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Abstract. In this paper, we present two novel hash-based indexing
structures, based on Bloom filters, called breadth and depth Bloom filters,
which in contrast to traditional hash based indexes, are able to represent
hierarchical data and support path expression queries. We describe how these
structures can be used for resource discovery in peer-to-peer networks. We
have implemented both structures and our experiments show that they both
outperform the traditional Bloom filters in discovering the appropriate
TESOUrces.

1 Introduction

The decreasing cost of communications technologies and the increase of
computational power in many network-enabled devices create a massive
infrastructure composed of highly diverse interconnected entities. In such an
environment, data, resources and services are fragmented and distributed all over the
network. We view such a system as a peer-to-peer network of interconnected data
resources. A problem central to such systems is how to locate the desired information
in the multitude of available peers. A single query on a peer may need results from a
large number of others, thus a mechanism is needed that will efficiently identify the
peers that may contain data relevant to the query.

XML is rapidly emerging as the new standard for data representation and exchange
on the Internet. Therefore, we will assume that the data sources in the peer-to-peer
network store XML documents that we wish to index, query and finally retrieve. To
retrieve XML documents several query languages have been proposed. A common
feature of such languages is the ability to query the structure of the documents
through path expressions.

There are many mechanisms for resource location in peer-to-peer systems. In this
paper, we consider a distributed index approach, in which indices are maintained at
each peer to assist in directing the query to the peers that may provide relevant data.
Such indexes should be small and able to scale to a large number of peers and
documents. Furthermore, since peers will join and leave the system dynamically,
these indexes must support frequent updates.

Bloom filters can be used as indexes in such a context. Bloom filters are hash-
based indexing structures designed to support membership queries. Traditional Bloom
filters are unable to represent hierarchies, and thus evaluate path expressions.
However, when querying XML documents, we are most likely 1o use a query
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document, and finally queries that allow the * operator in a path. The last kind of
queries specifies that two elements (tags) in a path may not be immediately
succeeding one-another, but multiple levels may be between them.

=xmp= .
<device> device
<printer=
<color=</color=
=postseript=</postscript=
</printer=>
<CAmEra™
<digital=</digital>
</camers>
</device>

—_— printer camera

color postscript  digital

Fig. 1. An XML document and its tree

1.2 Bloom Filters

Bloom filters are compact data structures for probabilistic representation of a set in
order to support membership queries (i.e., queries that ask: “Is element X in set }7),
This compact representation is the payoff for allowing a small rate of false positives
in membership queries; that is, queries might incorrectly recognize an element as
member of the set. Since their introduction in [1], Bloom filters have seen various
uses such as web cache sharing [2], query filtering and routing [3, 4], compact
representation of a differential file [3] and free text searching [6].

Consider a set 4 = {a, a;,..., 8.} of n elements (also called keys). The idea
(illustrated in Figure 2) is to allocate a vector v of m bits, initially all set to 0, and then
choose & independent hash functions, by, hg, ... , hy, each with range {1...., m}. For
2ach ¢lement a2 € A, the bits at positions hy(a), ha(a), . .., hfa) invare setto 1. A
particular bit might be set to 1 multiple times. Given a query for b, we check the bits
at positions hy(b), hs(b), . . . , hy(b). If any of them is 0, then certainly b is not in the
set 4. Otherwise we conjecture that b is in the set although there is a certain
probability that we are wrong. This is called a “false positive”. The parameters & and
m should be chosen such that the probability of a false positive (and hence a false hit)
is acceptable. Let BF be the Bloom filter for a set 4, we denote the query for b,
match(BF, b).

To support updates of the set 4 we maintain for each location { in the bit array a
count c/) of the number of times that the bit is set to 1 (that is, the number of
elements that hashed to | under any of the hash functions). All counts are initially 0.
When a key a is inserted or deleted, the counts c(hy(a)), c(hg(a)), . . . , c{hy(a)) are
incremented or decremented accordingly. When a count changes from 0 to 1, the
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improve performance, we construct an additional Bloom filter denoted BBF,. In this
Bloom filter, we insert all attributes that appear in any node of the XML tree T,

For example, the BBF for the XML tree in Figure 1 is a set of four Bloom filters
(Figure 3). In BBF, (i.c., the filter of the first level), we insert only the attribute
device, in BBF;, we insert attributes printer and camera, and finally in BBF;, we
insert attributes color, postscript and digital. In BBF,, we insert the atiributes that
appear in any node of the tree.

Mote that the BBF;s are not necessarily of the same size. In particular, since the
number of nodes and thus keys that are inserted in each BBF; (i > () increases at each
level of the tree, we analogously increase the size of cach BBF,. Let |BBF] denote the
size of BBF; As a heuristic, we set: [BBF,, | = 4 |BBFy, (0 < i <), where o is the
average out-degree of the nodes of the XML tree. For equal size BBF;s, BBF, is the
logical OR of all BBFs, 1< i< j.

