EFFICIENT PARALLEL RECOGNITION OF COGRAPHS

Stavros D. Nikolopoulos and Leonidas Palios

11- 2003

Preprint, no 11 -10/2003

Department of Computer Science
University of loannina
45110 loannina, Greece

Efficient Parallel Recognition of Cographs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioanning
P.0.Box 1156, GR-45110 Ioannina, Greece
{stavros, palios}@cs.uoi.gr

Abstract: In this paper, we establish structural properties for the class of complement
reducible graphs or cographs, which enable us to describe efficient parallel algorithms for rec-
ognizing cographs and for constructing the cotree of a cograph. For a graph on n vertices and
m edges, both our cograph recognition and cotree construction algorithms run in O(log® n)
time and require O((n+m)/logn) processors on the EREW PRAM model of computation.
Our algorithms are motivated by the work of Dahlhaus [9] and take advantage of the optimal
O(log n)-time computation of the co-connected components of a general graph [6] and of
an optimal O(logn)-time parallel algorithm for computing the connected components of a
cograph, which we present. Our results improve upon the previously known linear-processor
parallel algorithms for the problems [9, 11); we achieve a better time-processor product using
a weaker model of computation.

Keywords: Perfect graph, cograph, cotree, connected and co-connected component, par-
allel algorithm, parallel recognition.

1 Introduction

The complement reducible graphs, also known as cographs, are defined as the class of graphs formed
from a single vertex under the closure of the operations of union and complement. More precisely,
the class of cographs is defined recursively as follows: (i) a single-vertex graph is a cograph; (ii} the
disjoint union of cographs is a cograph; (iii) the complement of a cograph is a cograph.

The cographs have arisen in many disparate areas of applied mathematics and computer science
and have been independently rediscovered hy various researchers under various names such as
D*-graphs [15], P, restricted graphs [7, 8], 2-parity graphs and Hereditary Dacey graphs or HD-
graphs [23]. The cographs are perfect and in fact form a proper subclass of permutation graphs
and distance hereditary graphs; they contain the class of quasi-threshold graphs and, thus, the
class of threshold graphs [3, 10]. Furthermore, cographs are precisely the graphs which contain no
induced subgraph isomorphic to a Py (chordless path on four vertices), and are also the underlying
undirected graphs of the serial-parallel digraphs [24].

The cographs were introduced in the early 1970s by Lerchs [17] who studied their structural
and algorithmic properties. Along with other properties. Lerchs has shown that the class of
cographs coincides with the class of Py restricted graphs, and that the cographs admit a unique
tree representation, up to isomorphism, called a cotree. The cotree of a cograph G is a rooted tree
such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (I-nodes); the children of a 1-node
(0-node resp.) are O-nodes (l-nodes resp.), ie., 1-nodes and O-nodes alternate along every
path from the root to any node of the cotree;

(iii) the leaves of the cotree are in a 1-to-1 correspondence with the vertices of G, and two vertices
v;, v; are adjacent in G if and only if the least common ancestor of the leaves corresponding
to v; and v; is a 1-node.

Lerchs’ definition required that the root of a cotree be a 1-node; if however we relax this condition
and allow the root to be a O-node as well, then we obtain cotrees whose internal nodes all have at
least two children, and whose root is a 1-node if and only if the corresponding cograph is connected.

There are several recognition algorithms for the class of cographs. Sequentially, a linear-time
algorithm for recognizing cographs was given in [8]. In a parallel setting, cographs can be efficiently
(but not optimally) recognized in polylogarithmic time using a polynomial number of processors.
Adhar and Peng [1] described a parallel algorithm for this problem which, on a graph on n vertices
and m edges, runs in O(log® n) time and uses O(nm) processors on the CRCW PRAM model of
computation. Another recognition algorithm was developed by Kirkpatrick and Przytycka [16],
which requires O(log® n) time with O(n®/log® n) processors on the CREW PRAM model. Lin
and Olariu [18] proposed an algorithm for the recognition and cotree construction problem which
requires O(log n) time and O((n®+nm)/logn)) processors on the EREW PRAM model. Recently,
Dahlhaus [9] proposed a nearly optimal parallel algorithm for the same problem which runs in
v(?{l:::g2 n) time with O(n+m) processors on the CREW PRAM model. Another cograph recognition
and cotree construction algorithm was presented by He [11]; it requires O(log” n) time and O(n+m)
processors on a CRCW PRAM maodel.

Since the cographs are perfect, many interesting optimization problems in graph theory, which
are NP-complete in general graphs, have polynomial sequential solutions and admit efficient or
even optimal parallel algorithms in the case of cographs. Such problems, with a large spectrum
of practical applications, include the maximum clique, minimum coloring, minimum domination,
Hamiltonian path (cycle), minimum path cover, and isomorphism testing [5, 10]. In particular, for
the problem of determining the minimum path cover for a cograph, Lin et al. [20] presented an
optimal sequential algorithm, which can be used to produce a Hamiltonian cycle or path, if such
a structure exists. Bodlaender and Méhring [4] proved that the pathwidth of a cograph equals
its treewidth and proposed a linear-time algorithm to determine the pathwidth of a cograph. In
a parallel environment, many of the above problems are solved in polylogarithmic time with a
linear number of processors for cographs, assuming that the cotree of the cograph is given as input
[1, 2, 16]; for example, the minimum path cover problem is solved in O(logn) time with O{n/logn)
processors [21].

The cotree of a cograph is constructed in O(log®n) time with O(n + m) processors [9, 11],
or in O(logn) time with O((n? + nm)/ logn)) processors (18], and, thus, the cotree construction
dominates the time and/or processor complexity of the parallel algorithms for solving all the
previously stated optimization problems on cographs. It follows that these parallel algorithms
need, in total, either O(log®n) time or O((n? + nm)/logn)) processors, since they require the
cotree as input instead of the standard adjaceney-list representation of the input cograph.

In this paper, we establish structural properties of cographs (based on the fact that a cograph
contains no induced subgraph isomorphic to a Py [17]), which enable us to obtain efficient parallel
algorithms for recognizing whether a given graph is a cograph and for constructing the cotree of a
cograph. More precisely, for a graph on n vertices and m edges, our algorithms run in O(log® n) time

using O((n +m)/logn) processors on the EREW PRAM model of computation, an improvement
on both the time-processor product and the model of computation over the previously known
parallel algorithms for these problems. The algorithms work in a fashion similar to that used in [9]
and take advantage of the optimal parallel algorithm for computing the connected components of
the complement of a graph described in [6] and an optimal O(logn)-time and O((n + m)/ log n)-
processor EREW-algorithm which computes the connected components of a graph or detects that it
contains a Fy; the latter algorithm is interesting in its own right as it constitutes an optimal parallel
connectivity algorithm for cographs, and can be extended to vield an optimal parallel connectivity
algorithm for graphs with constant diameter (note that no optimal parallel connectivity algorithm
is currently available for general graphs).

The paper is organized as follows. In Section 2, we present the notation and related terminology
and we establish results which are the basis of our algorithms. In Section 3, we present the optimal
parallel algorithm that either computes the connected components of the input graph or detects
that the graph contains a Py as an induced subgraph. The cograph recognition and the cotree
construction algorithms are described and analyzed in Sections 4 and 5 respectively. Finally,
Section 6 concludes the paper with a summary of our results and some open problems.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a graph G, we denote
by V(@) and E(G) the vertex set and edge set of G, respectively. Let § be a subset of the vertex
set V(G) of a graph G. Then, the subgraph of G induced by § is denoted by G[5].

A path in the graph G is a sequence of vertices vyvs... v such that wviyy € E(G) for i =
1,2,... .k — 1; we say that this is a path from v; to v and that its length is k. A path is called
simple if none of its vertices occurs more than onee; it is called trivial if its length is equal to 0.
A simple path viva... v is chordless if vv; ¢ E(G) for any two non-consecutive vertices v;, v; in
the path. Throughout the paper, the chordless path on k vertices is denoted by Pj; in particular,
a chordless path on 4 vertices is denoted by Fy. If the graph ¢ contains a path from a vertex x
to a vertex y, we say that r is connecied fo y. The graph & is connecfed if r is connected to y
for every pair of vertices x,y € V(). The connected components (or components) of G are the
equivalence classes of the “is connected to” relation on the vertex set V(&) of G. The co-connected
components (or co-components) of G are the connected components of the complement G of G.

