COUNTING SPANNING TREES IN GRAPHS
USING MODULAR DECOMPOSITION

S.D. Nikolopoulos, L. Palios, Ch. Papadopoulos

9 -2004

Preprint, no 9-7 /2004

Department of Computer Science
University of loannina
45110 loannina, Greece

— ——

i 5

.l
—

i
5

1
- . S T

N T e
I

Counting Spanning Trees in Graphs
using Modular Decomposition

Stavros D. Nikolopoulos Leonidas Palios Charis Papadopoulos

Department of Computer Science, University of Inannina
P.O.Box 1186, GR-45110 Ioannina, Greece
{stavros, palios, charis}@cs.uoi.gr

Abstract: In this paper we present an algorithm for determining the number of spanning
trees of a graph G which takes advantage of the structure of the modular decomposition tree
of G. Specifically, our algorithm works by contracting the modular decomposition tree of the
input graph G in a bottom-up fashion until it becomes a single node; then, the number of
spanning trees of G is computed as the product of a collection of values which are associated
with the vertices of G and are updated during the contraction process. In particular, when
applied on a (g, g — 4)-graph, for fixed g, or a Ps-tidy graph, our algorithm computes the
number of its spanning trees in time linear in the size of the graph, where the complexity of
arithmetic operations is measured under the uniform-cost criterion. This implies that the
problem has linear-time solution for many well-known classes of graphs, such as, cographs,
Py-sparse graphs, Py-reducible graphs, Py-lite graphs, and FPi-extendible graphs. The cor-
rectness of the algorithm is established through the Kirchhoff matrix tree theorem, and also
relies on structural and algorithmic properties of the graphs in consideration. Our results
generalize previous results and extend the family of graphs admitting linear-time algorithms
for the number of their spanning trees.

Keywords: number of spanning trees, combinatorial method, modular decomposition,
(g,q — 4)-graph, Py-tidy graph, algorithm.

1 Introduction

A spanning free of a connected undirected graph G on n vertices is a connected (n — 1)-edge subgraph
of G. The number of spanning trees of a graph (network) G, also called the complerity of G [3], is
an important, well-studied quantity in graph theory, and appears in a number of applications. Most
notable application fields are network reliability (in a network modeled by a graph, intercommunication
between all nodes of the network implies that the graph must contain a spanning tree; thus. maximizing
the number of spanning trees is a way of maximizing reliability) [20, 24], computing the total resistance
along an edge in an electrical network [6], enumerating certain chemical isomers [10]. and counting the
numhber of Eulerian circuits in a graph [16].

Thus, both for theoretical and for practical purposes, we are interested in deriving a formula for or
computing the number of spanning trees of a graph &, and also of the K -complement of & (for any
subgraph H of the complete graph K, the K,-complement of H, denoted by K, — H, is defined as
the graph obtained from K,, by removing the edges of H; note that, if H has n vertices, then K, — H
coincides with the complement H of H). Many cases have been examined depending on the choice of

G. such as when G is a labeled molecular graph [10], a circulant graph [28, 29], a complete multipartite
graph [26], a cubic cycle and quadruple cycle graph [27], a quasi-threshold graph [21] (see Berge [4] for
an exposition of the main results; also see [12, 21, 22, 26]).

The purpose of this paper is to study the general problem of finding the number of spanning trees of
an input graph and additionally to concentrate in two large classes of graphs and their subclasses: (i) the
class of (g, g — 4)-graphs, defined as the graphs for which every set of at most g vertices induces no more
than g — 4 different chordless paths on four vertices [3], and (ii) the class of Py-tidy graphs, defined as
the graphs for which every chordless path on four vertices has at most one partner [14). By resolving
the problem for these classes of graphs, we also resolve it for their subclasses, such as, the cographs, the
Py-reducible, the extended Pj-reducible, the Py-sparse, the Py-lite, the Py-extendible, and the extended
Py-sparse graphs. The number of spanning trees of a graph can be computed by means of the classic
Kirchhoff matriz tree theorem [16], which expresses the number of spanning trees of a graph G in terms
of the determinant of a submatrix of the so-called Kirchhoff Matrix that can be easily constructed from
the adjacency relation (adjacency matrix, adjacency lists, etc) of G. This approach has been used for
computing the number of spanning trees of families of graphs (see [4, 12, 15, 22, 26]), but it necessitates
8(n?) time and 8(n?) space.

In order to obtain an efficient solution for this problem, we take advantage of the modular decompo-
sition of the input graph and especially the properties of its modular decomposition tree. Our algorithm
relies on tree contraction operations which are applied in a systematic fashion from bottom to top so as
to shrink the modular decomposition tree of the input graph G into a single node, while at the same time
certain parameters are appropriately updated. In the end, the number of spanning trees of G is obtained
as the product of n numbers, where n is the number of vertices of G. In particular, for the classes of
Py-tidy and (g, ¢ — 4)-graphs, the structure of their modular decomposition trees (and in fact their prime
graphs) ensures that each tree node can be processed in time linear in the size of the contracted part of
the tree; thus, since the modular decomposition tree of a graph can be constructed in time and space
linear in the size of the graph [11, 19], the processing of the entire modular decomposition tree takes
time and space linear in the size of the input graph. Finallv, the multiplication of the n numbers takes
O(n) time under the uniform-cost eriterion |1, 23]. Thus, the number of spanning trees of a P;-tidy or
(g.q — 4)-graph, for fixed g, can be computed in time and space linear in the size of the graph. We
also note that other tvpes of prime graphs can also be handled in the same way, so that the number of
spanning trees of other classes of graphs (e.g., the semi- Py-sparse and the (P diamond)-free graphs) can
also be computed in linear time.

2 Definitions and Background Results

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote by V(G)
and E(G) the vertex set and edge set of G, respectively. Let S be a subset of the vertex set of a graph G.
Then, the subgraph of G induced by & is denoted by G[S]. Moreover, we denote by G — § the subgraph
G[V(G) — S| and by G — v the graph G[V(G) — {v}]. A cligue is a set of pairwise adjacent vertices; a
stable set is a set of pairwise non-adjacent vertices.

The neighborhood N(z) of a vertex = of the graph G, also denoted as Ng(x), is the set of all the
vertices of G which are adjacent to z. The closed neighborhood of z is defined as Nz] = N(z) u {z}.
The degree of a vertex x in the graph G, denoted d(zr), is the number of edges incident on r; thus,
diz) = |N(z)|. If two vertices = and y are adjacent in &, we say that x sees y; otherwise we say that x
misses y. We extend this notion to vertex sets: V; C V(G) sees (misses) V; C V(G) if and only if every
vertex r € V; sees (misses) every vertex y € V.

A path in a graph G is a sequence of vertices vgvy - - - vy such that vy, € E(G) for i =1,2,... k.
A path is called simple if none of its vertices occurs more than once. A path (simple path) vovy---mp isa

eyele (simple cyele) if vovx € E(G). A simple path (cycle) vovy - - - vr is chondless if vyv; € E(G) for any
two non-consecutive vertices v, v; in the path (cycle). Throughout the paper. the chordless path (evele)
on k vertices is denoted by P (respectively Cy). In particular, a chordless path on 4 vertices is denoted
by Py; in a Py abed, the vertices b, ¢ are the midpoints and the vertices a, d are the endpoints of the Fy.