HEE lll|!]1]1]l}ll]l 1| 1| 1 | (deviceprinter_camera.
colorpostscriptdigital )
BBF, 110j0]0|1]0(1]0]0|0]0]|0 |—p device

BBF: 0|11 f|1)1]0(0)0|1|[0|0]|1 | printer v camera

BEF; ojojof1jojo|1|O0fj0(1]1 l_h'mlunrpustscripmgtai

Fig. 3. The Breadth Bloom Filter (BBF) for the XML tree of Figure 1.

The look-up procedure that checks whether a BBF matches with a path query
distinguishes between two kinds of path queries: path queries starting from the root
level and partial path expressions. In hoth cases, first the algorithm checks whether
all attributes in the path expression appear in BBF;. Only if we have a match for all
the altributes will the algorithm proceed to examine the structure of the path. For a
root query: /fa/ay.../fa, every row i from 1 to p of the filter is checked for the
corresponding &, The algorithm is successful if we have a match for every attribute of
the query. For a partial path expression, for every level { of the filter: the first attribute
of the path is checked. If there is a match the next line is checked for the next attribute
in the path and if we have a match this step continues until either we match the whols
path or we have a miss. If we have a miss we return to the previous step for the row i
+ 1. For paths containing the * operator the algorithm skips as many levels of the
filter as needed in order to match the next attribute in the query following the *, The
algorithm is presented in detail in the Appendix (Figure 10).

Let p be the length of the path and o be the number of levels of the filter, (We
exclude the Bloom on top). In the worst case, we check each level i, i< p, i times.
Thatis 1 +2+ ..+p—1=px(p-1)/2. Then, for the remaining d —p levels, we will
have at most p accesses at each level. So the overall costis: px (d-p)+px(p-1)/2
= O(dp).
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insertion and no levels can be skipped. Say we have the path A/*/B. The path is split
in two paths where the * appears, (paths A and B) and both paths are checked with the
above algorithm, to see whether there is a match. If we have a match for both paths
the algorithm succeeds, else we have a miss. The algorithm is presented in detsil in
the Appendix (Figure 11).

Consider a query of length p. Let us suppose that p is smaller than the number of
the levels of the filter, so that the query can be satisfied. The algorithm proceeds as
follows: firstly p sub-paths of length 1 are checked, then p — 1 sub-paths of length 2
are checked and this goes on until we reach length p where we have 1 path. Thus the
complexity of the look-up procedure is p + p — 1 + p — 2 +...+ 1 =0(5%). The
complexity remains the same even if we have the * operator in the query.

Besides the false positive induced by the traditional Bloom filters, we have two
additional types of false positives. The first is with path queries that start from the
root. With the current description, we cannot distinguish such paths from partial ones.
However, such false positives can be easily treated if we treat paths that start from the
root differently by annotating such paths with a special symbol, e.g., path
device\printer could be represented as \device\printer, The other type of false positive
refers to queries that contain the * operator. In particular, consider the following
paths: a'b/c/d/e and a/k/ffm/n that are inserted in a depth Bloom (along with their sub-
paths). For the query: a'b/™*/m/n, our algorithm splits the path to: a’b and m/n. Both of
these parts belong to the filter so the algorithm would indicate a match although the
desired path does not exist.

Regarding the size of the filters, as opposed to BBF, all DBF;s have the same size.
This is because the number of paths of different lengths is of the same order.

4 Distribution

We consider a peer-to-pesr system where each peer (site) stores a set of XML
documents. A client requests specific XML documents though a path expression
query. Such queries may originate at any peer of the system. Bloom filters are used to
locate the peers that may contain documents that match the query.

In particular, each peer maintains a multi-level Bloom filter (breadth or depth) for
the documents stored locally at the peer. In addition, it also maintaing a multi-level
summary (depth or breadth) Bloom filter for a set of its neighboring peers. This
summarized filter holds information sbout other peers in the system and thus
facilitates the routing of a query only to peers that may contain relevant information.
When a query reaches a peer, the peer first checks its local Bloom filter and then uses
the summary filter to direct the query to other peers in the system that potentially hold
relevant information.

The summarized Bloom filter of a set of Bloom filters is calculated by taking the
bitwise OR for each level of the filters separately. Specifically, the summarized
Bloom filter, Sum_BBF of two breadth Bloom filters BBF* and BBF™ with i levels is
a breadth Bloom filter Sum_BBF = {Sum_BBF;, Sum_BBF,, ... Sum_BBF;} with i
levels such that: Sum_BBF; = BBF', BOR BBF™, 0 < j <i and BOR stands for
bitwise OR. Similarly, we define the summary Bloom filter for depth Bloom filters.
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the query. This procedure continues until the peers at the leaf nodes of the hierarchy
are reached.

