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Abstract

In this paper we propose a Gaussian Mixture Model (GMM] based methodology for
the analvsis of wicroarray images. The main advantages of the proposed methodology are
modeling flexibility and adaptability to the data, which are well known strengths of GMAL
The maximmm likelihood (ML) and maximum a posteriori (MAP) approaches are nused to
estimate the GMM parameters via the Expectation Maximization (EM) algorithm. The
proposed approach has the ability to detect and compensate for artifacts that might occur
in microarray images. This is accomplished by a model-based eriterion that selects the
number of the mixture components. We present mmerical experiments where we compare
the proposed approach with previous ones and existing software tools for microarray mmage
analysis and demonstrate its advantages.

Keywords: DNA microarray image analysis, Gaussian mixture models, maximum likeli-
hood, maximum a posteriori, Markov random ficlds, Expectation-Maximization algorithm,

cross-validated likelihood
1 Introduction

DNA microarrays [1] are used to measure the expression levels of thousands of genes simulta-
neously over different time points and different experiments. In microarray experiments, the
two mRNA samples to be compared are reverse transcripted into €DNA and then hybridized
simultaneously to a glass slide. The end product of a comparative hybridization experiment
is a scanned array image, where the measured intensities from the two fluorescent reporters
have been colored red (R) and green (G) and overlaid. This array image is structured with

intensity spots located on a grid and must be scanned to determine how much each probe
“To whom correspondence should be addressed.




is bound to the spots when stimulated by a lascr. An cxample of such grid structure con-
taining 24x24 spots is shown in Fig. 1. Yellow spots have roughly equal amounts of bound
cDNA from cach sample and so have equal intensity in the R and G channels (red + green =
yellow). Gene expression data derived from arrays measure spots quantitatively and can be
used further for several analyses [2, 3].

It has been shown (1] that background correction is an important task in the analysis of
microarray images. This is necessary in order to remove the contribution in intensity which
is not due to the hybridization of the cDNA samples to the spotted DNA. The R and G
intensitics of a perfect microarray image depend only on the dye of interest. However, due
to system imperfections and the microarray image gencration process, the resulting images,
in addition to background fluorescence, contain also other types of undesired signals which
are termed in the rest of this paper as artifacts. The correction of such artifacts is erucial
to making accurate expression measurements, because unlike background fluorescence their
spatial location is unknown and can lead to errors propagated to all subsequent stages of the
analysis [4]. |

Processing microarrays images requires two tasks. First, the individual spots and their
borders are determined. This process is also known as gridding. Second, each spot is analysed
to determine the corresponding gene expression level. A number of software tools have heen
introduced that are available either commercially or for research only purposes for the analysis
of the microarray images [1. 8, 9, 10]. These tools use simple gridding methods, which are
based either on a grid with uniform cells, or on manual specifications of the spot borders. For
spot analysis somc existing tools assume circular spots for example, the ScanAlyze [9] and
the GenePix [10]. Others use simplistic local thresholding based techniques, for example the
TIGR-Spotfinder [8].

Histogram-based clustering methods have been also proposed for spot segmentation (5,
6, 7). However, these methods use the well known K-means and the K-medoids algorithms

that do not adapt well to irregularly based clusters and do not utilize all the available prior



knowledge about the data. Furthermore, all previous proposed methods correct only for
background fluorescence and ignore the presence of artifacts.

The main contributions of this work are two; first, a new automatic pridding scheme and
second, the application of Gaussian mixture models {GMM) for analyzing microarray spot
images [4]. This allows to bring on bear to this problem all the known advantages and powerful
features of the GMM methodology, such as adaptability to the data, modeling fexibility and
robustness, that make it attractive for a wide range of applications [11, 12]. The proposed
methodology consists of three main steps. First, the new scheme for determing the individual
spot borders in a microarray image is presented. This method does not require any human
intervention and is very simple and fast. Tt is hierarchical in nature since it first uscs the
global and then the local properties of the microarray image, thus it is also very robust.