The neighborhood N(z) of a vertex r of the graph G is the set of all the vertices of G which are
adjacent to . The closed neighborhood of z is defined as N[z] := N(x) U {z}. The neighborhood
of a subset S of vertices is defined as N(5) := (U,cs N(x)) — S and its closed neighborhood as
N|[S] ;== N(S)US. If two vertices x and y are adjacent in G, we say that x sees y; otherwise we
say that xr misses y. We extend this notion to vertex sets: V; € V(@) sees (misses) V; € V(G) if
and only if every vertex = € V; sees (misses) every vertex y € Vj.

The parallel cograph recognition algorithm relies on the result stated in the following lemma.

Lemma 2.1. Let G be a graph, v a verter of G, 51.52,_, as .Ee the co-connected components of
G[N(v)], and C1,Ca, ... ,Ci the connected components of G[V(G) — N[v]]. Then, G contains no
Py with vertices in both N[v] and V(G) — Nv] if and only if

(i) every co-component C; either sees or misses every component C;, and

(ii) for every pair of components C; and C;, either N(C;) € N(C;) or N(C;) 2 N(C;).

Proof: (=) We assume that the graph G does not contain a Fy as described: we will show
that conditions (i) and (ii) hold. If condition (i) did not hold, then there would be a vertex z of
some C; which would be adjacent to a vertex y in some C; but non-adjacent to a vertex z of Cj;
then, the path vzyz would be a P; with vertices in both N[v] and V(G) — N|v|, a contradiction.
Therefore, condition (i) must hold. Suppose now that condition (ii) does not hold: then, there
would exist two components C; and C; and two vertices a, b € N(v) such that a € N(C;) = N(C;)
and b € N(C;) — N(Ci). The vertices a,b are adjacent in G; otherwise, they would belong to the
same co-component of N(v), and then, in accordance with condition (i), they would have to either
both see or both miss C;. But then, for any vertex x € N{a)NC; and any vertex y € N(b)NC;, the
path zaby is a Py and contains vertices from both N[v] and V(G) — Nv]; a contradiction again.
(=) We assume that the conditions (i) and (ii) hold; we will show that the graph G does not
contain a P; with vertices in both N[v| and V(G) — N[v]. Suppose for contradiction that G
contained such a P;. We distinguish the following cases:

a) v participates in the Py Since v is adjacent to all the vertices in N(v), such a Py can either be
of the form vabe with a € N(v) and b,e € V(G) = N[v], or of the form rvyz with z,y € N(v)
and z € V(G) — N[v]. In the former case, b, c belong to the same connected component of
G[V(G) — N[v]] and a sees exactly one of them, while, in the latter, £, y belong to the same
co-component of G[N(v)] and z sees exactly one of them; in either case, condition (i) does
not hold, which leads to a contradiction.

b) v does not participate in the Py: Then, the Py contains vertices from V(G) — {v} and at
least one edge, say, zy, with * € N(v) and y € V(G) — N[v]. The edge xy cannot extend
to a Py zyz of the Fy: if it did, then z € N(v), for otherwise v,z would belong to the
same connected component of G|V (G) — N[v]] and = would see exactly one of them, in
contradiction to condition (i); since x. 2z € N{v), the Py would be (without loss of generality)
ryzw which violates condition (i) no matter whether w € N(v) (then, z.w belong to the
same co-component and y € N(z) — N(w)) or w € V(G) — N|[v] (then, z.z belong to the
same co-component and w € N{z) — N(z)). Hence, if a vertex of the F; which belongs to
V(@) — N[v] is adjacent in the Py to a vertex in N(v), it cannot be a midpoint of the Py.
This implies that no vertex in V(G) — N[v| is a midpoint of the Py; thus, the only possible
cases are:

o the Py is abry where a, b € N{v): then, condition (i) is violated; a, r belong to the same
co-component of G[N(v)] and y sees exactly one of them.

o the Py is zury where u € N(v) and z € V(G) — N[v]: then, if y,z belong to the
same component of G[V(G) — N[v]], condition (i) is violated, otherwise, condition (ii)
is violated.

In all cases, we reached a contradiction; therefore, the graph G cannot contain a Py with
vertices in both N[v] and V(G) — N[v]. g

It follows that if conditions (i) and (ii) of Lemma 2.1 hold and the graph & contains a P as an
induced subgraph, then this P; entirely belongs either to one of the co-components G (1=i<¥)of
the subgraph G[N(v)] or to one of the components C; (1 < j < k) of the subgraph G[V(G) — N[v]|;
clearly, no P; in G[N(v)] has vertices belonging to two or more co-components of G[N(v)], and no
Py in G[V(G) — N[v]] has vertices belonging to two or more components of G[V(G) — N[v]].

Additionally, for any vertex v of a graph G, the following observation holds for the number of
co-connected components of the subgraph G[N(v)]:

Observation 2.1. Let G be a graph on n vertices and m edges, v a verter of G, and Cy.Ca,Gy
the co-connected components of GIN(v)]. Then, £ < +/2m.

Proof: The definition of C;s (1 <4< {) implies that every vertex of C; sees every vertex of (i"}f for
every j £ i. Thus, there exist at least

1gzz|c| Y IGl 2 1;2£|¢| (£-1) 2 (e-1)/2

Jei

edges connecting vertices in different co-components of G[N(v)]. Since G contains a total of m edges
and there are at least £ edges connecting v to its neighbors, we conclude that m = £+ £(f - 1)/2 >
£ /2, from which the observation follows. §

Let G be a graph on n vertices. Then, we define the sets L, M, and H of the low-, middle-,
and high-degree vertices of G, respectively, as follows:

[= {EEV(E) | deirosntsinG {ln}

M = {xEV[GH-n-‘:degreeofa:lnG

.s:.|-:a
'\—.--

H = {zcV(G)|degreeofzin G }gn}

Clearly, the sets L, M, and H partition the vertex set V(Z) of G. Then, we can show the following
results:

Obszervation 2.2. Let G be a graph on n vertices and let v € V(G). Ifv € M, then the cardinality
of each co-component G 1<ict, of the subgraph G|N(v)] and of each connected component C;,
1< j <k, of the subgraph G[V(G) — N(v]] does not exceed 3n

Proof: The definition of the set M implies that in < [N(v)| € 3n, from which the observation
follows. g

Lemma 2.2. Let G be a cograph on n vertices such that the degree of every verter of G erceeds
Qn. If Ay, As.... Ay are the co-components of G, then [A;] < ﬂn Joralli=1,2,.. .p.
Proof: Suppese for contradiction that there exists some i such that |4 > n Then, 3 ;. [A_,|

n-— |A¢] < n. This implies that every vertex in A, is adjacent, to more tha.n n,/2 vertices in A,

recall that the degree of each vertex exceeds 3n/4. Since A; is a co-component of a cograph, it
consists of at least two connected components, one of which has cardinality at most n/2; but then,
the vertices of this component cannot be adjacent to more than n/2 vertices of A;.

It is worth noting that any graph G meeting the conditions of Lemma 2.2 (i.e., each of G’s vertices
has degree exceeding 2|V/(G)|) is connected: if G were disconnected, then at least one of its
connected components would be of size at most |V/(G)|/2, which implies that the degrees of the
vertices in this component would be less than |V(&)|/2, a contradiction.

Dahlhaus [9] has shown the following lemma:

Lemma 2.3. ([9], Lemma 6) Let G be a cograph on n vertices and lef
. 1
L.={veV(G) | degrec of v in G < En}_

Then, the cardinality of each connected component of the graph G[L,| does not ezceed 2n.

Finally, we will also take advantage of the following result, which can be found in [9]: to make
the exposition more self-contained, below we include a proof, which is simpler than that in [9].

Lemma 2.4. Let G be a cograph on n vertices such that the set M is empty. Lei v be the vertex
in L which has the mazimum number of neighbors in H, and let C1,Ca,... ,Ci be the connected
components of G[V(G) — N[v]]. If there exists a component C; such that |C;| > 3n, then the
eardinality of each co-component of the graph G[C;| does not exceed 3n.

