RECOGNIZING
BIPOLARIZABLE AND P+-SIMPLICIAL GRAPHS

S.D. Nikolopoulos and L. Palios

07- 2003

Preprint, no 07 — 07/ 2003

Department of Computer Science
University of loannina
45110 loannina, Greece

Recognizing
Bipolarizable and P;-simplicial Graphs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioannina
FP.0.Box 1186, GR-45110 Ioannina, Greece
{stavros, paliocs}@cs.uci.gr

Abstract: The classes of Raspail (also known as Bipolarizable) and Py-simplicial graphs
were introduced by Hoéng and Reed who showed that both classes are perfectly orderable
and admit polynomial-time recognition algorithms [16]. In this paper, we consider the
recognition problem on these classes of graphs and present algorithms that solve it in O(nm)
time. In particular, we prove properties and show that we can produce bipolarizable and
Py-simplicial orderings on the vertices of the input graph G, if such orderings exist, working
only on Pys that participate in a Py of G. The proposed recognition algorithms are simple,
use simple data structures and both require O(n+m) space. Additionally, we show how our
recognition algorithms can be augmented to provide certificates, whenever they decide that
G is not bipolarizable or Py-simplicial; the augmentation takes O(n + m) time and space.
Finally, we include a diagram on class inclusions and the currently best recognition time
complexities for a number of perfectly orderable classes of graphs and some preliminary
results on forbidden subgraphs for the class of Py-simplicial graphs.

Keywords: Bipolarizable (Raspail) graph, Fy-simplicial graph, perfectly orderable graph,
recognition, algorithm, complexity, forbidden subgraph.

1 Introduction

A linear order = on the vertices of a graph G is perfect if the ordered graph (G, <) contains no induced
Fy abed with o < b and d < ¢ (such a Py is called an obstruction). In the early 1980s, Chvatal [4]
defined the class of graphs that admit a perfect order and called them perfectly orderable graphs.

Chvital proved that if a graph G admits a perfect order =, then the greedy coloring algorithm
applied to (7, <) produces an optimal coloring using only w((G) colors, where w(@) is the clique
number of . This implies that the perfectly orderable graphs are perfect; a graph G is perfect if for
each induced subgraph H of G, the chromatic number x(H) equals the clique number w(H) of the
subgraph H. The class of perfect graphs was introduced in the early 1960s by Berge [1], who also
conjectured that a graph is perfect if and only if it contains no induced subgraph isomorphie to an
odd cycle of length at least five, or to the complement of such an odd cycle. This conjecture, known
as the strong perfect graph congjecture, has been recently established due to the work of Chudnovsky
ef al. [3].

It is well-known that many interesting problems in graph theory, which are NP-complete in general
graphs, have polynomial-time solutions in graphs that admit a perfect order [2, 8]; unfortunately, it
is NP-complete to decide whether a graph admits a perfect order [22]. Since the recognition of

Chur main objective is to study the recognition problem on the classes of bipolarizable and Py-
simplicial graphs and we present O(nm)-time algorithms for each of these problems. Our algorithms
rely on properties that we establish and which allow us to only work with Pss of the input graph G
which participate in Fys of G; such Pss can be computed in O(nm) time by means of the BFS-trees of
the complement of the graph rooted at each of its vertices [23]. The proposed recognition algorithms
are simple, use simple data structures and both require O(n + m) space. Additionally, we describe
how to augment our two recognition algorithms so that they return a certificate whenever they decide
that 7 is not bipolarizable or Py-simplicial, thus, providing the most natural evidence that the input
graph G indeed is not bipolarizable or Py-simplicial. In particular, for the case of hipolarizable graphs,
the augmented algorithm returns a forbidden subgraph contained in G. The augmented algorithms
take O(n + m) additional time and O(n + m) space. Finally, we give class inclusion results for a
number of perfectly orderable classes of graphs and show the currently best time complexities to
recognize members of these classes and also present results on forbidden subgraphs for the class of
Py-simplicial graphs.