2.1 Spider graphs

A graph is called a spider if its vertex set admits a partition into sets §, K, and R such that:
(81) |8l = |K| = 2, § is a stable set, and K is a clique;

(32) the vertex set R sees K and misses 5:

(S3) there exists a bijection f : § — K such that exactly one of the following statements holds:
(i) for each vertexv e 5, N{v)nK = {f(v)};
(ii) for each vertexv€ 5, N{v)nK =K = {f(v}}.

The triple (S, K. R) is called the spider partition. A graph G is a prime spider if G is a spider with
vertex partition (S, K, R) and |E| < 1. Moreover, in order that cases (i) and (ii) in condition 53 are
distinguished, they are referred to as the thin spider and the thick spider, respectively.

2.2 Modular Decomposition and Contractible Subtrees

A subset M of vertices of a graph G is said to be a module of G, if every vertex outside M is either
adjacent to all the vertices in M or to none of them. The emptyset, the singletons, and the vertex set 1 are
trivial modules and whenever G has only trivial modules it is called a prime graph (or indecomposable).
A non-trivial module is also called a homogeneous set. A prime spider is a prime graph, since it does
not contain any non-trivial module. Furthermore, a module M of G is called strong, if for any module
M!'# M of G, either M'NM =0or M C M.

The modular decomposition of a graph & is represented by a tree T(G) which we call the modular
decomposition tree of G the leaves of T{G) are the vertices of G, whereas each internal node ¢ corresponds
to a strong module, denoted M;, which is induced by the set of vertices/leaves of the subtree rooted at
t. Thus, T(G) represents all the strong modules of G. Each internal node is labeled by either P for
parallel module, S for series module, or N for neighborhood module. The module corresponding to &
P-node induces a disconnected subgraph of G, that of an S-node induces a connected subgraph of &
whose complement is a disconnected subgraph and that of an N-node induces a connected subgraph of &

whose complement is also a connected subgraph. Figure 1 shows a graph and its modular decomposition
tree.

In particular, let t be an internal node of the modular decomposition tree T(G). If ¢ has children
W1, Us,... iy, then we define the representative graph G; of the module M; as follows:

o V(Gt) = {ur.uz,... ,up}, and
o E(Gy) = {(ui,u;) | (w.vs) € B(G),v; € M, and vy € My, }.

Note that by the definition of a module, if a vertex of M,, is adjacent to a vertex of M, then every
vertex of M, is adjacent to every vertex of M,,. Thus G, is isomorphic to the graph induced by a subset
of M, consisting of a single vertex from each maximal submodule of M; in T(G). Then: (i} if ¢ is a
P-node, G; is an edgeless graph, (ii) if t is an S-node, G; is a complete graph, and (iii} if ¢ is an N-node,
(+; is a prime graph.

. 1
n]

g
vz

Tty
3
oy vy
m vy

1 2 Vs Vg 7
(ot}

tha

a4 i3 Ta U4 g T ™ ™ 1 V14 ™IS

(a) (b)

Figure 1: (a) a graph and (b) its modular decomposition tree.

The modular decomposition tree T(G) of a graph & is constructed recursivelv as follows: parallel
modules are decomposed into their connected components, series modules into their co-connected com-
ponents, and neighborhood modules into their strong submodules. It is well known that for any graph G
the tree T'((F) is unique up to isomorphism and it can be constructed in linear time [11, 19]. Note that if
the tree T{G) does not contain any internal N-node then G is a cograph (Py-free) and T{G) is itz cotree
(the P-nodes and S-nodes of the T'(G) are precisely the O-nodes and 1-nodes, respectively, of the cotree).

Next, we introduce the definitions of the non-spider cost of a graph and of a contractible subtree of
the modular decomposition tree which we will need in our algorithm.

Definition 2.1. Let G be a graph, T(G) be its modular decomposition tree, and let a(G) = {t;,t2,... .1}
be the set of the N-nodes of T'(G) such that the representative graphs Gy,,Gy,,... .G, are not spiders.
We define the non-spider cost of G as the value ¢(G) =} .0 ¥l =X a(G) |ch(t)|®, where
ch(t) denotes the set of children of node ¢ in T(G).

It is not difficult to see that for any n-vertex graph G, we have ¢(G) = O(n?); for an n-vertex cograph &
we have ¢(G) = 0.

Definition 2.2. Let T(G) be the modular decomposition tree of a graph G. A subtree rooted at an
internal node t of T(G) is a contractible subtree iff all the children of t are leaves of T(G).

Based on the structural properties of the modular decomposition tree T(G) of a graph G, it is easy to
see that ¢ has at least one contractible subtree.

2.3 Kirchhoff Matrix

For an n x n matrix M, the {n — 1)-st order minor u} is the determinant of the (n — 1) x (n — 1) matrix
obtained from M after having deleted row i and column j. The i-th cofactor equals p!. For an undirected
graph & on n vertices, let A be its adjacency matrix and D be its degree matrix, i.e., the diagonal matrix
with the degrees of the vertices of G in its main diagonal. The Kirchhoff matriz K for the graph G is
the matrix D — A, The Kirchhoff matrix tree theorem is one of the most famous results in graph theory;
it provides a formula for the number of spanning trees of a graph & in terms of the cofactors of G's
Kirchhoff matrix.

Theorem 2.1. (Kirchhoff Matrix Tree Theorem (16]): For any graph G with matriz K defined as above,
the cofactors of K have the same value, and this value equals the number of spanning trees of G.

3 The Algorithm

In order to compute the number of spanning trees of a graph G on vertices vy, v, ... , v, we make use of
Theorem 2.1 we delete an arbitrary vertex v, € V() and all the edges incident on v, , we associate each
of the remaining vertices with an s-value which is initialized to the vertex’s degree in G, and we construct
the modular decomposition tree of the graph G — vy next, in a bottom-up fashion, we process each of the
contractible subtrees of the tree and we contract it into the leaf-node corresponding to its highest-index
vertexleaf, while at the same time updating the s-values of its vertices/leaves; eventually, the entire tree
becomes a single vertex/leaf, and the number of spanning trees of G is then equal to the product of the
final values of the s-values of all the vertices in V(G) — {v,}. The algorithm is given in detail below; the
input graph is assumed to be connected {otherwise it has no spanning trees). Furthermore, we note that

the s-values are global variables.

Spanning Trees-Number

Input: A connected graph G on n vertices vy, ¥g,... , Uy and m edges.
Output: The number of spanning trees 7(G) of the graph G.

L.

for every vertex v, 1 <i<n—1 do

compute its degree d(v;) in G;

sl — dluy s
Construct the modular decomposition tree T of the graph G — v
Compute the node sets Ly, Lq,... , Ly of the levels 0,1,... (hof T

for i=h—-1downto0 do
for every internal node f £ L; do
41 if tisa P-node or an S-node {the subtree rooted at t is contractible}
42 then T + Contract-Parallel Series(t, T
4.3 else T+ Contract-N_node(t,T);

=1
(G) _H s(vs);

Algorithm 1: Algorithmn Spanning. Trees- Number.