Proof: Observe that every vertex r € H — C; is adjacent to at least one vertex of C;; if not,
then the degree of x would be at most equal to n — |C;] < %n, which leads to a contradiction. In
fact, such a vertex r sees the entire C;; this follows from Lemma 2.1, taking into account that r
belongs to a co-component of G[N(v)], since z is adjacent to a vertex in {; and it does not belong
to C;. Additionally, C; contains at least one high-degree vertex; otherwise, it would be (a subset
of) a connected component of G[L] and then, by Lemma 2.3, its cardinality would be at most %n
(note that L is equal to the set L, in Lemma 2.3 for a = 4). Finally, we show that C; contains no
low-degree vertices, Suppose that there existed such a vertex z. Since C; is connected and contains
a high-degree vertex, there would exist a path from z to that high-degree vertex in G[C;]; clearly,
such a path would contain an edge connecting a low-degree vertex, say, w, to a high-degree vertex.
Then, w is adjacent to all the high-degree vertices in H — C; and to at least one high-degree vertex
in C;. Since H N N{v) € H — (;, this contradicts the choice of v as the low-degree vertex that
has the maximum number of neighbors in H. Therefore, C; contains only high-degree vertices.
Then, in the complement of G, the vertices of C; belong to the low-degree vertex set L' of G and
the co-components of G[C;| would be subsets of the connected mmponents of G[L']; Lemma 2.3
implies that the cardinality of any such co-component would not exceed 2 o

The following lemma will be useful both in our cograph recognition algorithm as well as in our
algorithm for constructing the cotree of a cograph.

Lemma 2.5. Let G be a cograph, v a verter of G, Cy,Ca, ... ,Cs the co-connected components of
G[N(v)], and Cy,Cz, ... ,Cy the connected components of G|V(G)—Nlv]]. For each co-componentC;,
1< i< {, we define the set I; = {j | C; sees C; }. Then, the following hold:

(i) The co-components of G[N(v)] have the following monotonicity property: |E| < |f:,| implies
that f-l' '; .fj.

(i) Suppose that the arﬁeﬁng of the co-components Cy,Ca,Ce corresponds to their ordering
by non-decreasing |I|. If we associate each component C;, 1 < i < k, with the set I; =

{7 | Ci sees C; }, then the components of G[V(G) — N|v]| have the following property: if
|Ii| # @ and h is the minimum element of I;, then I; = {h,h +1,... ,£}.

Proof: (i) Suppose for contradiction that there exist co-components C; and :’3 such that ;| < |I |
and I, € I Then, there exists t € e I:,, which implies that C sees whereas (3 misses Ct.
Additienally, since |I;| < |I |andt & I; - I;, there exists t' £ I_f — I, which in turn implies that E
sees Cy whereas C; misses Cy. But then, any four vertices a,b,e.d, suchthat a € Gy, b e (3;, CcE C
and d € Cy, induce a Py abed in &; a contradiction.

(ii) For any component C; such that I # 0, it suffices to show that ¥j > h, C; sees E Consider
any such J; since j > h, it holds that |_Fh; < |Ij| whlr:h according to statement (i) vields that
Ih C I From the deﬁmtmn of k, we have that C; sees L'.’;.. or equivalently that Ch sees (;; that is,
tth SmceI,. CI then:Ef_,,ue [} seesf.' 1

Lo | Ser 5o
G[V(G) = N[v|| "O wna O ."O P O - O O 3 ’O O ¥
Figure 1
Consider the partition of the set of co-components {51 i 5;} of the subgraph G[N{v)

into a collection of sets where any two co-components C L’I belnng to the same set if and only 1f
I, =T, ie, € and C; see the same components of the subgraph G[V(G)} — N[v]]. Let us denote
these : partition sets .5‘1, S5.... .5, where, for every i, jsuch that 1 < < j < #, and every e € 8
and (3 = Sj, e Is, the value ¥ is equal to the distinet values of the I s, and thus each set ,5 is
nonempty.

In light of the above partition and due to Lemma 2.5 (statement (ii)), we can partition the set
of connected components {C1,Ca,Cx} of the subgraph G[V(G) — N[v]] into sets Sg, 51,... , Se
as follows:

S = {C;|¥CeB, CjseesC)
S5 = |‘u"EE 5 and @ e 8§, C; sees C but does not see C' } 2<igi)
So {C1.Caye v s Ci} = Uiy, o 5

]

The definition of the sets :‘:T:,‘ i=1,2,...,¢, implies that S; £ 0 for all i = 2,3,... ,£. However,
Sp and 5§ may be empty; in particular, Sp is empty if and only if the graph G is cunnected. The
partitions of the co-components and components described above are illustrated in Figure 1; the
dotted ovals indicate the partition sets, and the cireles inside the ovals indicate the components
or co-components belonging to the partition set. In terms of these partitions, the cotree of a
cograph G has a very special structure, which is deseribed in the following lemma.

Lemma 2.6. Let G be a cograph. v a vertex of G, and §1,§2: i ,§,~_e and Sy, 51,... . Se respec-
tively the partitions of the co-connected components of G[N(v)| and of the connected components
of G[V(G) — N[v]] as described above. Then,

(i) if 51 = 0, the cotree of G has the general form depicted in Figure 2(a);

(ii) if Sy # 0, the cotree of G has the general form depicted in Figure 2(b).
In either case, the dashed part appears in the tree if and only if Sy # 0.

The circular nodes labeled with a 0 or a 1 in Figure 2 are O-nodes and 1-nodes respectively, whereas
the shaded node is a leaf node; the triangles denote the cotrees of the corresponding connected
components or co-components. Lemma 2.6 gives us a way of constructing the cotree of an input
cograph G: we compute the partitions S.....58¢ and S5, 51, Sp; we recursively construct the

Figure 2

cotrees of the elements of each of the above partition sets; we link these cotrees as indicated in
Figure 2. By carefully selecting the vertex v, we can guarantee that the cotree construction takes
O(log® n) time, where n is the number of vertices of G.

3 Finding Connected Components or Detecting a P,

In this section, we present a parallel algorithm which takes as input a graph and computes its
connected components or detects that the graph contains a Py as an induced subgraph.

Let &7 be an undirected graph on n vertices and m edges, and suppose without loss of generality
that V(G) = {1.2,... ,n}. We define the function f : V(G) — V(G) as follows: flv) =
min{u | u € N[v]}. The function f is well defined since, for any vertex v, N|v] # 0; additionally,
the following properties hold:

(P1) For any vertex v € V(G), f(v) is the minimum-index vertex at distance at most 1 from v.

(P2) Let us define f%*)(v) as follows: f(v) = f(v), ' (v) = f(f*Nv)). Then, for any
vertex v € V(G), f*(v) is the minimum-index vertex at distance at most k from v, or
equivalently f*)(v) = min{u | v € N[N[... N[¢]...]]}.

— e’
k

(P3} Any two vertices u,v € V(G), for which f{u) = f{v), belong to the same connected compo-

nent of &.

(P4) If u, v, w are distinct vertices of G such that f(u) = v and f(v) = w, then the vertices u, v
and w induce a Py uvw in G,

Property P1 follows trivially from the definition of f(v); Property P2 is easily established by
induction on k. Property P3 is a consequence of Property P2, whereas Property P4 follows from
Property P1 and the fact that in such a case v < u < w,

Lemma 3.1. Let G be an undirected graph, f the function defined above, and V1, V5, ..., Vi the
partition of V(&) such that any two vertices =,y belong to the same partition set iff f(f(z)) =
flflw)). Then, the following staterments hold:

(i} All the vertices in each V; belong to the same connected component.

(it} If there exists an edge zy € E(G) such that x € Vi, y € V}, and i # j, then G contains a Fy
as an induced subgraph.

(#ie) If the length of every induced path in G does not exceed 2, the sets 11, V5,... Vi are the
connected components of G.

Proof: (i) Clearly true, since, by Property P2, for all vertices z,y € V(@) such that f(f{z)) =
flfly)) = z. G contains paths {of length at most 2) from = to z and from y to 2.