The paper is structured as follows. In Section 2 we review the terminology that we use throughout
the paper and we establish the theoretical framework on which our algorithms are based. The recog-
nition algorithms for bipolarizable and Py-simplicial graphs are described and analyzed in Sections 3
and 4, respectively. Sections 5 and 6 give results on class inclusions for a number of perfectly orderable
classes and on forbidden subgraphs for the class of Py-simplicial graphs, and Section 7 concludes with
a summary of our results and some open problems.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,
V(G) and E(() denote the set of vertices and of edges of & respectively. The neighborhood N(z) of
a vertex x € V(G) is the set of all the vertices of G which are adjacent to . The closed neighborhood
of x is defined as N[z] := {z} U N(z). The subgraph of G induced by a subset S of G’s vertices is
denoted by G[S]. A subset A € V(@) of p vertices is a p-cligue, or cligue, if it induces a complete
subgraph, ie., G[A] = K, a single vertex is a l-clique. An independent set is a subset B C V(G) of
vertices no two of which are adjacent; it is also called stable set. A subset H € V(@) of vertices is
homogeneous if 2 < |H| < |V(G)| and each vertex x € V(G) — H sees either all vertices or no vertex
in H, i.e., either H C N(z) or HN N(z) = .

A path in a graph G is a sequence of vertices vpvy ... vg such that v, v € E(G) fori=1,2,....k;
we say that this is a path from vy to vy and that its length is k. A path may be undirected or directed
depending on whether & is an undirected or directed graph. A path is called simple if none of its
vertices occurs more than once; it is called trivial if its length is equal to 0. A path (simple path)
vty ... v 15 called a cycle (simple cycle) of length k& + 1 if wve € E(G). A simple path (cvele)
vyvy ... U is chordless if vu; € E(G) for any two non-consecutive vertices vy, v in the path (cycle).
The chordless path (chordless cyele, respectively) on n vertices is commeonly denoted by B, (.,
respectively). In particular, a chordless path on 4 vertices is denoted by Fi.

Let abed be a Py of a graph. The vertices b and ¢ are called midpoints and the vertices a and d
endpoints of the Py abed. The edge connecting the midpoints of a Py is called the rib; the other two
edges (which are incident on the endpoints) are called the wings. For the Py abed, the edge be is its
rib and the edges ab and cd are its wings.

Our bipolarizable graph recognition algorithm relies on the result stated in the following lemma.

Lemma 2.1. Let G be a graph that contains ne induced subgraph isomorphic te a house graph (Py)
or the graphs A and Dy of Figure 1. Then, G does not contain a Cy abed such that abe and bed are
Pys participating in FPys of G.

Proof: Suppose for contradiction that (& contains a 'y abed meeting the conditions in the statement
of the lemma. We distinguish cases. Suppose first that the Py abe participates in the Py aber and that

Lemma 3.1. Let & be a bipolarizable graph and let abe be a Py participating in a Py of G. If bed is
another such Py, then G contains the Py abed.

Proof: If the path abed is not a Py then G must contain the edge ad. But this creates a € meeting
the conditions of Lemma 2.1; a contradietion. |

Then, Lemma 3.1 implies the following corollary.

Corollary 3.1. Let G be o bipolarizable graph and let F be the orientation of G that results from
the bipolarizable ordering of the vertices of G (i.e., the wings of each Py are oriented towards the Py's
endpoinis). Then, for each edge be of G for which there exist Pas abe and bed participating in Pys of
G, the edges ab and ed (for all such a and d) get oriented towards a and d respectively.

Proof: Let us consider any such P abe; then, because of the existence of the Py bed, Lemma 3.1
applies, and thus abed is a Py of G. Therefore, the edge ab is oriented towards a in F. and this holds
for all such a, and the edge cd is oriented towards d in F and this holds for all such d.

