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ABSTRACT
The class of models presented here, targeting the modeling of hysteresis processes in
materials and systems, are based on the Preisach formalism. The 1D and 2D
formulations are equipped with a set of five different local hysteresis operators, to
address different types of systems. The resulting algorithms are efficient enough to be
used as core models in simulations or real-time control. Results are shown for the
M (H) response in ferromagnets, the x(T) response in shape memory alloys and the
A(H) relationship in magnetostrictive materials. The choice and construction of the

probability density function of the local hysteresis operators is discussed.

1 INTRODUCTION

Hysteresis is a property of several, both linear and non-linear, systems in which the
output lags the input. It may be related to a linear phase lag, to energy dissipation, or
to memory properties and metastability. In this work, hysteresis is considered as a
rate-independent memory effect where the present output is a complicated non-linear
function of the present as well as of past input values, This type of hysteresis presents
several interesting properties. From a stability point of view, there are many possible
equilibrium states for a given input value. The resulting state depends on the history

of the system, on the previous equilibrium states, hence the memory property. This



response is due to an underlying complex network of interactions between the
system’s several components and the external stimulus. For example, in a
ferromagnet, hysteresis may arise because of the domain-domain interactions, the
stray fields at the grain boundaries, the existence of inhomogeneities and their role as
pinning sites, the built-in stresses and anisotropy, the exchange coupling between
phases. Hysteresis may be a desired effect, when the stability of information or energy
storage is of interest as in the case of data storage media (tapes, disks) or an undesired
effect in sensing and actuating applications where the nonlinearity of the response

adds to the uncertainty of the sensor or complicates the control of the actuator. In

either case, the modeling of hysteresis is important.

Fig. 1 shows a characteristic I/O hysteresis curve, usually referred to as the major
loop of the system. Such a curve is encountered in the magnetization vs field
response, M (H), in ferromagnets, in the strain vs. temperature reponse, x(7'), in
shape memory alloys (SMAs), in the stress-strain relationship in elastoplasticity etc.
The bistability property is obvious: for a given input there are two possible output
states. The major loop curve is characteristic of a system, holding a lot of useful
information and delimiting the input/output space but it is just a trajectory obtained
for a specific input sequence. Other input sequences yield different sets of ascending
or descending curves, all of them inside the major loop, called minor loops. A point
on or inside the curve may be reached in several ways, through various trajectories of
this type. Note that the only uniquely defined states are the positive and negative
saturation states, + 5 and — S . The treatment of hysteresis in this work is quasistatic:
the time elapsing between two consecutive inputs is assumed long enough for the

transients to reduce to zero.



2 THE MODEL

Models of hysteresis involve sets of differential equations, minimization of energy
_ equations, finite-element routines or, as in the case presented here, phenomenological
models based on local hysteresis operators statistically distributed. Even though
hysteresis is due to different mechanisms in each system, the response illustrated in
Fig. 1 is typical in most of them. Therefore a phenomenological approach, like the
Preisach formalism [1], ignoring the details of the underlying physics may be a useful

tool in the modeling of hysteresis in several types of systems or materials.

The Preisach formalism postulates that hysteresis is the aggregate response of a
distribution of elementary hysteresis operators. The resulting model is
computationally efficient and for systems that fulfill certain necessary and sufficient
conditions it is quite reliable [1]. The hysteresis operator of the classical Preisach
model (CPM) is a relay (Figs. 2a, 2b) that switches between two states, (+1, -1) or

(0,1), at two critical input values a,b, with a>b. Hence, it is a scalar operator

describing only irreversible switching. An extensive discussion on the mathematical
properties, the hysteresis operator, the identification, and the invert of the CPM can be
found in Refs. [1-3]. The inherently scalar nature of the CPM and its inability to
model reversible processes has led to several modifications and 2D- or 3D-
adaptations [1, 4]. In the approach presented here, the original formalism is extended
to two dimensions replacing the operator of Fig. 2a by a 2D operator (Figs. 2d, 2e)

that allows for irreversible switching, as well as, reversible rotation [4.,6].