Contract-Parallel_Series(t, T

1.

o0
if tis an S-node
then {let vy, ve,... vy be the vertices associated with the children of node ¢}
for everv vertexv;, 1 <i<p do
s(tg) +— s(vg) + 15

T — 1;

=1
o e
; s(vi)
Update the s-values of vertices v,-, and v, as follows:
1
#(vp-1) + 8(vp—1) - 8{vp) - a; slvg) — ==L

Replace the subtree rooted at node ¢ by the leaf-node associated with vertex vy
return the resulting tree;

Algorithm 2: Function Contract-Parallel Series(t, T').

3.1 Processing N-nodes (Step 4.3)

Let ¢t be an N-node which is the root of a contractible subtree. We can show that if the (prime) graph G;
belongs to a family F of graphs then its processing takes time linear in the size of G;: this implies that
if all prime graphs of a graph G belong to JF then the number of spanning trees of G can be computed
in time linear in the size of G. It can be shown that such a family F contains spiders, trees, chordless
cveles, and their complements; we call these graphs basic prime graphs. Due to lack of space, we will
restrict our attention to spiders; yet, this suffices to show that the number of spanning trees of Py-tidy

graphs, of (g, — 4)-graphs (for fixed g). and of their subclasses can be computed in linear time. Then,
the function Contract-N_node is as follows:

Contract-IN_node(t, T)

if the representative graph G, is a (prime) spider
then T «— Contract-Spider-N_node(t,T);
else T «— Contract-NonBasic-N_node(t, T);

Algorithm 3: Funetion Contract-N_node(t,T).

Contract-NonBasic-N_node(t, T')

1. Construct the pxp Kirchhoff matrix B of the graph Gy, where v, v2, ... , vp are the vertices/children
of node #;

for i=1,2,...,p do
Bli.] — s{w);
oy — —1;

2. for i=1,2,...,p—-1 do { Gauss-Jordan elimination}
21 for j=i+1,i+2,....p do
r «— B[j,i]/Bli,i];
Cj +—Cj — T -Gi3
for k=i,i+1,....p do
Blj, k| — Blj. k] — r- Bli, k|;
2.2 repeat step 2.1 with the row- and column-indices of array B[, | exchanged, in order to
complete the Gauss-Jordan elimination;

P .
. Ci .,
& g Zml B,

4. Update the s-values of vertices vy, va,... , v, as follows:
for i=12...,p—2 do
s(v;) — Bli,i];
s{vp—1) — Blp—1,p—1]- Blp.p| - 5: s(vp) — 1/8;

5. Replace the subtree rooted at node t by the leaf-node associated with vertex vy;
return the resulting tree;

Algorithm 4: Function Contract-NonBasic-N_node(t,T).

Contract-Spider-IN_node(t, T')

1. Computethesets S, K, and Rofthegraph Gy andlet S = {vy,v0,... ,t}and K = {vgsq,. .- ;v i
{note that if £ # @ then R contains only one vertex, ie., R = {va1})

2. Update the s-value of the vertex v £ § as follows:
slog)l —sfvg) —ry - (M +1-48)— A+ 1,
after having computed the values of parameters vy, A1, Az, and § according to Eq. (1}-(3);

3. Update the s-values of the vertices in K as follows:
for every vertex v; € K — {vx} do
s(vi) +— s(us) + 2=kl

(Vi)
Az=l-r1-{1-4]

slvag) — s{vag) —k+ 14+ pa+ a1 - T
after having computed the values of parameters pp and oy according to Eq. (2) and (4);

s DT o L
4 yek—pg—oy - 2L,

after having computed the values of parameters puy and Az according to Eq. (2);

5 if R0
then {R contains only one verter, i.e., R = {vaxs1}}

update the s-values of vore; € B and vog € K as follows:

Aa—=Ayr4ry(l1=4
s(voks1) — s{vopsr) + slve)+ as{b;;ﬁ i j.:

: s{vg b Agtry-(1—68)

s(vop) — s{vop) — oz - ATL‘IQTA_(_‘s oy ey
’ = | s{ug)tAs—d-1

T YT 02 ST alvansa)

after having computed the value of the parameter o2 according to Eqg. (3);

6. Update the s-values of the vertices v; £ § and vop € K as follows:
s(ug) — s(ve) - v; s(va) — slvak)/

7. Replace the subtree rooted at node ¢ by the leaf-node associated with vertex vay;
return the resulting tree;

Algorithm 5 Function Contract-Spider-N_node(t, T').

The values of the parameters ry,7e, A1, Az, Ag, (1, M2, (3. 3, &1, o2 are given by the following formulae:

- 0 if Gy is a thin spider I L ey (1)
1 otherwise
B — s(vy) — s(vg) _ = _s(v) — s(vax)
Al =13 slo)—1 H1 = #vi_k)—1
i=1 s(ws) - (s(viers) + =5005) smir1 S T TR
i ; k-1
” (s(vs) — s(uw)) - (s(vs) + rara) (8(vs) — s(vax)) - (s(vizk) + r172)
Ag = rEZ 2 s{u;)=1 2= Z s{vi_p)—1 (2)
i1 808 - (B{ys) +) mke1 Slvik) - (s(w) + S5550)

k-1 2k—1
(8(v;) — a(ue)) - (8(vi) + 1) (8(vs) — a(vaw)) - (8(vi—i) +12)
)l. == —
e) + D) BT 2 T (et + ST

1
§ = s(vg) - (3)
L=
oy = s(voe) +pa —k4+1—ry- (g —k)+r2 (4)

Aa—M4r - (1-8)+1
s(vg)

oa = s(vge) + pa—p1+ 140y -

3.2 Correctness of the Algorithm

The correctness of the algorithm Spanning_Trees-Number follows from the Kirchhoff matrix tree theorem;
we show that the value returned by the algorithm Spanning_Trees-Number is equal to the cofactor u? of
the Kirchhoff matrix of the input graph. The advantage of our approach over computing the determinant
of the cofactor is that we save time (and space) by processing modules, since any vertex outside the
module either sees all the vertices of the module or none of them. We have the following lemma.

Lemma 3.1. The algorithn Spanning_Trees-Number correctly computes the number of spanning trees of
the input graph.

Proof. The Kirchhoff matrix tree theorem (Theorem 2.1) implies that the number of spanning trees of the
graph & i= equal to any of the cofactors of the Kirchhoff matrix K defined in Section 2.3, or equivalently
to the determinant of the (n — 1) % (n — 1) submatrix M of K formed by the first n — 1 rows and the

first n — 1 columns. We need to consider the processing of contractible subtrees rooted at a P-node, an
S-node, and an N-node (a spider or a non-basic N-node).