The algorithm for the recognition of bipolarizable graphs applies Corollary 3.1. The input graph &
is assumed to be given in adjacency list representation. The algorithm uses two arrays, an array M|]
and an array S[], of size 2m each. The array M| has entries M[zy] and M[yx], for each edge zy of
; the entry M[zy| is equal to 1 if there exist Pys Ty participating in Pjs of G, and is equal to 0
otherwise. As a result, for an edge xy, both M[zy] and M[yz] are equal to 1 iff there exist Pys zyz
and fry participating in Pss of G. The array 5[] too has entries S[zy] and S[yz], for each edge zy of
G; the entry S[zy| is equal to the index number of the partition set of N(y) to which z belongs (see
Lemma 2.3). As a result, a path zyz is a P3 participating in Pys of G iff S[zy] # 0, S[zy] # 0, and
Slzy] # S[zy]- In more detail, the algorithm works as follows.

Bipolarizable Graph Recognition Algorithm
Input: an undirected graph G on n vertices and m edges.
Output: yes, if G is a bipolarizable graph; otherwise, no.

1. Initialize the entries of the arrays M[] and S[] to 0; for each vertex v, sort the records of the
neighbors of v in v's adjacency list in increasing vertex index number;

2. Find all the Pss participating in Pys of G; for each such P abe, set the entries M|[ab] and M [ch|
equal to 1, and update appropriately the entries S[ab] and S[cb];

3. For each edge uv of & such that Muv] =1 and M[vu] =1 do

3.1 traverse the adjacency lists of v and v in lockstep fashion and process the neighbors of v
which are not neighbors of u, and the neighbors of u which are not neighbors of v as follows:

3.2 for each neighbor w of v which is not adjacent to u do
if S[uv] # 0 and S{wv] # 0 and Sfuv] # S[wv]
then {uvw is a Ps in a Py of G}
if the edge vw has not received an orientation
then orient it towards ur;
else if it is oriented towards v
then print that & is not a bipolarizable graph; exit.

3.3 for each neighbor w of u which is not adjacent to v do
if S[vu] # 0 and S[wu] # 0 and Sfvu] # Sluy]
then {vuw is e P in a Py of G}
if the edge uw has not received an orientation
then orient it towards w;
else if it iz oriented towards u
then print that G is not a bipolarizable graph; exit.

[]
F-triomino
.y
a b c d a b IS d
L . -_: : - :._
r's v
h 2 f € h g £ .
Figure 2 Figure 3
A k-wheel (k = 3) is the graph formed by a set of 3k vertices, namely, vy, vy, ..., Uk—1, 70,
T1y o ves Fe—1. and sg, 81, ..., $g—1, such that
> the vertices wg,v1,...,vk—1 form a clique, while each of the sets {rg,...,rx_1} and

{80000 sk—1} is an independent set,
t for 0 <4i,j < k—1, v is adjacent to r; except for j=i+1,
b for 0 <i,j < k-1, is adjacent to s; except for j =4,i+ 1, and
B for 0 <4< k-1, r; is adjacent to 5; but non-adjacent to any s; for j # 1,

where all integer subseripts are taken modulo k.

(We note that the 2-wheel is also well defined and coincides with Fg.)

As indicated by the algorithm, there are two reasons due to which a given graph G can be found
non-bipolarizable. First, a conflict of orientation may arise on an edge of G which ends up receiving
opposite orientations by different Pys sharing it. Second, if no conflict has arisen, there may be the
case that the final orientation assignment contains a directed cycle. Relating these two cases to the
forbidden subgraphs, it is not difficult to see that:

Lemma 3.2. Let G be a graph containing any of the siz graphs of Figure 1. Then, G ezhibits a
conflict of orientation.

Proof: Clearly true; the bottom horizontal edge of each of these graphs receives opposite orientations.
1

We also note that a conflict of orientation may arise if two z-triominces, a z-triomino and a k-wheel,
or two k-wheels share an edge and impose on it opposite orientations. In such a case, however, it is not
difficult to see that the Pys that forced these orientations would form one of the graphs of Figure 1.

Lemma 3.3. Let G be o graph which conlains a z-{riomine as shown in Figure 2 but none of the
stz graphs of Figure I or a k-wheel. Then, G exhibits o directed Cy befg with a single undirected
diagonal bf.