Updates that may occur in local data sources are propagated firstly to the
associated local filter of the peer and then to the peer’s parent. The parent updates its
merged filter and propagates the update to its own parent. The update procedurs
continues until the root peer is reached. The root peer sends the update to all other
root peers which in tum update the merged filter of the associated peer. Note that we
need to propagate only the BBF;s (DBF;s) that are updated not the whole BBF (DBF).

4.2 Horizons

Apart from this hierarchical structure, we consider an alternative organization in
which the participating peers are considered as forming an overlay network between
them. Each peer has a set of neighbors, chosen from the participating peers closest to
it in network latency. Each peer associates with each of its neighbors a probability of
finding each document through this neighbor,

To distribute multi-level Blooms across this organization of peers we use the
notion of horizons. Knowledge about all peers in the system may seem limiting in
terms of scalability. By introducing the notion of horizon, a peer bounds the number
of neighbors whose data it summarizes. In this organization, peers form an undirected
graph and each peer additionally to its local index, holds information about peers at
distance 4 from itself, where 4 is the radius of the horizon. In particular, every peer
stores one filter, called merged filter, for each one of its neighbor links. Each such
merged filter summarizes information for all peers at distance & through any path
starting with this neighbor link (Figure 6).

In particular, every peer, when it enters the system, sends its local index together
with a hop counter set to 4 to all of its neighbors. Every peer that receives a filter
merges it with the other filters it has received through the same neighbor link (same
neighbors). Then it decreases the hop counter by 1 and if the counter is not 0, it
propagates the merged filter it has received to all of its own neighbors, except the one
it was sent from. This way, the summary reaches all nodes at distance 4, and thus
every peer has now information about all other peers at distance 4 from itself. Every
peer that receives the summary also sends back to the new peer its own local
summary in order for it to construct its neighbors’ summaries.

When a query is posed, and it cannot be satisfied locally, each filter for all the links
of the node is checked and the query is propagated only through links that their filter
gave a match, This time, however, it is not the immediate neighbor who is likely to
possess the data the query wants, but one of its neighbors. The next neighbor is
determined as before, by examining the filters of the current node.

If a query were to reach a server d hops from its source due to a false positive;
there is no incentive to forward it further. This problem can be overcome either by
backtracking or by the use of an exhaustive algorithm that searches the graph. Also to
prevent a query from being caught in a cycle in the graph every query holds a list with
the nodes it has already visited.

Updates are propagated the same way a summary of 2 node is propagated when it
enters the system, so as to inform all nodes at distance 4 about the change in their
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Bloom, we have also implemented a simple Bloom filter (SBF) that just hashes all
attributes (similar to BBD), and DBF,). For the hash functions, we have used the MD5
algorithm, which has known attractive characteristics. For the generation of the XML
documents, we used the Niagara generator [13]. We performed our experiments on a
Linux PC with 1000MHz Pentium IV processor and 256MB of RAM.

For the generation of the queries we have used 90% tags that appear in the
generated XML documents and 10% random ones, and produced arbitrary path
expressions. The name tags generated by the Niagara generator are quite similar and
of small length and this deteriorates the performance of Bloom filters as it is more
possible that they return similar values while they are hashed. All the path expressions
were partial match queries and the possibility of having the containment operator at
each query was set to 0.03.

Our metric is the percentage of false positives in the three structures (simple,
breadth and depth Blooms). In the first experiment we vary the size of the filter to
determine how this affects the filter's performance. In the three other experiments we
keep the size of the Bloom filter fixed and vary the other parameters. Table 1
summarizes the parameters of interest.

Parameter Default Value Range
# of XML documents 200 -
total size of filter 092 &0-2000
# of hash functions 4
# of queries 200
possibility of * per query 0.05
# of elements per document 500 200-2500
# of levels per document 4/6 2-6

| length of query 3 2-6

Table 1. Table of Parameters

Experiment 1: [nfluence of filter size.
The first experiment examines the influence of the size of the filter with respet to its
performace, that is, the performance of false positives it presents. The document®s
structure is fixed with 500 elements and 4 levels of depth. The queries are of length 3.
The range of the filter's size was from 80 to 2500 bits. Figure 7 illustrates the results.
Simple Bloom filters fail to recognize most of the false positives even when the
size of the filter increases significantly to 2000 bits and its percentage does not fall
under 70%. In contrast, both Breadth and Depth Blooms ouperfrom it, while requiring
much less space. Breadth Bloom have at most 5% false positives even for the small
space budget of B0 bits. This is because even if one row of the filter is sparse, that is
enough for most of the irrelevant queries to be rejected. Depth Blooms require more
space in order to achieve the same performance. For a size of less than 300 bits we
have more than 40% false positives but with a size of more than 400 bits the
performance improves significantly and it outperfroms even Breadth Blooms for a
size more than 992 bits.
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postives at about 3%. We have to note here, that as the number of the elements
increase the percent of repetion in the tag names produced by the XML generator
increases significantly. This is the main reason for the constant percentage of false
positives.