Second, after determing the spot boundaries, the probability density of cach spot pixels
is modeled using a GMM with K components. Two scenarios are possible. First, K = 2
in which case two components are used corresponding to pixcls labeled as background and
foreground. Sn’.:i:c:;l:u::lT K = 3 when in a.dd-itic:n to background and foreground we have pixels
which are labeled as artifacts. The identification of the appropriate value of K is accomplished
using the eross-validated likelihood criterion [13]. This can be considered as artifact detection
and correction mechanism, since when K = 3 an artifact is identified which is ignored in
the subsequent analysis of this spot. Two approaches arc proposed for estimating the GMM
parameters. The first one is based on the Expectation-Maximization (EM) algorithm [14] for
mazitnum likelihood (ML) estimation of the parameters, while the second on a marimum a
posteriori (MAP) formulation. The latter takes also into account prior knowledge about the
spatial assignment of the pixel labels using a Markov Random Field (MRF) model [13].

Finally, based on the clustering results, the means of the background and foreground Gaus-
sian components arc used to calculate the normalized log-ratio for the fluorescence intensities
(logs R/G). This task constitutes the reduction step of our approach and characterizes qual-

itatively each spot by finding its corresponding gene expression value.



The rest of this paper is organized as follows: In scction 2 we present the proposed tech-
nique for antomatic gridding. Section 3 describes the two GMM approaches for spot image
segmentation and the model-based criterion for estimating the number of mixture compo-
nents. In scction 4 we present numerical experiments that test the proposcd methodology
and compare it to cxisting software packages for microarray image analysis, as well as to

receutly published methods. Finally, we conclude in section 3.
2 Automatic Microarray Gridding

The process of determining the spot boundaries is frequently refered to as gridding. A vari-
cty of microarray gridding methods have been previously suggested in the literature. They
determine individual spot boundaries either with user-defined anchor points [9] and semi-
automated geometric techniques [7], or with complex methods that are computationally ex-
pensive [16]. Since typical microarray images contain hundreds or thousands of spots, a
practical gridding method must be fully antomatic, fast and simple.

The proposed gridding method uses a scheme that combines global and local segmenta-
tion mechanisms for defining the boundaries of each microarray spot. It initially creates global
boundarics, which are horizontal and vertical straight lines spanning the entire image. To
define the global boundaries we add the sums of the R and G intensities along the rows and
columns of the microarray image. The resulting signals have multiple peaks each correspond-
ing to the coordinates of a spot center. We use the mid point of two successive peaks of the
row and column sums to define the global horizontal and vertical boundaries, respectively.
Fig. 2 (a) illustrates this process for a 5 = 5 grid.

In the next step, the global boundaries are refined. The horizontal boundary between
spots S(7,7) and S{i+1, 7) is refined by locating the minimum of the sum of the rows (within
the global boundary) of the R and G intensities of these spots. In the same spirit, the
vertical boundary between spots 5(i, j) and 5(é, 7 + 1) is refined by locating the minimum

of the columns (within the global boundary) sums of the R and G intensities of these spots.



This procedure is repeated in a row-by-row or column-by-column fashion, scanning the entire

microarray image. Fig. 2 (b) illustrates an example of the global border refinement process.
3 Mixture Models for Spot Analysis

Spot analysis refers to the task of labeling cach pixel of a spot as background (B), foreground
(F), and artifact (A). This can be viewed as a elustering problem which is tackled using GMM.
Let z* = [z%, z5]7 (i =1,..., N) denote the ith pixel valuc in a spot area, where the R and
G correspond to the red and green intensities, respectively. GMMs [11, 12] represent density
functions as a convex combination of K Gaussian component densities ¢(z|67) = N(z|p;. ;).
where p; is the mean and E; the covariance matrix of the jth Gaussian, according to the

formula
K
fla' ) = Y miola’le) . Y
i=1
The parameters 0 < 7; < 1 represent the mixing weights satisfying that }:j;l m; = 1, while
U is the vector of all unknown parameters of the model, i.e. Ux = [m1,... , 7k, 01,... . 0K],
with 8; = [u;, I;].
Having found the parameters of the GMM, the posterior probabilities that the ith pixel
is assigned to the 7 component is given by
P(ili) = ;Jréliﬂ:ilﬂ.:az.:'] ‘ @)
qub(xi]p;,zg}

=1
Therefore, the ith pixel is assigned to the label I with the largest posterior probability (P(1]{) >

P(j13) ¥i # 1).