Proof: Since G does not contain any of the graphs in Figure 1, each edge of G will receive at most one
orientation. Thus, the edges of each z-triomino of G receive the orientations indicated in Figure 3; that
is, for the z-triomino with vertices a, b, ¢, d, g, f. g, h, a single directed cycle befg is formed. It suffices
to show that the diagonal bf is not the wing of any Py of G and thus receives no orientation. Clearly,
it does not get oriented due to a Py induced by a subset of the vertices of the z-triomino. Considering
Fys with vertices in addition to the vertices of the triomino is exhausted, due to symmetry, to the
following three cases:

P
X, XD

Figure 4

if no such vertex y exists
find the vertex z, if any, such that the edge xz is directed towards z, and
z exhibits the largest “rank” larger than z’s;
if such a vertex z exists
clip the list L by removing any vertex records between x and z;
else
find the vertex z, if any, such that the edge xz is directed towards z, and
z exhibits the largest “rank” larger than z's and smaller than y's;
if no such vertex z exists
clip the list L by removing any vertex records to the left of x and to the
right of 1;
else
clip the list L by maintaining the vertex record for z followed by those
between =z and y inelusive;

The vertices that remain in the list L after the procedure get_c-d-cycle(L) has completed induce a
directed cycle without directed chords in the directed subgraph G. The correctness of the computation
follows easily: the three main cases are illustrated in Figure 4, where the dashed edge indicates the
edge directed from the last vertex of the list L to its first vertex and the shaded region is the clipped
list L after the processing of vertex z. It is important to observe that the clipping indeed maintains
the ordering of the “ranks” of the vertices along the list L, and that after a vertex x has been processed
the resulting list L induces a directed eyele without directed chords incident on z.

Locating a z-triomino. In case the vertices in the resulting list L returned by the procedure
get_c-d-cycle() form a Cy befg that has a single diagonal bf, we can obtain the z-triomino built
around the Cy (see Figure 2) as follows:

1. store the neighbors of the vertices b, ¢, f, g in an array each for constant time adjacency tests;

2. for each vertex d adjacent to ¢ do
ifd#band d¢ N(b) and d € N(f) and d & N(g)
for each vertex ¢ adjacent to d do
ifed N(b)and e € Nic) and e € N(f) and e € N(g)
the vertices d and & have been located;

3. work similarly as in Step 2 in order to locate the vertices a and h;
4. the vertices a, b, e, d, g, f, g, h induce a z-triomino in G.

We note that we do not need to check whether d # f and e # f as these are precluded from the
fact that d,e & N(b). To see that the subgraph induced by the vertices a,b,...,h is a z-triomino in
&, note that by construction the vertices a, d, e, i have the desired adjacency relations to the vertices
b,e, f.g. The pairwise adjacencies of a,d, e, h need not be checked; the fact that these four vertices
are all distinet implies that if the pairwise adjacencies were not as indicated in the z-triomino, then

Finally, regarding the procedure to locate a k-wheel, we have that Steps 1, 3 and 5 take O(n)
time, Step 2 takes O(n + m) time (the number p; is computed by traversing the adjacency list of
z and counting the number of z's neighbors in the set P), while Step 4 takes O(3; 3" deg(w)) =
O(Exev{m deg{w)) = O(m) time since the sets R; are disjoint.

The total space required is linear in the size of the input graph. Therefore, we have the following
result:

Theorem 3.2. Let G be an undirected graph on n vertices and m edges. The bipolarizable graph

recognition algorithm presented in this section can be augmented to provide a forbidden subgraph in G,
whenever it decides that G is not bipolarizable, in O(n +m) time and O{n + m) space.

4 Recognition of Pj;-simplicial Graphs

Our Fy-simplicial graph recognition algorithm relies on the corresponding algorithm of Hoang and
Reed [16]; our contribution is that we restate the main condition on which their algorithm is based in
terms of Pys participating in Pys of the input graph, and we show how to efficiently take advantage
of it in order to achieve an O(nm)-time complexity. As described in the introduction, their algorithm
works as follows: it initially sets H = V() and then it iteratively identifies a vertex x in H such
that G does not contain a Fy of the form abre with b, ¢ € H, and removes it from H; the graph G is
Fy-simplicial iff the above process continues until H becomes the empty set.