2.1 The operators

Scalar operators

Ifi the classical model the operator y,, hereafter referred to as “cpml”, is a simple

relay with output *1 and upper and lower switching points a and b, respectively

(Fig. 2a). For an input u,, the output f, is given by

+1, w,>a

fr =}'ab cuf = min{l,fr—1}~ where ¥ ab ={ )

-1, u{{b-

It can be used to model hysteresis in ferromagnets, where the output (magnetization)
varies between positive and negative saturation, and the major loop is traced in the

counter clockwise direction.

The operator in Fig. 2b, “cpm2”, is a modification of the classical operator and
suitable for hysteresis modeling in SMAs and elastoplasticity where the output (strain)

varies between zero and a maximum value:

De u{ >a 1
Yab =141 u, <b and f, =min{l, f,_;}. {2}

The operator in Fig. 2c, also known as the “kp” operator [5], allows for a linear
transition between the minimum and maximum values, and bi-directional horizontal
movement at any point of the ascending or descending curve. It is appropriate for

hysteresis modeling in SMAs and elastoplasticity.

For the descending branch,
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For the ascending branch,

[0 u, 2b+6 :
Yap =¥s b+6>u,>b-8,  where ybzl—-ﬁ{u{—b+5}, (5)
1 u, <b-4
and
f, = max{o,min{f, .7, }}. (6)

where 28 is the difference between the two input values at the beginning and end of

the switching process.

Vector operators

The Preisach formulation can be extended to two dimensions using vector 2D
operators [4]. The operator of Fig. 2d is known as the Stoner-Wohlfarth (sw) astroid,
and is borrowed from the theory of ferromagnetism. It results from the minimization
of the free energy equation of an ellipsoidal magnetic particle with uniaxial anisotropy
under an applied field as the locus of the equation

23 _y

u313+u}|

(7)
where u, and uare the components of the input « along the easy and the hard axes

of the particle, respectively. The solution ¢ is the angle of the output vector with

respect to the easy axis of the astroid:



U tang —uy +sing =0; (8)
it is the tangent to the astroid passing from the tip of the input vector. Switching
occurs only if, during the transition from f(r—1) to f(r), the output vector crosses

the astroid from the inside out. Otherwise, the output vector rotates reversibly.

The second vector operator (Fig. le), the diamond (“dm™), is the first order
approximation of the sw-astroid:

cFuy =1, (9
which uses a similar hysteresis mechanism. It is computationally more efficient but it
does not have any physical attributes. Both vector operators are used for hysteresis
modeling in ferromagnets. For inputs along the x-direction, the vector operators

respond identically to the classical scalar operator of Fig. 2a [6].

Modeling the hysteresis process

The parameters a and b of the hysteresis operators are distributed according to a
probability density function p(a.b) over a half-plane, called the Preisach plane, that
is defined by a 25 [l, 4]. The hysteresis process is then modeled as the aggregate
response of the distributed operators to a sequence of inputs. The output f(f) at time ¢
is given by the equation

f(t)= [f pla,b)y p o u(t)dadb . (10)

azh

Using a 2D-operator vy, instead, Eq. (10) describes a 2D-model for a perfectly

oriented system. That is, the easy axes of all operators lie along the same orientation

direction. However, actual systems, as a rule, are not perfectly oriented and the



" guestion of orientation dispersion needs to be addressed. Systems that are not

perfectly oriented can be modeled by

fO= [ p©)asd || pla,b)y gz o u(t)dadb, (11)
—-7/2 azh

where p(8) is the probability density function of the angles that the easy axes of the
2D operators ¥, form with the model's axis of orientation [4].

When a material contains more than one phase, it may be preferable to use:

a2
b= [ PO} [[lwx p(ab)+ (- w)x p(a.b) o o ulHiadb (12)
-xf2 azh

where w denotes the percentage content of phase 1 [8].