(ii) Suppose that there exists such an edge zy, and assume without loss of generality that f(f(z)) >
flf(¥)) = z. Then, Property P2 implies that z £ N[N|[y]] and Property P1 that z ¢ N[N[z]], which
in turn implies that z ¢ N[y]. Since z € N[N[y]] and z € Nly], there exists a vertex w € N(y)
such that y,w, z induee a P ywz in G. Then, the fact that neither z nor w are adjacent to T
(otherwise, z € N[N|[z]]) implies that the graph G contains the Py rywz as an induced subgraph.
(iii) If every induced path in G has length at most 2, then, for every vertex = € V(G&), the
set N[N[z]] coincides with the vertex set of the connected component of G to which r belongs.
That is, for every vertex r in a connected component C; of G, f{f(z)) = min{u | u € C; }; the
truth of statement (jii} follows. g

Our connected components algorithm relies on Lemma 3.1. It computes, for each vertex v of
the input graph, the value of f{f(v)), and then checks whether there exist two adjacent vertices
v and u such that f(f(v))} £ F(f(u)); if yes, it reports that the graph contains a Py, otherwise,
based on the values of f{f()), it generates an output array comp[] of size n such that cemp[v]
is equal to a representative of the connected component containing v. The algorithm uses two
auxiliary arrays A|] and B[] of size equal to the number of vertices of the input graph which store
the values of f() and f{f()) respectively.

Algorithm Components-or-F4
Tnprct: an undirected graph & on n vertices and m edges.
Qutput: either a message that G contains a Py as an induced subgraph or an array comp[].
1. For each vertex v € V(@) do in parallel
Aly] = v;
2. For each vertex v € V(&) do in parallel
Alv] — min{Afu] | u € N[v]};
Bl) — min{A] | u € N}
3. For each edge uv € E((F) do in parallel
if Blu] # B[v|
then print that G contains a Py as an induced subgraph; exit;

4, For each vertex v € V(&) do in parallel
comp [v] +— B[r];

The correctness of the algorithm is a direct consequence of Lemma 3.1.

Time and Processor Complexity. Next, we analvze the time and processor complexity of
the algorithm; for details on the PRAM techniques mentioned below, see [3, 12, 22]. We assume
that the input graph G is given in adjacency list representation.

Step 1: Clearly, the assignment operation performed in Step 1 can be executed in O(logn) time
using O(n, logn) processors on the EREW PRAM model.

Step 2: In order to compute the new value of Afv] for each vertex v € V(@) avoiding coneurrent
read operations, we use for each vertex v an auxiliary array A,[] of size equal to the degree deg(v)
of v in G. We also use another auxiliary array W] of size n x n; it must be noted that, although
W] has n? entries, only O{m) of these will be processed. Then, the computation of Alv] is carried
out as follows:

t= For each vertex v € V(@) do in parallel

2.1 for each vertex u in the adjacency list List(v) of v do in parallel
compute the rank ry{u) of the record of u in List(v);
deg(v) — maxy{ry(u)}:
2.2 copy the value Afv] (as initialized in Step 1) to each of the deg(v) entries of A, [];
2.3 for each vertex u in the adjacency list List(v) of v do in parallel
Wlv,u] — Apfre(ul];
Ap[ro(u)] — min{W v, u], W(u,v]};
24 Alv] — min{A.[i] | 1 £1 < deg(v)};

Clearly, by taking advantage of the “twin” entries Wy, u] and Wlu, v] in Substep 2.3, we ensure
that Afv] is correctly updated. In Substep 2.1, the ranks of the elements of List(v) and their
maximum can be optimally computed in O{log deg(v)) time using {deg(v)/ log deg(v)) processors,
or in Wlogn) time using O{deg(v)/ logn) processors, on the EREW PRAM model. Substeps 2.2,
2.3, and 2.4 can also be executed without concurrent read or write operations in O(logn) time with
Oldeg(v)/ log n) processors. Thus, the computation of the values A[v] for all vertices v £ V() can
be done in Qflogn) time with O{(n + m)/logn) processors on the EREW PRAM model. Since
the rest of Step 2, i.e., the updating of the array B[], is executed in the very same way, the entire
step takes (Nlogn) time with O((n +m)/ logn) processors on the EREW PRAM model.

Step §: Here, we have to check whether there exists an edge uv of G such that Blu] # Blv]. For

an EREW execution, we use the n x n array W/[| mentioned in the analysis of Step 2, and for each
vertex v € V(G), an auxiliary array B,[] of size equal to the degree deg(v) of v.

& For each vertex v € V() do in parallel

3.1 copy the value B[v] (as computed in Step 2) to each of the deg(v) entries of B,[];
3.2 for each vertex u in the adjacency list List(v) of v do in parallel
W(v, u] < By[r,(u)], where ry(u) is the rank of the record of u in List(v);
if Wiv, u] # Wi, v]
then B,[r,(u)] — 0;
3.3 i min{B,[i] | 1<i<deg(v)} =0
then print that G contains a Py as an induced subgraph;

Note that W{v, u] # Wlu, v] iff By[r.(u)] # Bulra(v)], or equivalently, B[v] # Blu]. Using parallel
techniques similar to those used in Step 2, it is easy to see that the entire step for all vertices

v € V(G) can be executed in O(logn) time with O((n + m)/logn) processors on the EREW
PRAM model.

10

Step 4: The assignment operations performed in this step are executed in O(logn) time with
O(n/logn) processors on the EREW PRAM model.

Taking into consideration Lemma 3.1 and the time and processor complexity of each step of
the algorithm, we obtain the following result.

Theorem 3.1. When applied on e graph G on n vertices and m edges, Algorithm Components-
or-P4 either detects that G contains o Py as an induced subgraph or computes G's connected
components in O(logn) time using O((n + m)/ logn) processors on the EREW PRAM model.

It must be noted that the goal of Algorithm Components-or-P4 is not to detect whether the input
graph contains a Py. Se, in some cases, it terminates without reporting that the graph contains a
P, even if this is so; in any such case, however, it correctly reports the connected components of
the given graph.

Finally, it is worth mentioning that the main idea emploved by the Algorithm Components-
or-P4 can be used to yield an optimal parallel computation of the connected components of any
graph with constant diameter. For any graph with diameter at most some constant d, it suffices
to replace the body of the for-loop in Step 2 of the algorithm by the sequential execution of d
computations of the form “Afv] — min{Afu] | u € N[v]}” and ignore Step 3. The resulting
algorithm clearly runs in O(dlogn) = O(logn) time using O((n + m)/logn) processors on the
EREW PRAM.

Remark 3.1: Computing the representatives of the connected components. Let &
be a graph on n vertices and let C;,Ca,... ,C; be its connected components. If the Algorithm
Components-or-P4 does not report the existence of a Py in G, it computes G's connected compo-
nents and stores the information in the array comp[] of size n so that for each v € C;, comp[v] is
equal to the representative of the connected component C;; in fact, the representatives vy, vz, ... , %
of the connected components Cy,Cz, ... ,Cr are such that v; = min{v € (;}, 1 £i < k. The rep-
resentatives can be isolated in O(logn) time using O(n/logn) processors on the EREW PRAM
model as follows: we use an array R[] of size n such that R[] = v if comp[v] = v and R[v] =0
otherwise; then, by using prefix computation and array packing techniques on R[], we can collect

the representatives v1,vz, ... , vk into the first k positions of the array R[] —that is, R[i] = v; for
1<i<k.

Remark 3.2: Collecting the vertices of each connected component. Let v, v2,... , v be
the representatives of the connected components Cy,Ca,... ,Cp of the input graph G, which have

been computed by Algorithm Components-or-P4. We are interested in collecting the vertices of
each connected component.

First, it is important to observe that if the Algorithm Components-or-P4 has terminated and
reported that it has computed the connected components of G, then every pair of adjacent vertices
of & have the same value of B[]. Additionally, in order to ensure that each vertex will be collected
exactly once, during the computation of Blv] in Step 2 of the algorithm, we keep track of the
vertex that has contributed the minimum in the computation of Blv], and we break ties in favor of
the lowest-index vertex; let us denote this vertex by p(v). Then, the definition of the quantity p{ |
implies that the following hold:

o for each representative v, it holds that p(v;) = v;; for any other vertex v, p(v) # v;

o if the quantity p(v) is interpreted as the “parent” of vertex v, then, the pairs (v,p(v)) form
a tree in parent-pointer representation.