It is not difficult to see that the property a vertex z has to have in order to be removed from H
can be equivalently stated as follows:

Property 4.1. Let H be the current set of vertices of a given graph G. Then, a verter T can
be removed from H if and only if there does not exist any Py bee participating in ¢ Py of G with
b.ec H.

In light of Property 4.1, we can obtain an algorithm for deciding whether a given graph G is
Py-simplicial by keeping count, for each vertex v € H, of the number of Pss bve with be € H
which participate in Fys of G, and by removing a vertex z from H whenever the number of such Pys
associated with & is 0. The proposed algorithm implements precisely this strategy; it takes advantage
of the computation of the Pss in Pys of G in O(nm) time, and maintains an array NumP3[] of size n,
which stores for each vertex v in H the number of Pss bve which participate in Pys of G and have
b,c € H. The input graph G is assumed to be given in adjacency list representation. In more detail,
the algorithm works as follows.

Py-simplicial Graph Recognition Algorithm
Input: an undirected graph @ on n vertices and m edges.
Output: ves, if G is a Py-simplicial graph; otherwise, no.

1. Collect all the vertices of 7 into a set H;

make a copy Av] of the adjacency list of each vertex v of G while attaching at each record of
the list an additional field set:

2. For each vertex v of G do

2.1 compute the partition of the vertices in N{v) into sets 53, 51,..., Sk, . Sk_+1 as described in
Lemma 2.3, and update appropriately the fields set of the records in the adjacency list Afv]
of v

2.2 compute the number of Pss avb participating in Pys of & and assign this number to
NumP3[v);

11

Step 5 O(n) time. Step 2 takes O(nm) time [23], while Step 3 takes O(n) time. As a vertex is inserted
at most once in the list L, the time complexity of Step 4 is O (EI (1 + 2 s i a’.eg(u})), where

deg(u) denotes the degree of u in G. Since §, . N(z) deg(u) = O(m), the time complexity of Step 4 is
O(nm). The computation of the Pss participating in Pys takes linear space, and thus the total space
needed by the recognition algorithm is clearly linear in the size of the input graph G.

Summarizing, we obtain the following theorem.

Theorem 4.1. Lef G be an undirected graph on n vertices and m edges. Then, it can be determined
whether G is a Py-simplicial graph in O(nm) time and O(n + m) space.

4.1 Providing a Certificate

As in the case of the bipolarizable graph recognition algorithm, the above algorithm can be made to
return a certificate whenever it decides that the input graph G is not Py-simplicial. In particular, it
could return the at the time (non-empty) value of the set H, which would indicate a subgraph of G
none of whose vertices can be removed in the sense of Property 4.1. Clearly, this does not require any
additional computation time and space.

However, it would be more interesting if the algorithm located a minimal such subset H of H, that
is, & subset H' such that every vertex y of H' forms a P zyz participating in a P; of the input graph
with x,z € H'. To see the benefits of this, consider for example that the input graph & contained
two domino graphs sharing an edge. Since the domino graph is a forbidden subgraph for the class of
Fy-simplicial graphs, the algorithm would stop, would report that G is not Py-simplicial and would
return a set A of vertices which would be a superset of the set of vertices of both domino graphs. If
however a minimal such set of vertices were returned, then one would be very close to identifying a
forbidden subgraph in . This approach, although very interesting, is hindered in part by the fact that
no complete characterization of the Py-simplicial graphs by forbidden subgraphs is currently available
in the literature. A first attempt on such a characterization can be found in Section 6.

5 Class Inclusions and Recognition Time Complexities

Figure 5 shows a diagram of class inclusions for a number of perfectly orderable classes of graphs
and the currently best time complexities to recognize members of these classes. For definitions of the
classes shown, see [2, 8]; note that the Ps-free and the chordal graphs are also known as co-graphs and
triangulated graphs respectively. In the diagram, there exists an are from a class A to a class B if and
only if B is a proper subset of .A. Hence, if any two classes are not connected by an arc, then each of
these classes contains graphs not belonging to the other class (there are such sample graphs for each
pair of non-linked classes).