Processing a P-node. Let ¢ be a P-node which is the root of a contractible subtree and assume
without loss of generality that the vertices/children of ¢ are vy, va.... ,vp. In this case, the matrix M is:

[s(w) 0 (=11,p+1 (—1)1.n-1

M=

B i UG S | T $(vn-1) |
where s(1;) is the degree of vertex v; in &, the off-diagonal elements in the first p rows and p columns
are equal to 0 since vertices vy, ve,... ,vp are not adjacent in G, and the entries (—1);; of the off-
diagonal elements are both —1 if the vertices v, v; are adjacent in &, and are equal to 0 otherwise. If
p=n—1, then, by the Kirchhoff matrix tree theorem, the number of spanning trees of G is equal to the
determinant det{ M) of matrix M; this is equal to the product s(vy)-8{ve)-. . .-s{v,), which is precisely what
Algorithm Spanning Trees-Number in conjunction with the function Contract-Parallel Series computes;
since we process a P-node, then r = 0. Let us now consider the case where p < n — 1. Then, because
the vertices vy, vs,... , v, induce a module of G, we observe that the rows of M’s submatrix formed by
rows 1,2,... .pand columns p+1,p+2.... ,n—1 are identical; similarly, the columns of the submatrix
formed by rows p+ 1.p+2,... ,n— 1 and columns 1,2,... ,p are identical.

In order to compute the determinant det{M), we zero the off-diagonal entries in the first p — 1 rows,
which we do as follows: We first multiply row p of M by —1 and add it to rows 1,2,... ,p — 1. Then,
in the first p — 1 rows of M, non-zero entries are found only in positions (,{) and (i,p). 1 <i<p-1,
and have values s(v;) and —s{vp), respectively. Next, for all 1 < i < p — 1, we multiply column i
by %%—E'ﬂ\]- and add it to column p, which implies that in the first p — 1 rows of M only the diagonal
elements have non-zero values. Note that row p remains unchanged. Additionally, those of the elements
in positions (i,p) of column p, for i = p+ 1,p+ 2,... ,n — 1, which were equal to 0 in the original
matrix M are still 0, whereas the remaining ones, which were equal to —1, now have the same value
—(1 + 30 %ﬁ“) = —s(vp) - Y iy rlﬁ Finally, we divide the entries of column p by s(v,) - o,
where a = 37, st1l.-.:l‘- so that they become equal to —1 (as in the original matrix M), and multiply
column (p—1) by s{v,) - @ so that the value of the determinant of M does not change.

Then, in the matrix that results after these operations, we have: (i} all the off-diagonal elements in
rows 1,2,... ,p— 1 are equal to 0, (ii} the submatrix formed by rows p,p+1,... ,n — 1 and columns
p.p+1,...,n—1 is identical to the corresponding submatrix in the original matrix M except for the
(p, p)-element, and (iii) the diagonal elements in positions (i.4), 1 < i < p. have values sg{;) which are
equal to:

solvi) = s(w), I=isp=32
so(vp—1) = s{vp_1)-s{vp) -
solvp) =

where

P
I
s o1
wn
:

« s(v;)

Thus, if we expand in terms of the first p — 1 rows, we have that the determinant of M is

-
1l

solvp) (=1)p.p+1
(=Uprrp slvp+1)

p-1 . -
dEt{.“lﬂr] = (Hsﬂtijij) - 7 3 |:—1:'z',3

i=]

§(vn-1)

r—1
= (Hsutm) . det(M),

f=m]

where M’ is an (n — p) % (n — p) matrix similar to the original matrix M; in fact, it is identical to the
submatrix of the original matrix M formed by rows p.p+ 1,... ,n — 1 and columns p.p +1,... ,n =1,
with the only exception that the value sg(vp) is different from s(v,). Thus, if we assume (in an inductive
fashion) that the determinant of the matrix M’ can be expressed as the product of appropriate values
s'(vp), 8'(vp41),8 (vn-1), then the determinant of the original matrix M is equal to the product
of these values multiplied by the product of sg{v1), so(ve).... .s0(vp=1), just as the algorithm Span-
ning-Trees-Number does by using function Contract-Parallel Series for r = 0.

Processing an S-node. Let ¢ be an S-node which is the root of a contractible subtree and assume
without loss of generality that the vertices/children of ¢ are vy, v2,... ,vp. In this case, the matrix MM
formed by rows 1,2,...,n —1 and columns 1,2,... ,n — 1 of the Kirchhoff matrix is:

[s(w) -1 i(-Tpn (=1)1,n-1]
: : (=1)i,j :
-1 Sl:t"pj {"1):?.p+l {"'l}mn—-l
...
. (=1)psra --- {'”iﬁ-l.pg s(vp+1)
: - (=1 s
(—1)s. s(v;)
: (—1)j ¢
_{_l}n—l.l {_1}1‘1—1.]15 #(tn—1) J
where the off-diagonal elements in the first p rows and p columns of matrix M are all equal to —1 (because
the vertices v1,v2,... ,vp are adjacent in G). Additionally, since the vertices vy.va,... v, induce a
module of G, the rows of M's submatrix formed by rows 1,2, p and columns p+1.p+2.... ,n—1 are

identical and similarly the columns of M’s submatrix formed by rows p+1,p+2,... ,n—1 and columns
1,2,....p are identical.

In order to compute the determinant det{ M), we zero the off-diagonal entries in the first p — 1 rows.
We work as follows: We first multiply row p of M by —1 and add it to rows 1,2,... .,p — 1. Then, in
the first p — 1 rows of M, non-zero entries are found only in positions (i.i) and (i,p). 1 <i < p-1,
and have values s(v;) + 1 and —(s(vy) + 1), respectively. Next, forall 1 < i < p — 1, we multiply
column i by %“—E—li and add it to column p; this implies that in the first p — 1 rows of M only the
diagonal elements have non-zero values, and row p remains unchanged except for the (p,p)-element

which becomes s(v,) — ¥77) ‘;—E:% = (s(vp) +1) - (1 = El}_,_—l) Additionally, those of the
elements in positions (i.p) of column p, for i = p+ 1,p+ 2,... ,n — 1, which were equal to 0 in the
original matrix M are still 0, whereas the remaining ones, which were equal to —1, now have the same
value —(1 - Z’I.:]' %‘%) = —(s(vp) +1)- 37, W Finally, we divide the entries of column p by
(s(vp) +1) - @, where a = 30 :{rl;._—l so that they become equal to —1 (as in the original matrix M),
and we multiply column (p — 1) by (s{vp) +1)- @ so that the determinant of M does not change.

Then, in the matrix that results after these operations. we have: (i) all the off-diagonal elements in
rows 1,2,... ,p — 1 are equal to 0, (i) the submatrix formed by rows p,p+1,... .n — 1 and columns
p.p+1,... ,n — 1 is identical to the corresponding submatrix in the original matrix M except for the
(p, p)-element, and (iii) the diagonal elements in positions (i,7), 1 < i < p, have values s,(v;) which are
equal to:

si{vi) = s(w)+1, 1<i<p-2
s1{vp-1) = (s(vp-1) +1)-(s(vp) +1) &
s(vp) = & -1
where
4 1
oo ; s{y)+1°

Thus, expanding in terms of the first p — 1 rows, we find that the determinant of M is

10

Sll:”p:' [_Up.p+1
(~Dptrp 8(vps1)

det(M) = (h 81 ()) . & (=1)ir

i=1

§(tn—1)
r—1

_ (HSI{“}) - det(M"),

i=1

where M’ is an (n — p) x (n — p) matrix which is identical to the submatrix of the original matrix M
formed by rows p,p+ 1,... .n — 1 and columns p,p+ 1,... ,n — 1, with the only exception that the
value s1(v;) is different from s(v,). Thus, if we assume (in an inductive fashion) that the determinant
of the matrix M’ can be expressed as the product of appropriate values s'(vy), s (vp=1),... , ' {ta_1).
then the determinant of the original matrix M is equal to the product of these values multiplied by
the product of s;{v1), s1(v2), s1{vp—1), just as the algorithm Spanning.Trees Number does by using
function Contract-Parallel Series for r = 1.