11

As in the description of the Algorithm Components-or-P4, we assume that the input graph G
is given in adjacency-list representation, and that List(v) denotes the adjacency list of vertex v.
We use an auxiliary array W/[| of size n x n (as in Step 2 of the Algorithm Components-or-P4),
and, for each vertex v, an array T, [] of size equal to the degree deg(v) of v in G. Then, the vertices
of each of the connected components C;, 1 <4 < k, can be collected as follows:

1. For each vertex v € V(&) do in parallel

1.1 for each vertex u in the adjacency list List(v) of v do in parallel
compute the rank r,(u) of the record of w in List(v);
deg(v) — max,{r.(u)}:
1.2 copy the value p{v) to each of the deg(v) entries of T,[];

1.3 for each vertex u in the adjacency list List(v) of v do in parallel
Wiv,u] — Ty fro(u)):
p—Wluvl;, {p=plu)}
ifp#v
then mark the record of u as useless;
else insert the adjacency list List{u) of u right after the record of u in List(v);

2. for each vertex representative v;, 1 <1 < k, do in parallel
compute the ranks of the vertex records in the (augmented) adjacency list of v
copy the contents of the adjacency list to an array;
pack the array while ignoring vertices that have been marked as useless;

For 1 < i < k, the resulting packed array associated with vertex v; contains each of the vertices
in C; — {v;} exactly onece; adding an entry for v; yields the entire set of vertices of the connected
component C;. It is easy to see that the above computation can be carried out using standard
and simple parallel techniques in O(logn) time with O((n + m)/logn) processors on the EREW
FRAM model.

Having computed the vertices of each connected component Cy,Cs, ... ,Cp of the graph G, we
can also compute the adjacency-list representation of each induced subgraph G[C1], G[C2)]. ... , G[Ck]
within the same time and processor bounds using the same model of computation.

4 The Recognition Algorithm

In this section, we present a parallel algorithm for recognizing whether a given graph G is a cograph.
As in the description of the parallel connectivity algorithm of the previous section, we assume that
G is given in adjacency-list representation. We also assume that for each edge uv of G, the two
records in the adjacency lists of u and v are linked together; this helps us re-index the vertices in
subgraphs of the given graph fast.

Algorithm Recognize-Cograph

Input: an undirected graph.
Outpui: a message either that the input graph is a cograph or that it is not.

1. Call the subroutine Process-Graph on the input graph;

2. Print that the input graph is a cograph.

12

Subroutine Process-Graph

Input: an undirected graph & on n vertices and m edges.

1.

2

10.
1L,

Compute the sets L, M and H containing the low-, middle-, and high-degree vertices of 7,
respectively:;

If L =1 and M = { then {each v € V(G) has degree > 3n}

(a) compute the co-components of G;
(b) if any of these co-components has cardinality exceeding %n
then {G is not a cograph}
print that the input graph is not a cograph; exit;
else compute the subgraphs induced by each of the co-components and

call recursively the subroutine Process-Graph on each of these subgraphs;
return;

If M £ 0
then v «— an arbitrary vertex of M;
else v+ the vertex in L with the maximum number of neighbors in H; {note: L 0}

Compute the following induced subgraphs &; and Go of the graph G

(a) Gi = G|N[v));
(b) Gz = G[V(G) - N[v);

. Compute the co-components El,fz, s ,Eg of the graph &y

. Use the algorithm Components-or-P4 on the graph G» in order either to detect that it

contains an induced Py or to compute its connected components Cp,Ca, ... ,Cy;
if G2 contains an induced Py
then print that the input graph is not a cograph; exit;

. If there exists a pair (:.‘1 C; such that the co-component ('3: neither sees nor misses the connected

component C;
then {7 contains an induced Py with vertices in G and G2}
print that the input graph is not a cograph; exit;

Sort the co-components 51152._ e ,Eg of the graph & in non-decreasing number of the con-
nected components of the graph G» that each co-component sees;
let S = (Cr(1),Cr(2)s--- :Cx(s)) be the sorted list;

. If there exist two consecutive co-components E?Tiifl and Eﬂ(i“] in S, where 1 < i < £, such

that ff,,(!-] sees a connected component of the graph Gz which Czp;4q) misses
then {G contains an induced Py with its midpoints in G and its endpoints in G}
print that the input graph is not a cograph; exit;

Compute the induced subgraphs G{f.-], 1<i<fand G[C;], 1 €7 <k

Call recursively the subroutine Process-(Graph on each G[E.':_] {1 <i<{), and on each G[Cj]
(1 < j < k) such that |Cy| < 3n;

if there exists a Cj such that |;| > %n then call recursively the subroutine Process-Graph on
each of the subgraphs induced by the co-components of G[C;];

13

Ohserve that if at any point any of the subgraphs on which we apply the subroutine Process- Graph
is found not to be a cograph, then the subroutine immediately prints that the input graph is not
a cograph and exits. Additionally, it is important to note that the following lemma holds.

Lemma 4.1. If during the evecution of the subroutine Process-Graph on a graph G on n verfices

o recursive call is made on a graph G', then &' is o subgraph of G and the number of vertices of
G' does not eveeed 3n.

Proof: Recursive calls are executed in Steps 2 and 11 of the subroutine Process-Graph. In either
case, the graphs on which the calls are executed are subgraphs of . Moreover, when Process-
Graph is called on a subgraph induced by a co-component of the input graph & in Step 2, then the
number of vertices of the subgraph does not excead %ﬂ.. The same clearly holds when it iz called on
a subgraph G[C;] {1 < j < k) such that [C;| < 3n in Step 11. For the case when Process-Graph is
called on a subgraph G[C;] (1 < i < £) in Step 11, we note that 1G] < |IN(v)] < %n. since v belongs
to the set M or the set L. Finally, if in Step 11 there exists a component C; such that |C;] = ij—ﬂ..,
then, in light of Observation 2.2, v § M, which implies that M = @; but then, by Lemma 2.4, the
cardinality of each co-component of ':r[é;] does not exceed 1n. g

Correctness. The correctness of the messages printed by Subroutine Process-Graph in Steps 2,
6, and T readily follows from Lemma 2.2, from the definition of the cographs, and from Lemma 2.1,
respectively. The correctness of the message printed in Step 9 also follows from Lemma 2.1: if there
exists a co-component fm{,-:, which sees a connected component, say, C, of the graph G2 which the
CO-COMPOnent {?ﬂ,ﬂ} misses, then because the co-components have been ordered by non-decreasing
number of components they see, the co-component E,,.(iﬂj must see another component of Ga, say,
¢', that Eﬂi] misses; then, neither N(C) € N(C") nor N(C) 2 N(C"), which implies that the input
graph is not a cograph according to Lemma 2.1, statement (ii). On the other hand, both in Steps
2 and 11 where recursive calls are executed, the graphs on which the recursive calls are made are
components or co-components of the graph & and their vertex sets form a partition of the vertex
set of G, so that & is a cograph iff each of these graphs is a cograph.

Time and Processor Complexity. It suffices to analyze the time and processor complexity
of the subroutine Process-Graph: clearly, the time and processor complexities of the application of
the algorithm Becognize-Cograph on a graph & are identical to the respective complexities of the

application of the subroutine Process-Graph on . For details on the PRAM techniques mentioned
below, see [3, 12, 22].

Step 1: The computation of the degree deg(v) of a vertex v of the graph & can be done by applying
list ranking on the adjacency list of v and by taking the maximum rank; this can be done in O{log n)
time using Ofdeg(v)/ logn) processors on the EREW PRAM. The computation for all the vertices
takes O(logn) time and Om, logn) processors on the same model of computation. Locating the
low-degree vertices of the graph G, ie., all the vertices v € V(G) such that deg(v) < in, can
be done in O(logn) time using O(n/logn) processors on the EREW PRAM model: we use an
auxiliary array Low|| of size n and we set Low|y] = v if the vertex v has degree deg(v) < 41'1'?.
and Low[v] = 0 otherwise; then, the low-degree vertices of & can be collected by means of array
packing on Low[] using prefix computation. The middle- and the high-degree vertices of @ can be
collected in a similar fashion within the same time-processor bound.

Step 2: Since we use an array representation for each of the vertex sets L, M, and H, we can
check whether such a set contains a vertex {or it is an empty set) in constant sequential time. The
co-components of & can be computed in Oflog n) time with O({n +m)/logn) processors on the
EREW PRAM maodel [6], and so can the subgraphs of G induced by each of these co-components.

14

Step 3: Since each of the vertex sets L, M, and H is given in array representation, this step is
clearly executed in constant sequential time if M # 0: we take v — M[1]. If M =0, it is executed
in O(logn) time with O(n + m)/logn) processors on the EREW PRAM model: for each vertex
w in L, we mark the high-degree vertices in w’s adjacency list and compute the number of marked
vertices; then, we compute the maximum of these numbers over all vertices in L and select as v a
vertex whose number of marked vertices in its adjacency list equals the maximum.

