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ABSTRACT

This paper presents simulations of hysteresis processes in thin film media using 1D and 2D
Preisach models. In the 2D version, a vector operator and superposition of angularly distributed
models is used. The characteristic density of the material being modeled is reconstructed via a
curve-fitting least-squares procedure that determines the parameters of a bivariate normal
probability function density or a weighed mixture of normal densities based on major loop data
only. The models have been identified for several samples of Gd-films annealed at various
temperatures and AFC thin film recording media consisting of a hard and a soft phase
antiferromagnetically coupled. The major and minor hysteresis loops calculated for all samples

are in good agreement with experimental data.
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1. Introduction
Hysteresis, defined as the rate independent memory effect [1], is the phenomenon where the
current ouput state is a function of the current input as well as of past output extremum states.

Ferromagnetic materials exhibit hysteresis in the magnetization response with respect to the

applied field, M (H ); the magnetization, M (1, ), for a given input field, H (t,), is a function of

both H(f,) and past magnetization extremum values M (z <t,), thus behaving like a positive

feedback mechanism [2]. Hysteresis is a desired effect, when the stability of information or
energy storage is of interest as in the case of recording media or permanent magnets. Or, it can
be an undesired effect when a material is used as a sensor or an actuator where hysteresis
contributes to the uncertainty of the sensing or actuating element’s response [3]. In either case,
the modeling of hysteresis is highly desired and very challenging. A hysteresis model may be
useful as core model in recording simulations [4] or finite element calculations of magnetic
losses in laminations or real-time control in sensors or actuators. Such a model should be
computationally efficient and adjustable to the material being modeled via a small number of
parameters.The microscopic modeling of the network of short and long range interactions
underlying the positive feedback mechanism of magnetic hysteresis leads to elaborate systems
of equations requiring either cumbersome numerical calculations or simplifying assumptions
particular to the type or geometry of the material or the application. The Preisach formalism, on
the other hand, is a favorite in hysteresis modeling because of its abstract formulation and speed
of the resulting calculations.

It postulates that hysteresis is the aggregate response of a distribution of elementary hysteresis

operators. The hysteresis operator of the classical Preisach model (CPM) is a relay (Fig. la)
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switching between two states, (+1, -1), at two critical input values, (a.b) where a>b. The
probability density function p(a,b)yielding the distribution of hysteresis operators at each

output state is characteristic to the material being modeled and must be determined in order to
identify the model. The resulting model is efficient and reliable for systems that fulfill certain
necessary and sufficient conditions [2, 5]. The inherently scalar nature of the CPM can only
allow for the one-dimensional (1D) treatment of a hysteresis process only which is not always
valid since a lot of information is lost when modeling the 1D projection of a vector process.
Furthermore, the magnetization response of a ferromagnetic material to an input field sequence
contains, in general, a reversible component which cannot be reproduced by the CPM. To the
extent that this reversible part can be attributed to the reversible rotation of the magnetization
vector, one should expect that a vector formulation of the CPM would address both issues. One
approach to vector hysteresis modeling is to superimpose the responses of angularly distributed
CPMs [2]. However, this model fails to accurately reproduce the rotational properties of
magnetic materials [6]. Alternatively, the original formalism can be extended to two dimensions
by replacing the 1D operator (Fig. 1a) by a 2D operator (Figs. 1b, 1c) possessing both switching
and rotational properties and superimposing the responses of angularly distributed models to
account for the easy axes dispersion [4-6].

In the scalar case, the characteristic density of the material can be extracted from a set of
detailed measurements [2]. This identification method cannot be extended to the 2D model
because of the coupling between longitudinal and transverse components of the response and
therefore, alternative methods must be considered. The alternative approach, used in this work,
is based on a major loop measurement and consists in determining the parameters of the

probability density function chosen to model the material under consideration [4, 6-8]. This
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method is also applicable to the 1D model and can be used whenever the set of the detailed
measurements required for the identification cannot be obtained. It can also be used in the
hysteresis modeling in materials and systems other than ferromagnetism, like shape memory
alloys (SMAs) [8], magnetic SMAs or magnetostrictive materials, elastoplasticity or economics,
regardless of the underlying hysteresis mechanism.

This work aspires to demonstrate the applicability of the 1D Preisach model and the 2D
extension together with the aforementioned identification method in the case of thin film media
using data from two different experiments and media: major loop data from Gd-films previously
annealed at different temperatures and minor loop data from anti-ferromagnetically coupled
(AFC) recording media. In the case of Gd- films, annealing improves the crystallographic order
in the sample and the major loop characteristic is different after each subsequent annealing step
[9]. In the case of AFC media, the reversal of the soft layer at various hard layer states results in
loops with two very distinct parts [12]. The model, the hysteresis operators and the characteristic
density are discussed in the following section. The modeling of the experimental data and the
discussion of the results are presented in section 3. The treatment of hysteresis throughout this

work is quasistatic assuming that the output is not affected by the input rate.