Most of these class inclusions can be found in [2] where a similar diagram with many more graph
classes appears; Figure 5 comes from a portion of the diagram in [2] augmented with the introduction
of the inclusion relations for the classes of Py-simplicial, bipolarizable, and Py-indifference graphs, as
described in Lemmas 5.1-5.3. We will show next that the class of weak bipolarizable graphs [24] is
a proper subset of the class of Fi-simplicial graphs. In fact, we show a slightly stronger result as
established in the following proposition.

Proposition 5.1. Let G be a weak bipolarizable graph and let v be a vertez of G. Then, G admits o
Fy-simplicial order < on its vertices such that v < x for any vertexr = of G other than v.

Proof: We apply induction on the size of the graph by taking advantage of Theorem 1 of [24] which
states that a graph G is weak bipolarizable if and only if every induced subgraph of & is chordal or
contains a homogeneous set. For the basis step, it is not difficult to verify that every weak bipolarizable
graph on up to 3 vertices admits a Py-simplicial order as described, since G does not contain any Pys.

13

Regarding the relation of FPs-simplicial and the HHD-free and co-chordal graphs, note that the
graph Dy of Figure 1 is both HHD-free and co-chordal but is not Py-simplicial whereas the house
graph and Py are Pi-simplicial but not HHD-free and not co-chordal respectively.

Lemma 5.2, The class of bipolarizable graphs i3 a proper subsef of the class of weak bipolarizable
graphs and a proper superset of the classes of Py-sparse and split graphs.

Proof: The fact that Bipolarizable © Weak Bipolarizable has been established in [24]. To establish
the relationship of Pj-sparse and bipolarizable praphs, we note that none of the forbidden subgraphs
for the class of bipolarizable graphs is Fy-sparse; see Figures 1 and 2 and note that a k-wheel of order
k = 2 contains the Py sprowpte—1r1. This implies that any graph which is not bipolarizable cannot
be Py-sparse, or conversely that Fy-sparse C Bipolarizable. The proper inclusion follows from the fact
that a Py is bipolarizable but not Py-sparse.

It is not difficult to see that Split € Bipolarizable; the vertex set of a split graph can be partitioned
into an independent set and a clique, which implies that any Py of a split graph has its midpoints in
the clique and its endpoints in the independent set. Thus any ordering of the vertices of a split graph
where all the vertices of the clique precede all the vertices of the independent set gives a bipolarizable

ordering of the graph. The proper inclusion follows from the fact that C is bipolarizable but not
split. g

Lemma 5.3. The class of Py-indifference graphs is a proper subset of the closs of weak bipolarizable
graphs and a proper superset of the class of Ps-reducible graphs.

Proof: The fact that Pj-indifference C Weak Bipolorizable follows from the fact that the set of
forbidden subgraphs for the class of weak bipolarizable graphs is a proper subset of the set of forbidden
subgraphs for the class of Fy-indifference graphs (compare [24] and [15]).

To see that Py-reducible C Pj-indifference, we recall that every vertex of a Pi-reducible belongs to
at most one Py, which implies that the Pys of a Pj-reducible graph are vertex-disjoint. Thus, we can
create a linear order of the vertices of such a graph by concatenating the vertices of each Py at a time,
in the order they appear along the Py, and by appending any remaining vertices; then, the resulting
ordering is a Py-indifference ordering of the vertices of the graph. The proper inclusion follows from
the fact that the Ps is a Py-indifference graph but not Py-reducible. g

The non-inclusion relation between bipolarizable and co-chordal graphs follows from the coun-
terexamples for the non-inclusion relation of the Py-simplicial and co-chordal graphs. A non-inclusion
relation also holds for the bipolarizable and the chordal graphs (consider a Cy and the z-triomine) and
for the bipolarizable and the Pj-indifference graphs (consider the forbidden subgraphs Fs of [15] and
the z-triomino).