The identification routine

In order to identify a Preisach-type model for a given system, its characteristic
density p[a,h] must be determined. In the case of the classical model of Eq. (10), the
density p(a,b) can be determined experimentally using the Everett functions [1, 4].
However, in the 2D model of Eg. (11), it is not obvious how the effect of the
transverse and longitudinal components on the distribution can be decoupled and
determined experimentally. In this case, the density is modeled as a bivariate pdf, e.g.
a bivariate normal, or as the product of two uncorrelated single-variable pdfs or as the
weighted sum of densities, not necessarily of the same type. This is useful in the
modeling of materials consisting of more than one phase whose interaction with the
applied input is distinctly different and reflects in the major loop. Fig. 3 shows the
effect the choice of the pdf has on the shape of the M (H) loop. The p(a.b) used for

these curves is generated as a product of two single variable pdfs of any of the

following types:



], (13)

(14)

Lorentzian, L{x]= 1

i+[ J ]J

o)

a

1+exp[— ﬂ]
o

The major loops have been generated using the vector model of Eq. (2) and the

or the first-order derivative of sigma, §(x)= (15)

diamond operator of Fig. le. The effect of the weighed sum of two gaussians with

same mean but different standard deviations is also shown.

In any case, the parameters of the densities are determined using major loop data

along with a least-squares fitting procedure [6-8].

3 RESULTS
The model described in Section 2 is applied to data taken on ferromagnetic samples
and an SMA sample. The origins and mechanism of hysteresis are quite different in

each type of material.

Modeling of hysteresis in ferromagnets

In ferromagnets, hysteresis occurs during the switching from positive to negative
magnetization and the opposite. For an applied magnetic field (input), H {r], the
resulting magnetization (output), M (¢), is a function of the applied field as well as of

an internal interaction field, which is in turn a function of the magnetization. Hence,



‘the resulting magnetization state contains a positive feedback mechanism leading to

hysteresis: M (t)=M(H ()M (£)).

.Fig. 5 shows major ascending curves measured on Gd-film samples, used for
recording, annealed at 610 °C and 560 °C prior to the hysteresis measurement.
Annealing improves the crystallographic order and sharpens the anisotropy
distribution of the sample [9], which is reflected in the phenomenology of the curves.
At lower annealing temperatures, the anisotropy distribution width is larger than the
threshold value at which the correlation of the magnetic reversal in the sample breaks

down. The squareness of the loop, § =M (0)/M(H,,), and the coercivity squareness,

5*, a measure of the sterepness of the loop around the coercivity, are lower and a 2D
model (Eq. 11) using the diamond operator (Fig. 2¢) must be chosen. On the contrary,
the 610 °C curve is accurately reproduced by the 1D-model (Eq. 10) using the

classical operator (Fig. 2a).

Modeling of hysteresis in shape memory alloys

In shape memory alloys, hysteresis can be observed as the material undergoes the
transformation from the martensitic to the austenitic phase and vice versa. The input
variable is temperature, 7(f), and the output is strain x(r) [5]. The SMA data are
modeled using the 1D model of Eq. (10) and the hysteresis operators “cpm2” (Fig. 2b)
or “kp” (Fig. 2c). The SMA loops are traced in the opposite direction compared to the
magnetic loops. The ascending branch is the one to the left and is traced as the
temperature decreases. The output is normalized to the maximum % strain observed
and ranges from 0 to 1. Unlike the case of ferromagnets, the loop is not symmetric but

skewed and shifted to the right with respect to the origin [6]. Fig. 6 shows major and



minor loops obtained using the two operators “cpm2” and “kp” against the
corresponding experimental curves obtained on a Nitinol sample. Note that the minor
loops are adequately reproduced by the model, even though the data used for the

identification were taken from the major loop curve only.