Step 4: Let List{v) be the adjacency list of the vertex v, and let r,{u) denote the rank of the
vertex u in the list List(v). For each vertex v € V(). we use two auxiliary arrays A,[] and B,[],
each of size equal to the degree deg{v) of v. Then, the adjacency-list representation of the graph
& = G[N(v)] is computed, as follows:

t= For each vertex x € V({Z) do in parallel

4.1 for each vertex y in the adjacency list List(z) of x do in parallel
Aplra(y)] = v
4.2 if the vertex = belongs to N{v)
then copy the value 1 to each of the deg(x) entries of B[];
else copy the value 0 to each of the deg(z) entries of B;[];

& For each vertex w in the adjacency list List(v) of v do in parallel

43 fori=1,2,... deg(w) do in parallel
w— Ay [i];
if By[ru(w)] = 0, then mark the entry Ay [re(u)];
4.4 store the unmarked elements of the array Ay[] in consecutive locations, and, then,
construct a list of these vertices and associate it with vertex w € V{(Gy);

Since By[ry(w)] = 0 if and only if u € N{v), it is not difficult to see that the resulting lists for
all the vertices w € N(v) form an adjacency-list representation of the induced subgraph G;. The
computation of the list representation of the induced subgraph 77 is done in a fashion similar
to that previously described. Using standard and simple parallel techniques, such as interval
broadcasting and array packing, it is easy to see that the linked list representation of both graphs

&1 and Gz can be computed in O{logn) time with O{(n + m)/logn) processors on the EREW
PRAM model.

Step 5: The computation of the co-components of a graph on n vertices and m edges can be
optimally done in O(logn) time using Of(n 4+ m)/logn) processors on the EREW PRAM model
[6].

Step 6: Here, we use the algorithm Components-or-P4 that we have presented in Section 3, and
either detect that the graph G contains a Py as an induced subgraph or compute the connected
components 01, Cg, ... ,Cp of G2, Thus, the step is executed in O{log n) time using O (n+m)/ logn)
processors on the EREW PRAM model.

Step 7: In this step, we check whether for each pair ff’.; C;. the co-component ff’.; either sees or
misses the connected component C;, where 1 i < fand 1 < j < k. To do that, we first construct
a subgraph &* of the graph & as follows:

V(G") =V(G) - {v}
E(G™) ={zy | x € V(G1).y € V(G2)};

15

recall that the induced graphs G; = G[N(v)] and Gz = G[V(G) — N[v]], for v € V(G), have been
computed in Step 4. It is easy to see that an adjacency-list representation of G* can be constructed
from the graph G in O{logn} time with O{(n+m}/logn) processors on the EREW PRAM model.
By taking advantage of the graph G*, Step 7 is equivalent to performing the following two steps:

o for each co-component (i 1 < i < {, check whether all the vertices of 5, have identical
neighborhoods in G*;

o for each connected component C;, 1 < j < k, check whether all the vertices of C; have
identieal neighborhoods in &7,

Next, we show how to do the former step; the latter is done in a similar fashion. Let @1, %2,... .4
and fiy,fig,... .7y be the representatives and the number of verticcs’: respectively, of the co-
components 51,_52_.,,, ._Eg of the graph ;. For each co-component C;, 1 < i < £, we use an
auxiliary array D;[] of size i; — 1, and arrays B[], P ;[] (1 € § < #;—1), and M; «[] (z € Ci—{#}),
each of size equal to the degree deg® (i) of the representative i; in G*. Then, the processing of
the co-components is as follows:

= For each co-component Et-, 1=4i<¥ doin parallel

7.1 compute a linked list LC; containing the vertices in ff; —{ih;
7.2 compute the degree deg”(9;) of #; in G*;
7.3 make #; — 1 copies of the degree deg™(#,) in an array D;[1..5; — 1];
7.4 For each vertex x € L, do in parallel
compute the degree deg®(z) of x in G*;
if deg*(z) # D;[ri(z)], where r;(z) is the rank of x in LC},
then print that the input graph is not a cograph; exit;
7.5 copy the neighbors of #; in G* in the array Fi[l..deg™(i)];
7.6 make A; — 1 copies B 1[],--. , Pia.—1[] of the array By[);

7.7 For each vertex x € LC}, do in parallel
copy the neighbors of x in G* in the array M; -[]:
if M;z|] # Pir (=[], where ri(x) is the rank of z in LC;,
then print that the input graph is not a cograph; exit;

The correctness of the computation follows from the fact that the input graph is reported as not
being a cograph iff there exists a vertex r such that either the condition “deg®(z) £ D;[r:(z)]" in
Substep 7.4 or the condition “M; ;[] # B, (»[]" in Substep 7.7 is found true; the former condition
is true iff the degrees of » and &; in G* differ, the latter iff the vertices ¢ and #; have different
neighborhoods in G,

Substep 7.1 can be completed for all the co-components in O(logn) time with O(n+m)/logn)
processors on the EREW PRAM maodel in a fashion similar to the one deseribed for the connected
components of a graph in Remark 3.2, Moreover, since the graph &* is given in adjacency-list
representation and contains n — 1 vertices and m* < m edges, where n and m are the numbers
of vertices and edges of the input graph &, all the operations in Substeps 7.2 through 7.4 can be
executed in O(logn) time with O((n + m)/ logn) processors on the EREW PRAM model.

If the algorithm does not abort in Substep 7.4, then, for every vertex = € C; — {8:}, deg®(z) =
deg*(#;). Since deg*(z) is less than the degree degiz) of z in G, it follows that Substeps 7.5 and 7.6
can be executed in O{logn) time with O((n + m)/logn) processors on the EREW PRAM model.

16

The size of both the array F; ;. ;)[]| and the array M; ;[] is equal to deg®(z) and the if-statement
can be easily checked in O(log deg*(z)) time with O{deg™ (z)/ log deg*(z)) processors, or in Oflog n)
time with O(deg*(z)/logn) processors, on the EREW PRAM model by means of an auxiliary
array B; z[] of size deg*(z) as well: for j = 1,2,... ,deg"(z), if Mi o[j] # Bir.(z)[j] then B; o[j] — 1
else B;;[j] «— 0; next, we compute the maximum element of B;.[|, and M, .[] # B riiwyl] 1E
the maximum is equal to 1. Thus, Substeps 7.7 and 7.8 are executed in O(logn) time with
O((n + m)/ logn) processors on the EREW PRAM model.

From the above time-processor analysis, we conclude that we can check whether all the vertices
of each co-component have identical neighborhoods in G* in O(logn) time with O((n +m)/ logn)
processors on the EREW PRAM model. Processing the vertices of the connected components C;,
1 £ j < k, is done in a similar fashion; thus, the execution of Step 7 of the algorithm takes O{logn)
time and requires O{(n + m)/ logn) processors on the EREW PRAM model.

Step 8: Here, we sort the co-components 51152,. i f.’} in non-decreasing number of the connected
components Cq,Ca, ... ,Ci that each co-component sees. Let (ay,az, ... ,as) be the list such that
a; is the number of the connected components that E.t- sees; then, a; is equal to the degree of
the representative o; of C; in the subgraph of the graph & induced by the representatives of the
co-components C;, 1 < i < /, and the components C;, 1 < 7 < k. Thus, the a;5 can be computed in
Oflog n) time with O((n+m)/ logn) processors on the EREW PRAM model. Since the number £ of
co-components is O(y/m) (Observation 2.1}, sorting the a;s can be executed in O(logn) time with
O((n +m)/ logn) processors on the EREW PRAM model: note that logf = O(logm) = O(logn),
and that if /m < logn then m = O(n/logn), whereas if /m = logn then m = O(m/ logn).

Step 9: For simplicity, we assume that {El.fg,. s fr] is the sorted list of the co-components of
the graph Gy, ie, w(i) =1 for i = 1,2,... ,f (see Step 5). In a way similar to the one we used in
order to compute the list (a;,4az,... ,a¢) in the previous step, we compute the list (b, b2, ... ,by)

where b; is the number of the co-components of the graph & that the connected eomponent G
sees, 1 < ¢ < k. Then, we implement Step 9 as follows:

& For each connected component C;, 1 < 1 < k, do in parallel

9.1 find the co-component Cj, with the minimum index that the representative v; of C; sees;

92 ifbh#£{-h+1
then print that the input graph is not a cograph; exit;

The correctness of the computation follows from Lemma 2.5, statement (ii): note that if G is a
cograph and the minimum-index co-component that the representative v, of C; sees is Eh, then C;
sees each of the co-components Eh,Eh...L i .Eg, that is, it sees exactly { — h + 1 co-components.
The computation of the list (b, be, ... bi) takes O{logn) time using O{(n +m)/ log n) processors
on the EREW PRAM model. Moreover, it is easy to see that the representative of the minimum-
index co-component that each component C; sees, can also be computed within the same time and
processor bounds. Thus, Step 9 is executed in O(logn) time with O{(n + m)/ logn) processors on
the EREW PRAM model.