Figure 5 has also partitioned the depicted classes of graphs based on the time complexities of the
currently best recognition algorithms: see [7, 26] for the O(min{n® log® n, m?})-time complexity range,
[14, 18] for the O(min{n®, m?})-time complexity range, [23, 24] for the O(nm)-time complexity range,
and [10, 19, 20, 5, 25, 9, 11] for the O(n + m)-time range. We note that the algorithm of [14] for the
recognition of HHD-free graphs has a stated time complexity of O(n*); this can be easily seen to be
O(m?) if the number m of edges of the graph is taken into account. Similarly, the algorithm of [24] for
the recognition of weak bipolarizable graphs has a stated time complexity of O(n®); since O(n + m)
time suffices to determine whether a graph is chordal and to compute a homogeneous set (by means
of modular decomposition [21, 6]), if one exists, the stated time complexity can be seen to be O(nm).

15

7 Concluding Remarks

We have presented recognition algorithmns for the classes of bipolarizable (also known as Raspail) and
Py-simplicial graphs running in O({nm) time, where n and m are the number of vertices and of edges of
the input graph. Our proposed algorithms are simple, use simple data structures and require O(n+m)
space; the algorithms can also be augmented so that they return a certificate, whenever they decide
that the input graph is not bipolarizable or Py-simplicial, in O{n + m) additional time and space.
We have also presented results on class inclusions and recognition time complexities for a number of
perfectly orderable classes of graphs, and also some results on forbidden subgraphs for the class of
Py-simplicial graphs.

We leave as an open problem the designing of o(nm)-time algorithms for recognizing bipolarizable
and/or Py-simplicial graphs. In light of the linear-time recognition of Py-indifference graphs [10], it
would be worth investigating whether the recognition of Pi-comparability, Py-simplicial, and bipolar-
izable graphs is inherently more difficult; it must be noted that the approach used in [10] is different
from those used for the recognition of the remaining classes az it reduces in part the problem to the
recognition of interval graphs which can be carried out in linear time. Finally, another interesting
open problem is that of obtaining a complete characterization of the Py-simplicial graphs by forbidden
subgraphs.

References

[1] C. Berge, Farbung von Graphen deren samtliche bzw. deren ungerade Kreise starr (Zusammen-
fassung), Wissenschaftliche Zeitschrift, Martin Luther Universitit Halle-Witterberg, Mathematisch-
Naturwissenschaftliche Reihe, 114-115, 1961,

[2] A. Brandstadt, V.B. Le, and J.P. Spinrad, Gruph classes: A survey, SIAM Monographs on Discrete
Mathematics and Applications, 1999,

(3] M. Chudnovsky, N. Robertson, P.D. Sevmour, and R. Thomas, The strong perfect graph theorem, sub-
mitted.

[4] V. Chvital, Perfectly ordered graphs, Annals of Discrete Math. 21, 63-65, 1984

[5] D.G. Corneil, Y. Perl, and LK. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput.
14, 926-934, 1085,

[6] E. Dahlhaus, J. Gustedt, and R.M. McConnell, Efficient and practical algorithms for sequential modular
decompesition, J. Algorithms 41, 360-387, 2001.

[7] E.M. Eschen, J.L. Johnzon, J.P. Spinrad, and R. Sritharan, Recognition of some perfectly orderable graph
classes, Discrete Appl. Math, 128, 355-373, 2003.

[8] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., 1980,

[9] ML Habib, R.M. McConnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement, with applications
to transitive orientation, interval graph recognition and consecutive ones testing, Theoret. Comput. Sei
234, 509-84, 2000.

[10] M. Hahib, C. Paul, and L. Viennot, Linear time recognition of Py-indifference graphs, Diserete Math., and
Theor. Comput. Sei. 4, 173-178, 2001.

[11] P.L. Hammer and B. Simeone, The splittance of & graph, Combinatorica 1, 275-284, 1981,
[12] A. Hertz, Bipolarizable graphs, Discrete Math, 81, 25-32, 1990,

[13] C.T. Hoang, On the complexity of recognizing a class of perfectly orderable graphs, Discrefe Appl. Math.
66, 219-226, 1996.

[14] C.T. Hoang and N. Khouzam, On brittle graphs, J. Graph Theory 12, 391404, 1983,

[15] C.T. Hoang, F. Maffray, and M. Noy, A characterization of Fi-indifference graphs, J. Graph Theory 31,
155-162, 19949,

17