Processing a spider N-node. Let ¢ be an N-node such that the subtree rooted at ¢ is contractible
and the representative graph G; is a (prime) spider. Then, if we assume without loss of generality
that the vertices/children of t are vy, v2,... ,Up, they can be partitioned into sets § = {vy, va,... .z}
K = {tg4+1,Uks2,... s V2 }, and R which is either empty (in this case, p = 2k) or R = {vak+1} (then,
p =2k +1). Let us suppose for the time being that R # 0); then, the matrix M is:

[s(v1) 0 I -y e =T T
0 s(m) o mel o om0
0 slvg) -1 —-T1 r—1 0]
e =i, S =ry i 8(vger) -1 -1 1 1
) - =1 -7 -1 #{Upt2) -1 -1
=T " o e 1 -1 -1 s{vag) -1
0 0 B E -1 -1 -1 s(vopss)
L & Z]

where the parameter r; is as defined in Eq. (1) so that the values ry — 1 and —r; are equal to -1 or
0 reflecting the adjacencies in a thin or thick spider, the elements of the matrices Z; and Z; are equal
to —1 and 0 depending on whether the corresponding vertices are adjacent in the graph or not, and the
matrix Z is an (rn — p— 1) ® (n — p — 1) submatrix of the form

8(vps1) (=1)j.i

Z=| (-L)iy - s(vi) : (6)

B S{Unw-l} &

11

It is important to note that, because the spider is a module, the columns of the submatrix Z; are identical,
and so are the rows of the submatrix Zs.

In order to compute the determinant det(M) of matrix M, which will give us the number of spanning
trees of the input graph G, we proceed with the following steps:

1. We zero the off-diagonal entries in the first k — 1 rows of matrir M: To do that,

e we multiply row k of the matrix M by —1 and add it to rows 1,2,... .k —1;
= we multiply column ¢, for 1 <i< k—1, by s(v;)/s(ve), and add it to column k;
& we add columns j, for K+ 1 < j < 2k — 1, to column 2k,
We note that after the above operations the {2k, k)}-entry and the (i, k)-entries, forp+1<i<n-1,

of the matrix M have values —1 + (1 —d)-r; and —1 — 4, respectively, where § is as defined in
Eq. (3). Finally,

& we multiply column j, for 1 < j < k-1, by r2/s(v;), where r; is as defined in Eq. (1), and
add it to column k + j, respectively.

Then, all the off-diagonal elements of the first k& — 1 rows have zero values, whereas the values of
the diagonal elements are equal to their initial s-values. More specifically, the resulting matrix M

182
redegl u . o o = o oo
slwg_ 13 0 :] 0 :] P
L] 1] = ”"l = -1-1 . -ry —kr. .- 1--_» ; o fn:—:l],._j
Fp=1 s - ':ﬁ'ﬁL-*ﬂl*""Uh—l""‘Lhmﬂ . —J—f& :I:ul. |_|-k--1 =1
M= : 2) :
: g : : i : : 2 =1y 4
raafvy] : . L . =1 { i .
-y rp=1 "_?'"k——b'lj |-|_-:1-.-.$]: 1 u_l:lv_-ﬁ slogg 1)+ TﬂlejT? ;|u3k_1]_.r..|: =1
: E: i s
-y -ry ril =& =1 : —1-_—?;'3 F ..1_;.71..2.1-.'- slvgp) — k41] =f
o ; o 0 2 -1 e =1 —k ‘f‘-'zlc #1} -
(—134,i (=1 - &y Se1— ﬂ:zﬁ’.f e mz_l,'.;.J o B A S PRI 4

2. We zero the off-diagonal entries in rows k+1,k4+2,... .2k — 1 of matrir M: To do that,

= we multiply row 2k by =1, and add it torows j, for K+ 1 < j <2k - 1;
t we multiply column §, for k+1 <7 <2k—-1, by —(r2 M}f{sl{tj:l-i- M} and add

it to column k (then, in column &, the entries (j, &) for ka:{ <iE2k-1 I:;é;ome equal to 0,
whereas the entries (k, k), (2k, &), (2k+ 1, k) and (7, &) for p+1 < j < n— 1, of matrix M have
values s{ve) + A1 -7m1, m1-(1—8) +A2—1, Ay, and Az — § — 1, respectively, where Aj, Az, Az
are as defined in Eq. (2));

> we multiply column j, for K+ 1 < j < 2k = 1, by —(s(v;) — s(vax))/(s(v4) Li?fft-’h} and
add it to column 2k.

Then, all the off-diagonal elements of rows k+1,k+2,..., 2k — 1 have zero values; the diagonal elements
are equal to s(v;) + 5{‘:_;:*}_’: = s(y) + % (hecause r3 = 1), which are the updated values of

s{tgs1), 8(vesz). ... 8(vog~1) assigned in Step 3 of the function Contract-Spider-N_node. In particular,
if py. po and pz are as defined in Eq. (2), the resulting matrix M is

12

rafuy] @ £ 0 o ! 0 - o

z
sivp_q) [:] M H] z]
1] i afvy) + Agrp -ry -y —kty = fg o+ Ppug - /] 5 (=g
...................|....l||..|||.|||I.||||l||||-||||-|||--||-------------ll--llIJ-IIIII-IIII'rl-|-'----------:----llllll
S T a 0 :.-r_x.;,_l;u+"(:'u‘l‘l a 0 o 0
v : : :
_ : L stepg)-1 : :
o ” g o : 0 "'“f‘zk—l-‘-'_l_,.;‘-*_ﬂ 0 : o : o
— e e kR - - -_ ; — —_ Lok i - —, _— m &5 & 3+ - —_— :. Lt = -
S T e P e b e o B Foe Sl R R TN pinlaky
[+ KR 0 hi : -1 -1 By — & alwgpri} A=Tlsni s
(=154 (rg =6 = Uy H=1- AT k4t o (=1 —"‘2_”“* k-1 em =Rk (=102k4a &

and thus we have

k-1 =1 S(’U' .-'::| 1
det(M) = (H s{v,-}) ; ([T (stw) + —‘~—j}) . det(C), (7)
i=1

=kl $(vi-k

where C is an (n — 2k + 1) % (n — 2k + 1) matrix of the following form:

#log) + Ay rifpl — k) = ra L . (—Llak.p+1 {=1)zk.i {—1lak.n—1 7

rifl =8+ he =1 s{vap) +pa—k+1 -1 (=1lam. pd1 [—1}zw.i (—1)sk.n—1

PN * WU - 1 SR | (10)R) T SRS) N U -

(ha — 8 — Upsrah (g — E)pti,26 (=llptrze: slwp=i)

o= ; .8
= (=1)y g
(A =8 =1); 2 [— k)i au [—1}i 2k . alwi)
(=)
L{da — 8= Llno1,2k (ta = k)u=1.2k (—1hn—1,2k1 s(ra-1]

We note that because the spider is a module in the input graph G then, a vertex v;, where i > p, sees
vog if and only if it sees vy and vags+; as well; this is why in the above description of the matrix C. the
entries (A3 — 8 — 1); 7, (pa — k)ij. and (—1);; have one subscript always equal to 2k.