3.1 Maximum Likelihood (ML) Estimation of GMM parameters

A common approach for estimating the model parameters of the GMM (Eq. 1) is based on

maximization of the likelihood (ML)

N N K
CXITk) = 3 log f(z|0x) = 3 logl > md(z103)} (3)
i=1 i=1 j=1



The EM algorithm is a popular method for ML estimation since it is simple to implement
and guarantecs convergence to a local maximum of the likelihood function 14, 12].
Starting from an initial guesses of the model parameters U, at each itcration (¢) the EM

algorithm proceeds in two steps. The E-step, where the posterior probabilitics are computed
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and the M-step, where the model parameters are updated
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In image segmentation the spatial adjacency of pixels with the same label is an important prior
information that could be also taken into account [17, 18]. Since the ML approach does not
provide this capability, an alternative method for maximum a posteriori (MAP) estimation of
GMM parameters will be described next. However, before we address this problem, we will
elaborate on the problem of selecting the number of the mixture components K, and see how

it fits in the proposed microarray image analysis methodology.

3.2 Cross-validated likelihood for Artifact Identification

The application of the EM algorithm to GMM requires knowledge of the number of the
mixture components K used in the model. Since previous approaches for microarray spot
analysis assume 2 labels, background (B) and foreground (F), it is reasonable to consider
GMMs with K = 2. However, this assumption cannot handle the existence of artifacts which
must also be taken into account, see spots in Fig. 7. In this casc an additional cluster appears

in the data, therefore they are better modeled by a GMM with K = 3. This effect can be



visualized by comparing the scatter plots in the Figures 5 and 6 with thosc in Figures 8 and 9.
Thus, the artifact detection problem corresponds to a model order selection problem botween
a 2-component or a 3-component GMM.

Cross-validated likelihood [13] provides an efficient model order selection framework for
GMMs. Following this scheme, a K-component model is evaluated by splitting the data in
u disjoint partitions (folds) X;, s =1,..., u [of approximately equal size). For cach fold we
estimate the U%. parameters of a GMM with K components using the dataset X — {X,}.
Then, we calculate the likelihood of this model L(X,|¥% ) using X, as a test set. Next
L{X,|¥4) is averaged over the u folds in order to obtain the cross-validated evalnation for
the K-component model

CVi = ézﬁfxsg@;{j , ()

s=1

The CVg value is computed for the two candidate values K = {2,3} and we select the model
order with the largest CVk. It must be noted that in our experiments we have selected u = 10
for the number of folds. When K = 3 (existence of artifacts) the eriterion used to determine
which one of the three is the artifact cluster is the aggregate variance in all dimensions. In

other words, the cluster with the largest Tr(X;) is considered as artifact.

3.3 Maximum A Posteriori (MAP) Estimation of GMM parameters

According to this approach [13], the probabilities 7§ = P(j[position i) of the pixel located at
the ith position is assigned to the jth label are considered as additional model parameters that

K i
§=174

satisfy the constraints: 0 < ‘JT; <land ¥ = 1. By denoting as TI = {x%,... ,7"} the
set of probability vectors and © = {#y,... ,0x} the set of Gaussian component parameters,
the density function is given by
. K - .
f(='IL,8) =) _wie(z'l6;) . (8)
j=1
Spatial adjacency of pixel labels is taken into account by using a suitable prior density

function for the parameter set II. This is given by the Markov Random Field (MRF) model

T



[17, 15, 18]

N
p(0) = — exp(~U(IT) , and U(IT) = 83 Vi (11, (9)
i=1

where Z is a normalizing constant, and § a regularization parameter. The function Vi, (IT)
is the clique potential function of the pixel label vectors {7} within the neighborhood A
(horizontally, vertically, and diagonally adjacent pixels) to the ith pixel and is computed as
follows

K
Var () = 3 gluim) , where thim = |1 = 2™ = ¥ (x} — a")2 . (10)
meaM j=1

The function g(u) must be nonnegative and monotoniecally increasing [17] and we used g(u) =
(1+u"1)"1L
Given the above prior density (Eq. 9), a posteriori log-density function can be formed as

follows

N
p(ILO|X) =} " log f(2|IL,©) + log p(II) , (11)

i=1
and maximized for the MAP estimation of the model parameters I, 8. The EM algorithm

can also be used for this case [15]. The E-step is given by
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while the M-step requires the maximization of the following log-likelihood [15]