2. The model

According to the Preisach formalism, the magnetization M (¢) for an input field H (¢)can be

calculated by the CPM:

M ()= Hp(a,b)yﬂbH{r)dadb (1)

akh
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The local hysteresis operator,y,, when operating on the input H(f) yields the local
magnetization state m, :

+1, H(t)>a

-1, H(r)<b &

(]

m, =y, °H (t)=min{l,m,_}, where 7, ={

The operator behaves like a relay switching between +1-states at the upper and lower switching
fields @ and b. The result is weighed by the probability density function (pdf) p(a,b),

characteristic of the material being modeled, to yield the overall magnetization response. Notice
that fields @ and b are not functions of position or in any way related to the geometry of a
sample; they rather represent effective switching fields of particles or grains in the statistical
sense and account for the coercive field as well as the effective interaction field experienced by
a given grain or collection of grains or particles. Therefore, modeling the material by a
distribution of switching fields a and b and integrating over all a and b the global response is
obtained [2].

The CPM formulation described in Eq. (1) is scalar and can model only irreversible processes.
The reversible component of the response can be added on at the post-processing stage. The
reversible processes in ferromagnetic materials are in general due to the reversible displacement
of domain walls or the reversible rotation of the magnetization vectors aligned at an angle to the
field direction. In order to model vector processes a 2D model must be used. As it turns out, the

vector model accommodates the reversible component of the response as well.

According to the 2D formulation used in this work, the magnetization response M{I) to a vector

input field H(r)is given by:
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M(I)zﬁi g(ﬂ}i&afzjbp(a,b}mﬂ(r)dadb (3)

plane
The local hysteresis operator of the CPM is replaced by a vector operator able to respond to
vector inputs and predict reversible rotation as well. The vector operator is based on the Stoner-
Wohlfarth model (sw) depicted in Fig. 1b. It results from the minimization of the free energy

equation of an ellipsoidal magnetic particle with uniaxial anisotropy under a normalized vector

field h. The astroid shape is the locus of the equation k"’ + k" =1 where h,_ and h, are the

components of the field along the easy and the hard axis of the particle, respectively. The

magnetization angle ¢ with respect to the easy axis of the astroid is given
by:h tang—h +sing=0 and is the tangent to the astroid passing from the tip of the input
vector. Switching occurs only if, during the transition from m(r—1) to m(t), the magnetization

vector crosses the astroid from the inside out. Otherwise, the magnetization vector rotates

reversibly. Introducing the first order approximation to the astroid, h +h =1, the diamond

shaped vector operator (dm) depicted in Fig. lc is obtained. The dm-operator uses a similar
hysteresis mechanism, it is computationally more efficient but does not have the physical
attributes of the sw-operator. For inputs along the easy axis x, the two vector operators respond
identically to the scalar operator of Fig. 1a. Fig. 2 shows a simulated experiment comparing the
rotational properties of the two vector operators. The magnetization angle is calculated for
several fields of constant normalized magnitude rotating 2n rad. For small inputs, the response
1s practically identical. As the input increases but not enough to cause switching, the sw-astroid
rotates easier than the diamond. For large inputs, the sw-astroid allows for more switching.

Eq. (3) describes a 2D-model for a perfectly oriented system. That is, the easy axes of the

operators all lie along the same orientation direction. The effect of orientation dispersion is



HYSTERESIS AND MICROMAGNETIC MODELING 2003 = UNIVERSITY OF SALAMANCA, SPAIN 7

modeled by superimposing the responses of perfectly oriented models normally distributed

according to a normal pdf g (&) [6].
The density p(a,b) is generated by a bivariate normal pdf or a weighed mixture of them [10]:

p(a.b)=w,(p,(a.b))+w,(p,(a.b))+... where Zwr. =1, (4)

in order to reproduce more complicated pdf shapes. The mixture of pdfs is appropriate for

magnetic materials with more than one phase.

In order to identify the model decribed by (3) for a given material, the parameters of p[a,b},
namely the means 4 and 4, , and variances o and o, of variables @ and b, their correlation
coefficient r, and the parameters of g(6), u, and o, must be determined. This can be

accomplished by feeding a major loop data array to a least-squares based curve-fitting routine.
3. Results and Discussion

