bayesian framework suggested in [3] for
estimating the number of components. The proposed approach assumes that X is generated
from the graphical model illustrated in Figure 1. This model implies a dependence of
the observed variable =" on the j-th mixture component through the hidden variables z7',
where z7 € {0,1} and }_; z} = 1. If 2™ is generated from the j-th component, then the
value of z7 is one, otherwise is zero. The saliency of features is expressed through the
hidden variables s, where sT € {0,1}. If the value of s7 is one, then i-th feature of =™
has been generated from the “useful” sub-component, otherwise it is generated from the
‘noisy” sub—component.

Given the sets of hidden variables Z = {z7} and S = {s7'}, the data is assumed to be
independently drawn from a Gaussian distribution
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The set s = {p4i } accumulates the means of the ‘useful’ sub—components, and T = {7}
the inverse variances. Correspondingly, pt, = {pn:} and T, = {7} are the parameters
of the “noisy” sub—component. The distribution of the hidden variables Z given the mixing
probabilities # = {m;}, and of the hidden variables S given the probabilities w = {w;}
(feature saliencies) are given by
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The distribution of the observed data given the parameters can be obtained by marginalizing
out the hidden variables 2 and S from p( X, Z, S|7, 4, T, w, pia, T

N J d
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+ (1 = w)N(zT; pniy Tni)] - (4)
This is the usual quantity that the maximum likelihood framework maximizes over the pa-

rameters. However this objective function cannot be used for selecting the number of com-
ponents, Thus it is not useful in our case since we do not know the number of components,



In [5] they address this problem by applying the MML eriterion through a component-wise
version of the EM algorithm that enforces a pruning behaviour, regarding the components
of the model. On the contrary, we adopt the Bayesian approach of [3]. In particular, we
introduce Gaussian and Gamma priors for g and T respectively
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and marginilize them out. The h}rpm‘paramelcrs:n and ccoatrol the distribution of the mean
vectors, and take fixed values. The mean m is set to the mean of all data, and the inverse
variance ¢ takes a small value to ensure that all possible means have non-zero probability.
The hyperparameters « and 3 control the density of the inverse variance components, and
take near zero values, so that the prior is broad (quite non-informative).

2.2 Variational Learning

The learning method we propose estimates the parameters of the model through maximiza-
tion of the marginal likelihood p(X |7, w, ptn, T5 ), defined as

pUXH o T2) = 3 f (X, Z, , T, S\, 0, jm, To)dpidT, ™

with respect to the mixing probabilities «, feature saliencies w and the parameters of the
noise components. Note that by assuming suitable prior distributions on the component
parameters and marginalizing them out, we expect to smooth the likelihood surface (eqg.
(4)) and obtain a marginal likelihood that is more robust to overfitting. This methodology
was proposed in [3] to optimize over the mixing probabilities « and infer the number of
components in a typical mixture model with remarkable results.

Since the integration in equation (7} is intractable, we resort to the maximization of a lower
bound £ of the marginal likelihood
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The bound £(@}) contains a distribution Q(Z, u, T, 5), that approximates the posterior
distribution p{Z, i, T, 5| X, 7, w, pin, Tn), and is constrained to be a product of the form
QZ,11T,S) = Qz(Z)Qu(p)Qr(T)Qs(S). In order to maximize £(Q) an iterative
procedure is adopted that consists of two steps: first maximization of the hound with respect
to 7, and subsequently with respect to 7, w, i, and T5,.
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The method does not assume any specific form for the factors of @, instead it maximizes
L{Q) with respect to the functional form of Qz, Q.. @t and @s. Using standard varia-
tional analysis techniques we find
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Qr(T) = HHEE T A (12)
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The variational parameters rj,, m¥;, ¢l;, af;, 5, and p;, emerge from the maximization,
and determine the densities involved in Q. 'I'he variational parameters themselves are de-
fined using the expected values of z « Bis Tiis 87 and functions of them, Using the func-
tional forms of @z, Q.. Qr and Qs, we can denve the expectations and use them in the
definitions of the variational parameters, obtaining the following equations
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where ¢(z) = dlog I'(z),/dz. The maximization of £ with respect to @ aims to find a tight
bound of the log marginal likelihood. Although an exact maximization of £ with respect
to the variational parameters is impossible, as they are coupled together in a non-linear
way, we can still improve the bound by iteratively updating the parameters using equations
(14)=(21).

After the maximization of £ with respect to @, the second step of the method requires
maximization of £ with respect to 75, wy, pini and 7, providing the following update
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The above two-step procedure is repeated until convergence. Convergence can be moni-
tored through inspection of the variational bound. The above algorithm has the property
that it does not allow for Gaossians with similar parameters to fit the same cluster. Conse-
quently, one of them dominates and the other gets removed.

3 Experimental Results

In order to evaloate how feature saliency affects mixture learning and clustering perfor-
mance, we compared our method with the method of Corduneanu and Bishop (3], assum-
ing diagonal covariance matrices. To derive the update equations for such a model, we fix
feature saliencies p;, = 1,V i, n, and omit update equations (20), (21}, and (23)-(25). In
this way the noise component is not taken into account, so we can deduce the importance
of irrelevant features regarding clustering. We considered synthetic datasets so that the true
number of components was known in advance. In each experiment both methods started
from the same initial parameter values provided by running the k-means algorithm. Also
the k—means algorithm was applied with random initialization in each experiment.