It is worth mentioning that Eq. (7) holds in the case where the set R is an empty set as well. In this
case, matrix ¢ has the same form as in Eq. (8) with the 3rd row and 3rd column removed.

In order to calculate the determinant of matrix C' we work as follows: We first multiply the 2nd row of
matrix C by —1 and add it to the 1st row. This has the effect that the elements in positions (1,1}, (1,2),
(1,3), and the remaining positions in the 1st row become equal to s'(vg) = s{vg) —r1 (A +1-4) - A2 +1,
—(s(va) +pz—k+1)+r1-(u1 —k)—ra = —o1, 1, and 0 respectively, where s'(v;) is the updated value
of s{vy) (see Step 2 of function Contract-Spider-N_node), and o, is as defined in Eq. (4). Then, we can
zero the (1,2)-element by multiplying the st column by o1 /#'(vy), and by adding it to the 2nd column.
Next, we zero the (1, 3)-element by multiplying the 1st column by —1/s'(v,) and by adding it to the 3rd
column. After that, only the diagonal position of the 1st row of matrix C' has non-zero value which is
equal to s'(vy), whereas the elements in positions (i,2) of the 2nd column, for i =p+1.p+2,... ,n -1,
either have value 0 (if the corresponding entries in the original matrix M were equal to 0) or else they
have the same value ps — k + 7725(As - # — 1) which is equal to —v, where « is the value assigned in
Step 4 of the function Contract-Spider-N node.

Now, if B = 0, then p = 2k; if we divide the 2nd column of matrix €' by - and multiply the lst
column by =, so that the value of the determinant of C does not change, we have

13

sa(vae) (—1)akps1
| (=1)p+r,2e 8(vp+1)

k-1 ¥
: . i (=L)e g
(1I=Il 32[:1.?1]) s{'ul-:l

det(M)

S{Un- 1 :'

2k—1
(Hszivi}) + det(M’),
i=]1

where M is an (n — p) x (n — p) matrix similar to the original matrix M, except that in this case, the
value s2(vay) is equal to the value assigned in Step 6 of the function Contract-Spider-N.node. Moreover,
the values s3(vy). sa{va),... ,s2(vok-1) are as assigned in Step 6 for R = 0.

If B # 0, then we zero the off-diagonal elements of the 3rd row of matrix €. We multiply the 2nd
row by —1 and add it to the 3rd row. Then, the entry (3,2) of the matrix C becomes equal to —a3,
where 3 is as defined in Eq. (5). In order to make this entry equal to 0, we multiply the 3rd column by
o, where s'(vak1) = s(vaes1) + ”“’”*’g[;:;“ﬁ”' . and add it to the 2nd column. As a result,
the elements in the 2nd column of C corresponding to the vertices vy, for p+1 < i < n — 1, are either
equal to 0 (if vep and v are non-adjacent in G) or else they have the same value —~, where v is the
updated value assigned during Step 5 of function Contract-Spider-Nnode, As these latter entries had
corresponding values equal to —1 in the original matrix M, we divide the 3rd column by +, and then in
order to maintain the value of the determinant unchanged, we multiply the 1st column by <. All of the
above implies that Eq. (7) becomes

| sa(vak) (—1lzkpsr

| (=L)ps12e 8(vpy1)
2k+1

- —1) 5
ESz{m} - s(vy) : J

(=1} [

5':*311—1} I

det(M)

iglk

2k41

= H 32[1&] . dEt{-""” ”}s

i=1
1=2k

where M" is an (n — p) x (n — p) matrix similar to the original matrix M, and the values so(1y).
1<1i<2k+1, are equal to the values given in function Contract-Spider-N_node.

Since both matrices M’ and M" are identical to the submatrix of the original matrix M formed by
rows p,p+1,...,n =1 and columns p,p+1,... ,n — 1, except for the entry with value sa{ve), then if
we assume (again in an inductive fashion) that the determinants of M" and M" can be expressed as the
product of appropriate values s(vai), s(tps1),. .. ,8(tn-1), the determinant of the original matrix M is

2h+1 2k—1
equal to the product of these values multiplied by H salw;) or]___[sa{v;) respectively. In either case,
el jm]

i
this is preciselv what the algorithm Spanning_Trees Number computes by using the function Contract-
Spider-N_node.

14

Processing a non-basic N-node. Let t be a non-basic N-node which is the root of a contractible
subtree and assume without loss of generality that the vertices/children of t are vy, vg,... ,vp. Step 2 of
function Contract-NonBasic-Nnode applies the Gauss-Jordan elimination in the submatrix formed by
the first p rows and p columns of matrix M. Thus, with the values B[i,] and ¢;, 1 < i < p, computed in
this step, we have

B[1,1] 0 g{cl}l.p+1 (e1)1,n-1 |

(eidig i

o BB ledopas (G)pmn-1 |

det(M) = (er)p+11 -+ (Cp)p+rp 8(vp41)
: (-1
(ci)sq s{vy)

: [_l}j’.i’

fe1da—11 - (Gla-1yp 8(tn_1)

where, according to the definition of the Kirchhoff matrix, the values (—1); ; of the off-diagonal elements
(i,7) are —1 if the vertices v; and v; are adjacent in G and are 0 otherwise, p+1 < 4, j < n—1. Similarly,
the values (e;);; and ()4, 1 <4 = p < j < n— 1 have value ¢; if the vertices v; and v; are adjacent in
G and are 0 otherwise.

In order to compute the determinant of matrix M, we zero the off-diagonal elements of its first p— 1
rows: for eachi=1,2,...,p— 1, we multiply row p by —¢; /¢, and we add it to row i, and subsequently,
for each ¢ = 1,2,...,p — 1, we multiply column i by i:_B!I':ll and add it to column p. As a result,
indeed only the diagonal elements of the first p — 1 rows have non-zero values. which are equal to Bli. .
Moreover, if 3 is the value defined in Step 3 of function Contract-NonBasic-N_node, all the non-zero
elements in positions (i, p) of column p have now the same value 3/, and all the non-zero elements in
positions (p,i) of row p have now the same value ¢p, p+ 1 < i < n — 1; these elements were equal to —1
in the original matrix M. In order to make them equal to —1, we divide the entries of column p by 3,
and then in order to maintain the value of the determinant unchanged, we multiply column p —1 by 3.
Thus, expanding in terms of the first p — 1 rows, we find that the determinant of M is