The model described in Section 2 has been used to model data from two different types of
magnetic thin films. The first set of data is a set of major loops measured in Gd-films previously
annealed at different temperatures. Annealing improves the crystallographic order and sharpens
the anisotropy distribution of the sample [9], which is reflected in the phenomenoclogy of the
major ascending curves shown in Fig. 3. At higher annealing temperatures the loop is square and
can be modeled by the CPM while at lower annealing temperatures, the anisotropy distribution
width is larger than the threshold value at which the correlation of the magnetic reversal in the
sample breaks down [11] and the loops are less square. In this case, the 2D model with a vector

operator, ie. the sw-operator, must be used. A KxK array is used for the bivariate density
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p[a,b] where K is the model discretization constant. Because of the loop symmetry,
M(H)=-M (-H), pla,b) is a normal pdf with means =, =y,, standard deviations
o=0,=0,, and correlation coefficient r=0. In the case of the vector model, the orientation

dispersion density is centered at 0 and has a standard deviation o,. Table 1 summarizes the

results of the least squares fitting procedure for the ascending curves measured on Gd-film
samples annealed at 610 °K and 560 °K prior to the hysteresis measurement. Notice that the
same identification routine was used with both the 1D and the 2D model. In both cases, the only
data fed to the algorithm were a dozen major loop data points. The relative error between
experimental and calculated loops was 3.2% for the 610 °K curve (1D model/cpm operator) and
2.5 % for the 560 °K curve (2D model/sw-operator).

The second set of data is a set of minor loops measured in AFC layered media. Three layers are
grown on a glass substrate and an underlayer: a soft magnetic layer is antiferromagnetically
coupled to a hard magnetic layered through a Ru interlayer with no magnetic moment. The soft
layer magnetization is reversed at different conditions of the hard layer and the resulting loops
consist of two quite distinct parts which suggest that a weighed sum of two normal pdfs must be

used to generate p(a,b) (Eq. 4). In this case, the 2D model with the dm-operator is used. Again,
only major loop data points are used in the fitting routine determining the weighing factor, wy,
with w, =1-w;, the means g and u, and standard deviations o, and o, of the symmetric
pdfs p and p, respectively. The identification routine results for the AFC data for two
different K-values are summarized in Table 2. As expected, the weighing factor w; and standard
deviations o, and o, are the same for either value of K while x4 and g, are adjusted

accordingly. The experimental and theoretical curves are shown in Fig. 4. Notice that the minor

loops were reproduced successfully at both high fields and fields around the coercivity.
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The input to the identification routine for both the Gd-film and AFC cases is about a dozen of
data points from a measured major ascending or descending loop — if the loop is symmetric —
that can be obtained even on a simple B-H tracer [13]. Once the density parameters are
detanningd, the response to any sequence of fields can be modeled provided dymanic effects
can be ignored. Therefore, this identification routine can be also used in conjunction with the 1D
model when detailed measurements of the density cannot be carried out.

Other density functions (lorentzian, sigma) were also tried but the normal density has yielded
the best results. Furthermore, the weighed sum of normal densities allows the reconstruction of
other densities and the tailoring of a major loop characteristic. The “dm"-operator performs in
most cases just as well as the “sw"-operator and is therefore preferred over the latter one since it
is computationally more efficient. The model, the operators, and the identification procedure
were all implemented in MATLAB 5.0. A major loop calculation for 100 input values would
need approximately between 10 and 200 seconds on a Pentium III PC. The efficiency of the
computation depends on the discretization of the model (K-value), the choice of operator and the
dimensionality of the model, e.g. the 1D model is the most efficient routine while the 2D model

using the sw-operator results in the lengthiest calculation.

4. Conclusion

Hysteresis models based on the Preisach formalism have been used to model the hysteretic
response of the magnetization in thin film media. Depending on the squareness of the major
loop characetristic, the dimensionality (1D or 2D) of the model and the appropriate operator
(scalar or vector) are first chosen. A bivariate normal pdf or a mixture of normal densities is
used to generate the characteristic density. The mixture of densities is a good choice for media

consisting of more than one phases. A least-squares fitting algorithm using data from an
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experimental major loop is used to identify the model for a given material. This identification
routine may be used with either 1D or 2D models thus avoiding the detailed measurements
usually needed in the CPM identification. The model is able to reproduce hysteresis proceses
regardless of the underlying microstructure as illustrated by the calculated major loop
characteristics of the various Gd-film samples and the major and minor loops of the two-phase
AFC recording media. The model is computationally efficient enough to be used as core

hysteresis model in recording simulations or finite element calculations.
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Tables

Table 1: Gd-film density parameters

TiC) 560 610
Model/op | 2D/sw 1D/cpm
K 60 40
o, 30° N/A
M 51.44 25.83
o 2.80 0.48
% error 3.20 2.50

Table 2: AFC-film density parameters

K 40 80
o, 50° 50°
P 2478 | 5112
o, 0.36 0.3
i 3381 | 66.02
o, 233 2.63
Wy 0.39 0.39
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List of Figure Captions

Fig. 1: Hysteresis operators: (a) cpm (1D) (b) sw (2D) and (c) dm (2D).

Fig. 2: Comparison of rotational properties of the two vector operators, “sw” and “dm”.

Fig. 3: Gd-film: Experimental and calculated ascending curves at annealing temperatures
610 °K and 560 °K.

Fig. 4: AFC-film: Experimental and calculated major and minor loops.
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FIGURES
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Fig. 2
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Fig. 3
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