N K N
Quar(lL, OIINOM) = %% " 2i{log(x}) + log(o(a’|0)} = 8 3~ gluim) .  (13)

i=1 j=1 i=1 meN;
This gives update equations for the parameters of the component densities, p; and £; similar
to those of Eq. (6) of the ML-approach of the GMM.
However, the maximization of the function (a4, with respect to the label parameters
{m%} does not lead to closed form update equations, since we must take into account the

constraints: 0 < 7 < 1and ¥/ 7 = 1. Due to this difficulty, a Generalized EM scheme

8



was adopted in [15] based on an iterative Gradient Projection method. For this approach,
the gradient of the MAP function is first projected onto the hyperplanc of the constraints,
and then a line search is performed along the direction of the projected gradient to find the
parameters {wj} that maximizes the Qas4p function.

Here we use an improved M-step in order to maximize (Qarap with respect to vr;; by
formulating the problem as a constrained econver guadratic programming (QP) problem. We
found that this is advantageous, since it provides a better and faster update rule for cstimating
label parameters {rr}}- that meets all the available constraints [19]. A more detailed description

of the M-step for this method is given in Appendix A.
4 Experimental results

A variety of experiments have been performed to evaluate the proposed methodology for
the analysis of DNA microarray images. The test images used were obtained from publicly
available microarray databases described in (2] and [3].

At first, we tested tﬁe proposed gzridding technique for partitioning grid structures into
distinet spot areas. Fig. 3 illustrates the results of the application of our approach along
with three other widely used microarray image analysis methods (GenePix [10], ScanAlyze
[9] and Spotfinder [8]), to the microarray image in Fig. 1. We note that the proposed
gridding method is completely automatic and finds the real boundaries of each spot whithout
any human intervention as the other methods. We show more detailed gridding results for
individual spots in the first column of Figures 4 and 7. These results demonstrate that in all
cases the proposed method determines accurately the spot regions, including the genc spot
and the adjacent background, even in difficult cases of noisy spots with artifacts (Fig. 7). It
must be noted, that the gridding procedure is very fast and suitable for analyzing microarray
images with many spots in a very short time.

After identifying the spot regions, we used the proposed GMM-based approach to analyze

each spot region. More specifically, the procedure we followed consists of the following four



stagres:

1. Select the number of components K of the GMM model using the cross-validated like-
lihood method. In other words, test for the prescnce (K = 3) or absenee (K = 2) of

artifacts in a spot.

2. Estimate the parameters of the K-component GMM model using the ML or MAP

technique and label each spot pixel with one of the R labels.

3. If K = 3, the artifact component (A) of the GMM is identificd by using the maximum
variance criterion. Then, the remaining two clusters are labeled as F and B using the

criterion ||uf|| > ||u®].

4. Calculate the expression value of the corresponding gene according to the normalizing

logarithrmic ratio:

F_ B
r=logy(“E—2E).
Hg — Hg

f‘or comparison purposes we have also implemented two other methods proposed in .[5, 6]
for spot clustering, namely the K-means algorithm and the partitioning around medoids
(PAM) method. These two methods do not provide model selection capabilities, and thus
only two clusters (K = 2) were considered, B and F.

Figures 4 and 7 illustrate the results obtained for several spot examples. In cach case we
present the image segmentation results after labeling the pixels using each of the compared
approaches. The spot scgmentation map is constructed by setting the intensity value of each
pixel equal to the mean value of the cluster that is assigned to. In the case of the proposed
MAP approach, three different segmentation maps are presented that correspond to three
values (0.01,0.1,1.0) for the regularization parameter J of the Gibbs prior (Eq. 9). In total,

for each spot we provide six segmentation maps along with the corresponding fluorescent

ratios.
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More specifically, Fig. 4 represents comparative results from ten spot examples where
no artifacts were detected according to the cross-validated likelihood criterion, ie. K = 2.
In cases where the shape of spots is not regular and their contour is not round (mostly duc
to retrieval of the microarrayer’s spotting pin), both GMM-based methods generate more
regular foreground regions in comparison with the K-means and PAM clustering approaches.
To better eomprehend the behaviour of the different clustering methods, we present in Figures
5 and 6 four scatter plots of the R and G pixel intensities for spots 5; and 57 after labeling
using GMM with the MAP (MAP-GMM), the ML (ML-GMM), the K-mcans and the PAM
methods, respectively.