33{'”;3—]' {_ljp:p—_l
{_1:':04'1.;? s(vps1)

o, (=1)s 5
det(M) = \ :
et(M) (Hss{u) s(03)
':—1:':".5’ I
S(lt‘rﬂ-"'l} i
r—1
- (Hsgqm}) - det(M"),
where
53':'“1'] = B[i1ﬂ! l=si<p-12
s3(tp-1) = Blp-1,p-1] -Bp,p| -8
sslty) = Blppl g =

ey Blppl-8 B

15

and M’ is an (n=p) x (n=p) matrix which is identieal to the submatrix of the original matrix M formed
by rows p.p+1.... ,n—1 and columns p,p+1,... ,n— 1, with the only exception that the value s3(v;) is
different from s(vy). Similarly with the other cases, the determinant of the matrix M' can be expressed
(in an induetive fashion) as the product of appropriate values 5'(v;), 8 (vp£1), 8" (vn-1). and then the
determinant of the original matrix M is equal to the product of these values multiplied by the product
of sa(vy), sa{va).... ,sa{vy_1); this is precisely what the algorithm Spanning.Trees-Number computes in
this case as well. 1

3.3 Time Complexity

Lemma 3.2. The algorithm Spanning. Trees-Number runs in O(n + m + ¢{G)) time. where n is the
number of vertices, m is the number of edges, and ¢{G) is the non-spider cost of the input graph G.

Proof. Step 1 of the algorithm Spanning_Trees-Number clearly takes O(n + m) time and so does the con-
struction of the modular decomposition tree T{G) of the graph & [11. 19]. The computation of the level
sets Lo, Ly.... . Lp_1 of the tree T(G) in Step 3 can be performed in O(n) time, since the tree T(G) con-
tains (N n) nodes. Additionally, note that exactly one of the functions Contract-Parallel Series, Contract-
Spider-N_node and Contract-NonBasie-N _node is applied on each of the nodes of T(G). When the function
Contract-Parallel Series is applied on & node £, it can be executed in Of|ch(t)|) time, where |ch(t)| is the
number of children of node t in T{G&). When the function Contract-Spider-N_node is applied on t with
representative graph a prime spider G, we must compute the sets 5, K, and R of G; (this can be easily
done in O[|V(G,)| + |E(Gy)|) time after having computed the degrees of the vertices of the spider; note
that, if a graph is a spider with partition (S, K, R), then for every choice of v, u, and v in &, K, and
R respectively, degree(v) < degree(r) < degree(u) [18]), update the s-values (this takes O(|ch(t)|) time),
and update the modular decomposition tree (this also takes O(|ch(t)|) time). Lastly, when the function
Contract-NonBasic-N_node is applied on node ¢, it takes O(|V(G;)|?) time, so that the execution of this
function on all the non-spider N-nodes of the tree T(G) requires a total of O(p(G)) time, where ¢(G) is
the non-spider cost of G.

Given that the number of nodes of the tree T{G) is O(n), the fact that the number of edges of
G is no less than the sum of the numbers of edges of all the representative graphs of T(G), and the
fact that checking whether a graph H is a spider takes O(|V(H)| + |E(H)|) time, then Step 4 of the
algorithm Spanning_Trees-Number requires O(n + m + ¢(G)) time. Finally, Step 5 takes O(n) time
under the uniform-cost criterion, according to which each instruction requires one unit of time and each
register requires one unit of space, implying that, no matter how large the numbers are, an arithmetic
operation involving ¢ numbers takes O(f) time. Therefore, the algorithm Spanning_Trees-Number takes
O(n+m + ¢(G)) time. 1

Remark 3.1. If a single computer word can store an integer as large as n® %, where n is the number of
vertices of the input graph, then the uniform-cost criterion is certainly realistic (recall that the number
of spanning trees of a graph on n vertices is at most n" 2, which is achieved by the complete graph K.,).
If however this is not the case, then the uniform-cost eriterion is not realistic; but. in such a case, even
the logarithmic-cost criterion (which takes into account the limited size of a real memory word which is
logarithmic in the number stored) is somewhat unrealistic as well, since it assumes that two integers i
and j can be multiplied in time O(log(i) + log(j)}, which is not known to be possible (see [1, 23]). O

4 Counting Spanning Trees in Linear Time

Let & be a graph on n vertices and m edges and let ¢(G) be its non-spider cost. From Lemma 3.2, it
is clear that if ¢(G) is linear in the size of G, then the algorithm Spanning_Trees-Number runs in linear

16

Fi-uxtoneitile

FyrennD5-free

(8.2}

Figure 2: A Hasse diagram of class inclusions. For the classes to the left of the dashed line,
the number of spanning trees can be computed in linear time.

time. We next investigate classes of graphs which have linear non-spider cost.

4.1 (g.q—4)-graphs

Babel and Olariu in [3] proposed the generalizing concept of (g, t)-graphs. In such a graph, no set of at
most g vertices contains more than ¢ distinct Pys. In particular, the (g, ¢ — 4)-graphs possess important
structural properties (they admit a unique tree representation; see Theorem 4.1) [2], are brittle' for g < 8
[3] but are not brittle (and not perfect) for ¢ = 9. It turns out that the cographs are precisely the
(4,0)-graphs, the Pjy-sparse graphs are the (5, 1)-graphs, and the Cs-free Fy-extendible graphs are the
{6, 2)-graphs. In our terminology, the structure of (g,q — 4)-graphs can be described as follows.

Theorem 4.1. (Babel and Olariu [3]): Let G be a (g,q — 4)-graph. Then, every prime graph in the
modular decomposition of G is either o prime spider or a graph with fewer then g vertices.

Based on the above result, many optimization and domination problems (such as the vertex ranking, the
path cover, the list coloring, the domination clique problem, etc.) can be solved in linear time for the
class of (g,q — 4)-graphs for fixed g [2]. Additionally, since computing the number of spanning trees of a
graph on a fixed number of vertices takes constant time, Theorem 4.1 implies:

Lemma 4.1. The non-spider cost of a (g,q — 4)-graph G on n vertices is $(G) = O(n), for every fired
g =4
4.2 P;-tidy graphs

As mentioned in [14], the class of Py-tidy graphs was introduced by I. Rusu in order to illustrate the
notion of Py-domination in perfect graphs. A graph G is Ps-tidy if for any induced Py, say abed, there

! Chyvital defined a graph to be brittle if each induced subgraph H of G contains a vertex that is not a midpoint or
not an endpoint of any Py. See also [9].

17

exists at most one vertex v € V(G) — {a.b.e,d} such that the subgraph G[{a,b, e, d, v}] has at least two
Fys (i.e. the Py has at most one partner). The Py-tidy graphs strictly contain the cographs, Ps-reducible,
Py-sparse, Py-extendible, and Pj-lite graphs. The Pj-lite graphs were defined by Jamison and Olariu in
[17]: a graph G is Py-lite if every induced subgraph H of G with at most six vertices either contains at
most two Fys. or is a 3-sun, or is the complement of a 3-sun (a 3-sun is a thick spider on six vertices with
R = 0). They remark that every Py-sparse graph is Py-lite and prove that every Py-lite graph is brittle
and is thus perfect. We mention here that the Py-lite graphs coincide with the Cs-free Py-tidy graphs.
Theorem 3.2 in[14] implies the following result for the modular decomposition of Py-tidy graphs:

Theorem 4.2. (Giakoumakis et al. [14]): Let G be a Py-tidy graph. Then, every prime graph in the
modular decomposition of G is a Ps, a P, a Cs, an urchin, or a starfish®.