Step 10: The induced subgraphs G[E;‘;, 1<i<{ and G[C5), 1 £ j £k, can be computed in
Ologn) time using O((n + m)/ logn) processors on the EREW PRAM model.

Step 11: The co-components of any connected component C; such that |C;] > %n can be computed
in O(logn) time using O((n + m)/logn) processors on the EREW PRAM model [6], and as in
Step 10 the subgraphs induced by them can be constructed within the same time and processor
complexity.

17

Teking into consideration the time and processor complexity of each step of the subroutine
Process-Graph and the recursive calls, we have that the time complexity T'(n,m) and processor
complexity P(n,m) of the algorithm Recognize-Cograph when applied on a graph on n vertices and
m edges satisfy the following equalities:

T{n,m) = D[lognj+mt_ax{T{n;.mi]}

max{O({n + m)/logn), ZP[m,mi)}

Pln,m)

where n; and m; are the numbers of vertices and edges of the subgraphs on which the subroutine
Process-Graph is recursively called. Since ¥, n; < n, 3;m; < m, and for each i, n; < 3n/4
(see Lemma 4.1), the equalities for T'(n,m) and P(n, m) admit the solution: T'(n,m) = Of(log® n),
FP(n,m) = O{(n +m)/logn). Thus, we obtain the following result.

Theorem 4.1. Algorithm Recognize-Cograph runs in O(log®n) time using O((n + m)/logn)
processors on the EREW PRAM maodel.

Corollary 4.1. Cographs can be recognized in Oflog® n) time with O((n +m)/logn) processors
on the EREW PRAM model of computation,

5 Construction of the Cotree

In this section, we present a parallel algorithm for constructing the cotree of a cograph. The
algorithm relies on Lemma 2.6 which gives the structure of the cotree of a cograph & in terms of the
co-components of the subgraph G[N(v)] and the connected components of the subgraph G[V(G) —
N[v]] for any vertex v of G. The algorithm selects an appropriate vertex v of the input graph G,
recursively computes the cotrees of the subgraphs induced by the co-components of G[N(v)] and
the connected components of G[V(G) — N[v]], and then uses Lemma 2.6 to link these cotrees in
order to form the cotree of (G. As in the case of the cograph recognition algorithm, we assume that

the input graph is given in adjacency-list representation.

Algorithm Construct-Cotree
Input: a cograph G on n vertices and m edges,
Outpui: the root-node of the cotree T'(() of the graph G.

1. Compute the sets L, M and H containing the low-, middle-, and high-degree vertices of the
input graph &, respectively;

2. L=0and M =0 then {each v € V(G) has degree deg(v) > 2n}

(a) compute the co-components - ,,3?, of the graph G,
(b) construct a 1-node r;
(c) fori=1.2,...,p do in parallel 5

compute the induced subgraph G[A4;];

apply recursively the algorithm Construct-Cotree on G[A;]; let & be the root-node
of the returned tree:

parent(s;) — r;

id) return(r);

18

3HM#£D
then v« an arbitrary vertex of M;
else v« the vertex in L with the maximum number of neighbors in H; {note: L # 0}

4. Compute the co-components El,é‘z-_ - ,Ee of the graph &, = G[N(v)];
fori=1,2,...,¢ do in parallel
compute the induced subgraph G[a-];
apply recursively the algorithm Construct-Cotree on G[Jf;]; let #; be the root-node of
the returned tree;

5. Compute the connected components C,Ca,Cy of the graph Gs = G[V(G) — N[v|);
fori=1,2,... ,k do in paralle]
compute the induced subgraph G[C;];
if [Ci] < 3n
then apply recursively the algorithm Construct-Cotree on G[C;]; let r; be the root-node
of the returned tree;
else construct a 1-node ry;
compute the co-components f.'}r., 1 < j < h, of the graph G[C;] and the induced
subgraphs Giaj];
forj=1,2,... .k do in parallel
apply recursively the algorithin Construct-Cotree on G[ﬁj]; let fij be
the root-node of the returned tree;
parent(f,,) — rs

6. Compute the subgraph Gof G spanned by the edges incident upon a co-component repre-
sentative ©; (1 <i < £} and a component representative v; (1 <7 < &k);
compute the degrees of the s, 1 <4 < £, in e . s0rt themn in non-decreasing order, and locate
the distinct values; let 6[i], 1 < i < &, be the resulting ordered sequence;

7. Compute the entries of an array pesfi], 1 < ¢ < £, such that pos[i] = j if and only if the
degree of #; in G is equal to §[5];

8. Construct a tree-path of alternating 1- and O-nodes as follows:

(a) construct £ l-nodes#;, 1 <i <, and # O-nodest;, 1 <j < ¢,
construct a leafenode ¢ storing v
(b) fori=1,...,# =1 do in parallel
parent(t;) — &;
parent(f;) — tip;
parent(te) — tp;
if 8[1] 5 0
then parent(f) — ti;
else parent(t) — f1; delete node #;:

9. Construct and return the following tree:

(a) fori=1,2,...,£ do in parallel
parent(f;) — t-]:ml[z'].:

(b) fori =1,2,... .,k do in parallel %
parent(r;) — t,, , where p; — min{ pos(j| | v; is adjacent to ©; in G};

19

(¢) if there exist component representatives v; in G of degree equal to 0
then construct a O-node v N
for each component representative v; of degree equal to 0in &
parent(ry) —
parent(te) — r;
else r—ip;

{d) return(r);

The correctness of Steps 2 and 5 follows as in the case of the cograph recognition algorithm in
Section 4, and from the fact that any two co-components of a graph see each other, The correctness
of the rest of the algorithm directly follows from Lemma 2.6: note that, for i = 1,2,... . ¥, the tree
node #; corresponds to the 1-node that is the parent of the roots of the cotrees of the co-components
in the set §1._ and the tree node t; corresponds to the O-node that is the parent of the roots of
the cotrees of the components in §; (see Figure 2); additionally, [1] # 0 if and only if §; # 0
(Step 8(b)), while Step 9(c) takes care of the case when Sp # 0.

Time and Processor Complexity. We shall use a step-by-step analysis for computing the
time and processor complexities of each step of Algorithm Construct-Cotree.

Steps 1-5: All the operations performed in these steps are also performed in Steps 1-3, 5, 6, and
10 of Algorithm Recognize-Cograph. Thus, it is easy to see that, if we ignore the time taken by
the recursive calls, the execution of Steps 1-5 of Algorithm Construct-Cotree take O(logn) time
and require O((n +m)/logn) processors on the EREW PRAM model.

Step £: The subgraph G coincides with the subgraph of the graph G* (see the analysis of Step T of
Algorithm Recognize-Cograph) induced by the vertex set {f1.%a2.... ,f¢,v1,¥2,... , v}, and can
be constructed from G* in & way similar to the one used to obtain the subgraphs G; and Ga
from & in Step 4 of Algorithm Recognize-Cograph. Thus, G's construction takes Q(logn) time
and requires O((n + m)/logn) processors on the EREW PRAM model. The computation of the
degrees of the vertices ¢, 2. ... , ¢ in G can be done within the same time and processor bounds

{see Step 1 of Algorithm Recognize-Cograph).

In order to compute the array 4[], we use an auxiliary array d[] of size £, which we initialize
by assigning to the entry d[i] the degree of #; in G, 1 < ¢ < £. Since the number of co-components
is O(+/m) according to Observation 2.1, the array d[] can be sorted in O(logn) time with O{(n +
m)/ logn) processors on the EREW PRAM model. Then, it is easy to see that we can locate the
distinct values of the sorted array d] using prefix sums and array packing techniques. Thus, the
array d[i), 1 <i < ¢, can be computed in Ologn) time with O((n + m)/ logn) processors on the
EREW PRAM.