Modeling of mangetostriction

Another example of hysteresis appears in the case of magnetostrictive materials.
Under an externally applied field, the change in the Zeeman energy density is
counterbalanced by the change in the elastic energy of the bonds. This may result in
an increase (positive magnetostriction) or decrease (negative magnetostriction) of the
sample length along the direction of the applied field. Because of the microstructure

and the ensuing interactions, the A(H) response may exhibit hysteresis yielding the
butterfly shape of Fig. 7. As the field decreases from saturation, A(H;)=A4;, the

strain of the sample decreases reaching a minimum around the coercivity and then
increases back again as the field is further decreasing towards negative saturation.
This loop does not look anything like the loop of Fig. 1 but it does look like its

derivative: A(H )= dM /dH [10].

It turns out that the A(H) curve can also be modeled by the Preisach model.

Assuming scalar deformation, the model of Eq. (10) in conjunction with the modified
scalar operator of Fig. 2b is used and the result is shown in Fig. 7. The underlying

distribution is obtained as a sum of two gaussians p,(a.b) and p,(a,b) of equal but

opposite signs. Their means are such that, g, =, and g, =x, (Fig7). Fig. 6
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shows calculated major and minor A(H) loops obtained using the density shown in

Fig. 7.

4 CONCLUSIONS

The modeling of hysteresis processes is not a trivial task given the nonlinearity and
complexity of the phenomenon. It is shown that Preisach based models are a useful
tool in hysteresis modeling, offering flexible and efficient algorithms with satisfactory
results regardless of the underlying microstrucutre or physics. Because they are tuned
into the system being modeled through the fitting of the parameters of a bivariate
probability density, they can adapt to a variety of systems or materials. The results
presented indicate that these models can reproduce hysteresis curves of ferromagnets
with different characteristics and microstructure, of shape memory alloys undergoing

phase transformation, and of magnetostrictive materials.

5 References

[1] I. D. Mayergoyz, Mathematical models of hysteresis, Physical Review Letters,
56(15), pp.1518-1521 (1986).

[2] A. Visintin, in: Differential Models of Hysteresis, pp. 10-29, Springer, Berlin
(1994).

[3] M. Brokate and J. Sprekels in: Hysteresis and Phase Transitions, pp. 93-121,
Springer, Berlin (1996).

[4]  S. H. Charap and A. Ktena, Vector Preisach modeling, J. Appl. Phys., 73, pp.

5818-5823 (1993).

11



[5]

[6]

[7]

[8]

[9]

[10]

Z. Bo, and D.C. Lagoudas, Thermomechanical modeling of polycrystalline
SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops, Intl.
I. Eng. Sci., 37, pp. 1203-1249 (1999).

A. Ktena, DI Fotiadis, P.D. Spanos, A. Berger and C.V. Massalas:
Identification of 1D and 2D Preisach models for ferromagnets and shape
memory alloys, Int. J. Eng. Sci., 40 (20), pp. 2235-2247, (2002).

A. Ktena, D. L. Fotiadis, P. D. Spanos and C. V. Massalas, A Preisach model
identification procedure and simulation of hysteresis in ferromagnets and
shape-memory alloys, Phys. B, 306(1-4), pp. 84-90 (2001).

A. Ktena, D. I. Fotiadis and C. V. Massalas, IEEE Trans. Mag., New 2-D
model for inhomogeneous permanent magnets, 36(6), pp. 3926-3931 (2000).
A. Berger, A. W. Pang and H. Hopster, Magnetic Properties of
Gd(001)/W(110)-films, Phys. Rev. B 52, pp. 1078-1081 (1995).

H. Hauser, E. Hristoforou and A. Ktena, “Modeling of magnetostriction in

delay lines”, to appear in Journal of Applied Physics.



Figure captions

Fig.1: Hysteresis curve: memory and bistability.

Fig.z: Hysteresis operators: (a) cpml, (b) cpm2, (c) kp. (d) sw, and (e) dm.
Fig.3: Descending curves for various types of densities.

Fig.4: Gd-thin film: experimental and calculated ascending curves.

Fig.5: Nitinol: Experimental and calculated major and minor loops.

Fig.6: Calculated major and minor A(H) curves.

Fig.7: The density used for the A(H) curve.
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