The main disandvantage of the K-means and PAM methods is that they are restricted
to use as error metric the Lo distance from the mean or median of the cluster. Thus, they
generate clusters which arc scparable by simple borders as shown in Figures 3, 6 (¢) and
(d). In contrast, GMM-based methods generate ellipsoidal clusters with complex boundaries
as shown in Figures 5, 6 (a) and (b). As a result, the K-means and PAM methods in this
example tend to overestimate the background clusters and provide spots with background
"wholes”, while the GMM-based methods provide more "uniform™ spots.

Fig. 7 illustrates comparative results with another eight spot examples that correspond
to cases where an artifact was detected, ie. K = 3. After labeling, the artifact pixels
are excluded from the calculation of the fluorescent ratios. In the absence of an artifact
correction methodology, the K-means and the PAM methods crroneously classify these pixels
as foreground since the contribution of the artifact pixels is significant. The differences in the
fluoreseent ratios v, among these methods is noticeable. For example, in the casc of spots 53
and S5 of Fig. 7, the K-means and PAM methods produce a ratio close to zero (r = 0), since
they consider as foreground the (yellow) artifact pixels. On the other hand, the proposed
MAP-GMM and ML-GMM approaches, detect the presence of the artifact and generate more
realistic foreground regions. Thus, the produced fluorescent ratios of about r = 0.45 and

r = —0.2 seem to be more realistic for the spots Sz and S5, respectively. We also present in
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Figures 8, 9 four plots of the R and G pixel intcnsity values for these two spot arcas after
labeling pixels with the four approaches being compared. Again, the enhanced data fitting
capabilitics of the GMM-based approaches are obvious.

Another point to make in our experimental study concerns the comparison between the
MAP-GMM and ML-GMM estimators. The results in Figures 4, 7 show that both approaches
yield similar results in terms of the fluorescent ratios. However, they do not produce the
same segmentation maps. For low values of the regularization parameter 3 (3 < 0.01) both
methods generate identical scgmentation maps. As the value of 3 grows in MAP-GMM, the
contribution of the prior term increases and generates smoother foreground and background
regions. Thus, it eliminates isolated foreground pixels located in background regions. While
the value of the parameter 5 must be tuned, in our experiments we observed that a § value
in the range [0.1, 1.0] gives satisfactory results. From this point of view, the MAP-GMM
approach can be viewed as a method for noise reduction in the sense that it eliminates the
effects of the microarray manufacturing imperfections.

Finally, in Fig. 10 we show some comparisons for spot quantification between the proposed
method and two existing image analysis tools, more specifically GenePix [10] and TIGR-
Spotfinder [8]. Comparisons with ScanAlyze [9] were not included since GenePix uses the
same principle for spot segmentation. From Fig. 10 it is clear that the circle used in GenePix
is not representative on many occassions, when the spot is irregularly shaped or when artifact
islets are present, of the spot area. In other words, the analvsis provided by GenePix is
based only on the spatial properties of the spot and does not take into consideration the
intensity of the pixels. For example, in spot 519 shown in Figures 4 and 10 the circle used by
Genepix misses completely the cresent shaped spot which the proposed method captures quite
accurately. This is also reflected in the large difference of the fluorescent ratios provided by
these methods. Also in spots 5 and St in Figures 7 and 10 it is clear that the region selected
by Genepix segmentation as foreground includes pixels that our algorithm labels as artifact

and this is also reflected in the computed fluorescent ratios. Similarly, the thresholding

12



based algorithm used in TIGR-Spotfinder in certain instances of irregular spots and spots
with artifacts produces faulty scgmenctations, sce for example spots 5y in Figures 4 and 7,
respectively. In these spots also the fluorescent ratios provided by TIGR-Spotfinder and our

method are significantly different.
5 Conclusions

In this paper we have proposed a new fully automated approach for the analysis of microarray
images. The main novelty is the GMM-based methodology for spot image segmentation.
Two methods for cstimating the GMM parameters are presented: the ML and a MAP. Both
approaches are based on the EM algorithm. A cross-validated likelihood eriterion is also used
to sclect the number of components of the GMM. This provides the capability to detect and
correct artifacts in the spot area. As our experiments demonstrate, the proposed scheme
produces better and more accurate results in terms of segmentation maps and fuorescence
ratios as comparcd with existing software tools and other clustering methods proposed in

previous wofks.
6 Appendix A: An M-step for estimating the parameters fr;