Step 7: Let d[] be the sorted array of size £ computed in Step 6, and let m = [w(1), 7(2),... ,7(f)] be
a permutation of the integers 1,2, ... , £ such that d[w(i)] < d7(j)] forevery 1 <4 < j < £. In order
to avoid concurrent read operations while computing the array pos|], we use an auxiliary array d'[]
of size {; we initialize it by setting d'[i] = 1 if i = 1 or d[i] # d[i — 1], and &'[i] = 0 otherwise, and
we subsequently compute prefix sums on it. Then, pos[i] — d'[=(i)], for i = 1,2,... ,£. Thus, the

array pos[] can be computed in O(logn) time using O(n/ logn) processors on the EREW PRAM
maodel.

Step & This step involves the construction of O{4") nodes and On) pointer assiznments, Since
& = O(/m), it is easy to see that the execution of the step takes O{logn) time and requires
O{{n+m)/logn) processors on the EREW PRAM model.

20

Step 9: The only operations performed in Substeps 9(a) and 9(c) are construction of at most
n nodes and pointer assignments (the degrees of the vertices v; have been computed in Step 6).

Thus, both substeps can be executed in O(logn) time with O(n/logn) processors on the EREW
PRAM model.

Let us now analyze the time-processor complexity of Step 9(b). Here, k = O(n) pointer
assignments are performed on the root-nodes r;, where r; is the root-node of the cotree of the
graph G[(;]. 1 < i € k. In particular, the node r; gets attached as a child of the tree node tp,,
where p; is such that v; is adjacent to the co-component representative i, In the graph G, and it
is not adjacent to any #; with j < p;. By using an auxiliary array A,[] for each vertex v € P’(&j
(of size equal to the degree of v in G), and the array pos|| computed in Step 7, we can compute
the index p; for each representative v; (1 <14 < k) avoiding concurrent-read operations as follows:

& For each co-component representative 4, 1 < i < £, do in parallel
9.1 copy the value pos[i] to each entry of 4;,|);
t= For each component representative v;, 1 <4 < k, do in parallel

9.2 for each vertex u adjacent to v in G do in parallel
{u is a co-component representative}
Ay, [re, (u)] = Ayfra(w)], where r.(y) denotes the rank of y in the adj. list of z in G;

9.3 p; < the minimum element of the array A, [];

It is easy to see that the above Substeps 9.1 through 9.3 can be completed in O(log n) time using
O((n + m)/logn) processors on the EREW PRAM model. Thus, the entire Step 9 is completed
within the same time and processor bounds.

If we take into consideration the time and processor complexity of each step of the algorithm
Construct-Cotree and the recursive calls, and work in a fashion similar to the one used in the
analysis of Algorithm Recognize-Cograph, we obtain the following result.

Theorem 4.1. Algorithm Construct-Cotree runs in O(log® n) time using O((n + m)/ logn) pro-
cessors on the EREW PRAM model.

Corollary 4.1. Let G be o cograph on n vertices and m edges. The cotree of the graph G can be
constructed in O(log” n) time with O((n + m), logn) processors on the EREW PRAM model.

6 Concluding Remarks

In this paper, we have presented parallel algorithms for recognizing cographs and for constructing
the cotree of a cograph. When applied on a graph on n vertices and m edges, both algorithms run
in O(log® n) time using O{(n+m)/ logn) processors on the EREW PRAM model of computation.
Thus, our results improve upon the previously known linear-processor parallel algorithms for the
same problems [9, 11]. Instrumental in our work is an optimal parallel algorithm which computes
the connected components of a graph or detects that it contains a Pjy; this algorithm is interesting
in its own right as it provides an optimal parallel connectivity algorithm for cographs and can be
extended to yield an optimal connectivity algorithm for graphs with constant diameter,

An interesting open question is whether the class of cographs can be optimally recognized
on the EREW PRAM model of computation, i.e., whether there exists an ((logn)-time cograph
recognition algorithm which runs on the EREW PRAM model and requires O((n + m)/logn)
processors. Moreover, since cographs form a proper subclass of permutation graphs. a direction
for further research would be to investigate whether a similar technique applies for the purpose of
recognizing the class of permutation graphs within the same time-processor bounds.

More general classes of perfect graphs, such as the classes of Py-reducible and P;-sparse graphs,
also admit unique tree representations up to isomorphism [13, 14]. Recently, Lin and Olariu pre-
sented parallel recognition and tree construction algorithms for Py-sparse graphs [19]: for an input
graph on n vertices and m edges, both the recognition and the tree construction algorithms run in
O(logn) time using O((n? + nm)/ logn) processors on the EREW PRAM model of computation.
Thus, it would be interesting to see whether the approach and algorithmic techniques used in this

paper can help develop efficient parallel recognition and tree construction algorithms for these two
classes of graphs.

References

[1] G.5. Adhar and 5. Peng, Parallel algorithms for cographs and parity graphs with applications,
J. Algorithms 11, 252-284, 1990,

[2] G.5. Adhar and S. Peng, Parallel algorithms for path covering, Hamiltonian path. Hamiltonian
cycle in cographs, Proc. Inter. Conf. on Parallel Processing, Vol. 111, 364-365, 1990.

[3] 5.G. Akl Parullel Computation: Models and Methods, Prentice-Hall, 1997.

[4] H.L. Bodlaender and R.H. Méhring, The pathwidth and treewidth of cographs, SIAM J. Dis-
crete Math. 6, 181-188, 1993,

5] A. Brandstddt, V.B. Le, and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on
Discrete Mathematics and Applications, 1999,

[6] K.W. Chong, S.D. Nikelopoulos, and L. Palios, An optimal parallel co-connectivity algorithm,
Theory of Computing Systems (to appear).

[7] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham, Complement reducible graphs, Discrete
Appl. Math. 3, 163-174, 1981.

[8] D.G. Corneil, Y. Perl, and LK. Stewart, A linear recognition algorithm for cographs, STAM
J. Comput. 14, 926-934, 1985,

[9] E. Dahlhaus, Efficient parallel recognition algorithms of cographs and distance hereditary
graphs, Discrete Appl. Math. 57, 20-44, 1995.

[10] M.C. Golumbic, Algerithmic Graph Theory and Perfect Graphs, Academic Press, Inc., 1980,

[11] X. He, Parallel algorithm for cograph recognition with applications, J. Algorithms 15, 284-
313, 1993.

[12] 1. JAJ4. An Introduction to Parallel Algorithms, Addison-Wesley, 1992,

22

[13] B. Jamison and S. Olariu, Recognizing Py-sparse graphs in linear time, SIAM J. Comput. 21,
381-406, 1992,

[14] B. Jamison and S. Olariu, A linear-time recognition algorithm for Pj-reducible graphs, The-
oret. Comput. Sci. 145, 329-344, 1995.

[15] H.A. Jung, On a class of posets and the corresponding comparability graphs, J. Combin.
Theory Ser. B 24, 125-133, 1978

[18] D.G. Kirkpatrick and T. Preytycka, Parallel recognition of complement reducible graphs and
cotree construction, Disereie Appl. Math. 29, 79-096, 1950,

[17] H. Lerchs, On cliques and kernels, Technical Report, Department of Computer Seience, Uni-
versity of Toronto, March 1971.

(18] R. Lin and 8. Olariu, An NC recognition algorithm for cographs, J. Parallel and Distributed
Comput. 13, 76-90, 1991,

[19] R. Lin and 5. Olariu, A fast parallel algorithm to recognize P4-sparse graphs, Discrete Appl.
Math. 81, 191-215, 19938,

[20] R. Lin, 5. Olariu, and G. Pruesse, An optimal path cover algorithm for cographs, Computers
Math. Applic. 30, T5-83, 1995.

[21] K. Nakano, 5. Olariu, and AY. Zomaya, A time-optimal solution for the path cover problem
on cographs, Theoret, Comput. Sci. 290, 1541-1556, 2003,

[22] J. Reif (editor), Synthesis of Parallel Algorithms, Morgan Kaufmann, Inc., 1993.
[23] D.P. Sumner, Dacey graphs, J. Austral. Math. Sec. 18, 492-502, 1974.

24| J. Valdes, R.E. Tarjan, and E.L. Lawler, The recognition of serial para igraphs, ;
J. Valdes, R.E. T d E.L. Lawler, Tt f serial llel d hs, STAM J
Comput. 11, 2058-313, 1982,

23