The first dataset consisted of eight hundred data from a mixture of four equiprobable Gaus-
sians: A([0,3]T, I), N([1,9]%, I), N(|6,4]7, ) and N([7,10]T,I). Also eight ‘noisy’
features have been added, sampled from A(0, 1). The same dataset was used in [5]. We
started each method with forty components. We repeated the experiment ten times, and
both methods always detected the four clusters. This was expected as the number of fea-
tures is not quite large, and there is a ‘hard’ separation between features that contain only
useful data and features with only noisy data.

In the second series of experiments, we compared the two methods on the dataset de-
scribed in [7]: two thousand samples were drawn equiprobably from two 20-dimensional
Gaussians: N (1, ) and N{ug, I'), where gy = p, p2 = —p, and p is a vector whose
i-th component is (1/4)!/2. Notice that as dimension increases the cluster means come
closer, and the two clusters merge to form only one. Consequently as the number of fea-
tures increases, they come more irrelevant to the separation of the clusters. We repeated
the experiment ten times, starting each method with forty components, We observed that
our method always detected correctly the two clusters as well as the descending salience
of the features, as the dimension increases. On the contrary, the method of [3] three times
detected two clusters, five times detected three clusters, and two times detected four clus-
ters. The average saliency of features is presented in Table 1, the corresponding standard
deviation was less than 2 - 1073 for all features.

We also conducted comparative experiments for clustering shapes, using a dataset inspired
by the experiments in [8]. We created three hundred 8 x 9 grayscale images. Each image



Table 1: Average feature saliency for Trunk data

feature 1 2 3 4 5 6 7 8 9 10
saliency 056 039 032 028 024 021 021 016 017 0.16

feature 11 12 13 14 15 16 17 18 19 20
saliency 017 016 013 013 014 012 012 013 010 0.10

a

0167 0.167 0.167 0167

(a) (b) (c)

60 0,147 0143 0107 0080 0053 0033 0020 0.020 0020

@

Figure 2: {a) The saliency of each feature displayed in grayscale, with black corresponding
to zero and white to one. (b) Top row: a representative image of each cluster, Bottom row:
the mean vectors of the six components detected by the proposed method, along with their
respective mixing probabilifies. (¢) The mean vector of the "noisy” component. (d) The
mean vectors of the ten components with the greater mixing probabilities using method [3]

contained the shape of character ‘2’ placed in one of six different positions, so that the
pixels across the image border were always background. The intensities of the background
pixels were drawn from a Gaussian A"(0.4, 12 - 10~%), the foreground pixels from a Gaus-
sian A(0.85,0.4 - 103}, and all intensities were normalized in [0, 1]. Figure 2 displays
the data and results from a typical experiment, with the top row in Figure 2(b) providing
one representative image of each cluster. In each experiment, both methods were started
with fifty compenents. The experiment was repeated ten times, and our method always
detected six clusters, corresponding to the six different placements of the character. At the
same time, only forty six features found to have saliency greater than 105, Figure 2(a)
visually displays the saliency of the features, while the bottom row of Figure 2(b} displays
the mean vector of each of the six components with the respective mixing probabilities
above each image. The mean vector of the ‘noisy’ component is displayed in Figure 2{c).
The other method resulted in a wide range of components, varying from eighteen to forty
three. This indicates the extra difficulty that irrelevant features introduce to the clustering
problem. The mean vectors of the ten components with the greater mixing probabilities are
displayed in Figure 2(d) with the respective mixing probability above each image.

4 Conclusions

We have presented a Bayesian variational algorithm for mixture learning that can automat-
ically determine the number of components and the saliency of features. Our experiments
show that this algorithm outperforms the variational Bayesian method of [3] in the presence



of irrelevant features and this illustrates the importance of incorporating a feature selection
process in learning mixture models.

Other Bayesian methods for feature selection for clustering have also been proposed in
the literature. In [9] demonstrated that the marginal likelihood in multinomial mixtures
can be used as a criterion for choosing the feature subset and finding the optimal number of
clusters. However this method is still limited since it searches over feature subsets. Another
Bayesian method described in [10] uses a shrinkage prior and performs a MAP estimation
procedure which cutputs an importance weighting of the features, However this method
does attempt to integrate out parameters and also does not specify the number of clusters,

Our approach can also be compared with the method described in [6] where the MML
criterion is used for estimating the number of components. Our approach is theoretically
more appealing, since it has been developed in a Bayesian framework and the underlying
assumptions are clearly described in the graphical model of Figure 1. On the other hand, the
MML approach is based on a statistical criterion and is obtained after several assumptions
and simplifications. In addition, as stated in [6], the MML approach can be viewed as a
MAP approach with improper priors on & and w,

The main restriction of the proposed method is that the features are assumed to be condi-
tionally independent given the component. We plan to elaborate further on this by general-
izing our method so that covariance of the useful features can be modelled and simultane-
ously the feature saliency can be estimated.
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