To maximize Qprap (Eq. 13) with respect 'rf; we set its derivative equal to zero and obtain
the following quadratic expression

48| > Q(um]} ()2 -48| Y ﬁ(uf.m}f?‘] (rh)—z=0, (14)
N

EN

where g(u) indicates the derivative. Let us denote with a; the positive root of the above
equation. The problem can be formulated as follows:
" Given a vector a € R¥ with elements a; 2 0 and the hyperplane E_{Ll y; = 1, find the point

y on the hyperplane with y; > 0 that is closest to a”.

13



This defines the following constrained convex quadratic programming {QP) problem:

1 K
mini—;I Z{yj — & }‘2
B
K
subject toZyJ- =landy; 20,¥j=1,... ,K.
=1

(13)

In order to solve this QP problem scveral approaches can be employed such as active-set
methods and penalty-barrier methods [20]. For this purpose, we have implemented an active-
set type of method [19] where we exploit the fact that the Hessian is the identity matrix which
in turn leads to closed form expressions for the Lagrange multipliers. The detailed steps for

solving this QF problem are given in the next Algorithm 1.

Algorithm 1 : A sequential convex QP algorithm
Input: a € RY
Output: y € R¥ : min% Ef:ll[y} - aj}'? s.t. ;‘El y;=1 and y; = 0Vj
Set D= K and vj=i'ﬂ'j= 1,...,K
1. Calculate y; ¥j=1,... ,K as:
if v; =1 then

K
1-— Ztr;a.;
[=1

i R
else {v; =0}

yj =10
end if

2. Cheek for termination
ify; =0%j=1,...,K then
STOP
end if
3. Update v; ¥j=1,... ,K and D as:
if y; < 0 then
vj=0and D=D-1
end if
4. Go to step 1.
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Figure 2: (a). These signals are obtained by summing up the rows and columns of both R
and G channels for a 5 % 5 grid structure. Mid points of successive peaks define the horizontal
vertical global borders, respectively. (b). The global borders (dotted lines) are refined (solid
lines) based on the local sums. The signals on the left and above the microarray image are
the local row and eolumn sums, respectively.
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Figure 3: Comparative gridding results of our method (a) with three widely existing microar-
ray image analysis tools: (b) the GenePix, (¢) the ScanAlyze and (d) the TIGR-Spotfinder.
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Figure 4: Comparative results for 10 microarray spots without artifacts. For each method we
give the segmentation map and the estimated fluorescence ratio.
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Figure 5: Plot of all pixel values of spot 53 of Fig. 4 after labeling them with MAP-GMM
(a), ML-GMM (b), K-means (c) and PAM methods (d), respectively. The ellipsoidal clusters
resulting from the GMM approaches and the lincar boundary between the two clusters in the

K-means case are also shown.
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Figure 6: Plot of all pixel values of spot 57 of Fig. 4 after labeling them with MAP-GMM
(a), ML-GMM (b), K-means (c¢) and PAM methods (d), respectively. The ellipsoidal clusters

resulting from the GMM approaches and the linear boundary between the two clusters in the
K-means case are also shown.
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Figure 7: Comparative results for 8 microarray spots with artifacts. For each method we give
the scgmentation map and the estimated fluorescence ratio.
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Figure 8 Plot of pixel values in spot S5 of Fig. 7 after labeling with MAP-GMM (a), ML-
GMM (b), K-means (¢} and PAM methods (d), respectively. The ellipsoidal clusters resulting
from the GMM approaches and the linear boundary between the two clusters in the K-means
case are also shown.
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Figure 9: Plot of pixel values in spot S5 of Fig. 7 after labeling with MAP-GMM (a), ML-
GMM (b}, A-means (c) and PAM methods (d), respectively. The ellipsoidal clusters resulting
from the GMM approaches and the linear boundary between the two clusters in the K-means
case are also shown.
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Figure 10: Calculated fluorescent ratios for 8 spot examples using the GenePix and TIGR-

Sprotfinder microarray image tools.
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