In [14], Theorem 4.2 played a crucial role in the linear-time recognition of Py-tidy graphs and in the linear-
time solution of the problems of calculating the clique and stability number, the chromatie number, and
the hamiltonian path. In connection to our work, it implies that the non-spider cost &(G) of a Py-tidy
graph (= is linear in the number of vertices of G.

Lemma 4.2. The non-spider cost of a Py-tidy graph G on n vertices is ¢(G) = O(n).

Concluding, in light of Lemmata 4.1 and 4.2, the number of spanning trees of the classes of (g,q — 4)-
graphs for any fixed ¢ > 4 and of Py-tidy graphs can be efficiently computed. Moreover, it is not difficult
to see that for these graphs the space needed by the algorithm Spanning Trees-Number is O(n + m);
recall that the modular decomposition tree of a graph and its construction require space linear in the size
of the graph [11. 19]. Thus, the results of this section are summarized in the following theorem.

Theorem 4.3. The number of spanning trees of a (q,q — 4)-graph for any fired ¢ = 4 or of a Py-tidy
graph can be computed in ({n +m) time and space, where n and m are the number of vertices and edges
of the input graph.

Figure 2 depicts the classes of graphs that we mentioned in this paper and their inclusions; our approach
allows for the linear-time computation of the number of spanning trees of the classes on the left-side of
the figure.

5 Concluding Remarks

In this paper we have presented a general approach for computing the number of spanning trees of a
graph using modular decomposition, which vields a linear-time algorithm for the problem on Py-tidy
graphs and (g, g — 4)-graphs for anv fixed g = 4. We have taken advantage of the structural properties of
the modular decomposition tree of these graphs and used the Kirchhoff matrix tree theorem as a tool for
proving the correctness of the proposed algorithm. Besides spider graphs, other prime graphs, such as,
trees, cveles, and their complements, can be handled in the same way, which allows the computation of
the number of spanning trees for additional classes as well, e.g., the semi-Pj-sparse graphs [13] and the
(Ps, diamond)-free graphs [7]. Additionally, due to the central role that split graphs and their several
extensions (which generalize the spider graphs) play in the modular decomposition tree of the split-perfect
graphs [8], we pose as an open problem the efficient handling of the former class of graphs towards the
linear-time computation of the number of spanning trees of the latter class.

2 An wrchin is a thin prime spider; a starfish is a thick prime spider.

18

Finally, as mentioned in the introduction, a uniformly-most reliable network (defined in [20]) must
maximize the number of spanning trees. Thus, it is interesting to determine the types of graphs which
have the maximum number of spanning trees for fixed numbers of vertices and edges (see [15, 24, 25]).
The problem may be approached as an optimization question on the s-values of the vertices, which are
calculated by the algorithm Spanning_Trees-Number. Work along these lines is currently in progress and
some preliminary results suggest that almost regularity seems to be the key to the solution,

References
[1] AV. Aho, LE. Hoperoft, and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-
Wesley, 1974.

[2] L. Babel, T. Kloks, I. Kratochvil, D. Kratsch, H. Mueller, and 5. Olariu, Efficient algorithms for graphs with
few Pys, Discrefe Math. 235 {2001) 29-51.

[3] L. Babel and 5. Olariu, On the structure of graphs with few Pys, Discrete Appl. Math. 84 (1998) 1-13.
[4] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.

[5] M. Biggs, Algebraic Graph Theory, Cambridge University Press, London, 1974,

[6] B. Bollobés, Graph Theary, an Introductory Course, Springer-Verlag, New York, 1974,

[7] A. Brandstadt, (Ps,Diamond)-free graphs revisited: structure and linear time optimization, Discrete Appl.
Math, 138 (2004) 13-27.

[8] A. Brandstddt and V.B. Le, Split-perfect graphs: characterizations and algorithmic use, STAM J. [Nscrele
Math. 17 (2004) 341-360.

[9]

A. Brandstadt, V.B. Le, and 1.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Math-
ematics and Applications, 1999,

[10] T.J.N. Brown, R.B. Mallion, P- Pollak, and A. Roth, Some methods for counting the spanning trees in labeled
molecular graphs. examined in relation to certain fullerenes, Discrete Appl. Math, 67 (19956) 51-G6.

[11] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, Proc. 19th I'nt'l Colloquium
on Trees in Algebra and Programming (CAAP94), LNCS T8T (1994) 68-84.

[12] K-L. Chung and W-M. Yan, On the number of spanning trees of a multi-complete/star related graph,
Inform. Process. Lett, T6 (2000) 113-119.

[13] J.-L. Fouquet and V. Giakoumakis, On semi-P;-sparse graphs, Discrete Math. 165-166 (1987) 277-300,

[14] V. Giakoumakis, F. Roussel, and H. Thuillier, On Py-tidy graphs, Discrete Math. and Theorei. Comput.
Seience 1 {1997) 17-41.

[15] B. Gilbert and W. Myrvold, Maximizing spanning trees in almost complete graphs, Networks 30 {1997}
23-30.

[16] F. Harary, Graph Theory, Addison-Wesley, 1969.
[17] B. Jamison and 5. Olariu, A new class of brittle graphs, Studies Appl. Math, 81 (1989} 89-02.
[18] B. Jamison and 3. Olariu, A tree representation for Py-sparse graphs, Discrete Appl. Math. 35 (1992) 115-120.

[19] E.M. MecConnell and J. Spinrad, Modular decomposition and transitive orientation, Discrete Muath. 201
{1999} 129241,

[20] W. Myrveld, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do not always exist,
Networks 21 (1991) 417-419.

[21] §8.D. Nikolopoulos and C. Papadopoules, The number of spanning trees in Kn-complements of quasi-threshold
graphs, Graphs and Combinatorics (to appear).

[22] 5.D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star related graphs, Inform.
Process. Lett. 65 (1998) 183188,

[23] C. Papadimitriou, Compufational Complerity, Addison-Wesley, 1854,

19

[24] L. Petingi. F. Boesch, and C. Suffel. On the characterization of graphs with maximum number of spanning
trees, Discrete Appl. Math. 179 (1998) 155-166.

[25] L. Petingi and J. Rodriguez, A new technique for the characterization of graphs with a maximum number
of spanning trees, Diserete Math. 244 (2002) 351-373.

[26] W.-M. Yan, W. Myrvold, and K.-L. Chung, A formula for the number of spanning trees of a multi-star
related graph, Inform. Process. Leti. 68 (1998) 295-298.

[27] X. Yong, Talip, Acenjian, The numbers of spanning trees of the cubic cycle C3 and the quadruple cycle Cj,
Discrete Math. 169 (1997) 293-298.

[28] Y. Zhang and M.J. Golin, Chebyshev polynomials and spanning tree formulas for circulant and related
graphs, HKUST Theoretical Science Center Research Report TCSC-02-09, 2002,

[29] Y. Zhang, X. Yong, and M.J. Golin, The number of spanning trees in circulant graphs, Discrete Math, 223
(20007 337-330.

20