Experiment 3: Influence of the number of levels.

In this experiment, we compare the three approaches with respect to the depth of the
documents. The size of the filter is fixed to 992 bits, and the documents have 300
elements. The queries are of length 3, except for the documents with 2 levels where
we conduct the experiment with queries of length 2.

Simple Blooms have the worst overall performance, which is independent of the
document’s structure (depth). Depth Blooms perform better for documents with few
levels, less than 4 while their performance deteriorates when the depth increases. This
is because, as the rows of the filter increase fewer bits are allocated to each row, while
the number of paths to be inserted increases and the filter becomes overloaded. In
conirast, Breadth Blooms perform very well even for 6 levels. While the number of
bits allocated to every row decreases in Breadth Blooms as well, the number of
elements inserted becomes also smaller, in contrast with Depth Blooms where it
becomes larger. The increase in the depth results in a more sparse distribution of the
same number of elements in more levels of the document.

g
=
H
=
5 —4—SBF
:“qu —#— BBF
& DEF
=
g
2

number of levels

Fig. 8. Experiment 3: number of levels

Experiment 4: Influence of the length of the queries.

The parameter examined in this last experiment, is the length of the queries. The
structure of the document is fixed, with 6 levels and 500 elements. The size of the
filter is also fixed to 992 bits. The queries range from length of 2 to 6.
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labeled, directed graph structure S(G), where: (1) each node u in the structure
corresponds to a subset of data nodes in a partitioning of the graph (extenr of u) that
have the same label and, (2) an edge (v, v) in the graph is represented in the structure
as an edge between the nodes whose extents contain the two endpoints u and v. To
enable selectivity estimates for complex path expressions, each node u of 5(G) only
captures summary information about G in the form of a cowrr that records the number
of elements in G that map to u. XSKETCH synopses are specific instantiations of this
generic graph-synopsis model that record some additional edge-label information to
capture localized stability conditions across synopsis nodes. Emphasis is given in the
evaluation of complex path expressions and there is no mention on the way the
updates are handled.

APEX [9] is an adaptive path index for XML data. APEX does not keep all paths
starting from the root and utilizes frequently used paths to improve the query
performance. APEX also has a nice property that it can be updated incrementally
according to the changes of query workloads. In APEX, frequently used path
expressions in query workloads are taken into account using the sequential pattern
mining technique so that the cost of query processing can be improved significantly.
The path tree [11] is a tree, which represents the structure of an XML document.
Every node of the tree corresponds to a path in the XML document and has a child for
every distinct tag name of the elements of that path. For every sequence of tag names
in the XML document there is only one path in the tree. Apart from the name of the
tag of the elements in every node the number of the elements, the node’s frequency, is
also stored. For the estimation of the selectivity of a path, the path tree is traversed
and searched for all the nodes with a label same as the first label of the query. From
every such node the tree is traversed and the query’s labels are matched with those of
the nodes. The result is a set of nodes which correspond to the path of the query. The
selectivity of the query is the total frequency of these nodes. This tree however, may
exceed the given main memory space, therefore a path tree summary is computed, by
deleting the nodes with the lowest frequency in the tree. We add *-nodes in the tree to
store as much information as possible for the deleted nodes.

All these structures are as we mentioned centralized and there is no intuitive way
for their use in a distributed environment. Although they support the valuation of
complex path expression they cannot be emploved in distributed environments.

In peer-to—peer systems, there were many methods developed in order to find the
peers that contain data relevant to a query posed at some peer. These methods
construct indexes that store summaries of other nodes information and additionally
provide routing protocols to propagate the query to the relevant sites. In this line of
research, emphasis is given to the distribution of the summaries across the peers’
network, However these structures answer simple queries that consist of combinations
of attribute-value pairs and do not address the evaluation of path expressions.

Perhaps the resourced discovery protocol most related to our approach is the on in
[12]). SDS servers are responsible for routing the queries a client poses. They are
organized into a hierarchical organization that is modified according the workload of
the servers in order to achieve a load-balance among all the servers. Each server
stores a summary of its children in the hierarchy, with the form of a Bloom filter
constructed by the union of its children summaries. Services are described in XML
documents, and their summary is constructed by computing subset hashes of the
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Lookup(DepthBloom Filter DBF, path expression patf)
DBF= {DBF,, DBF,, DBF., ... DBF,.;}

Path = a,/ay/.. /q,

/* check for all antributes of the path a; ..., a, in the BBF, */
/* the * is ignored when found in the path *

fori=ltop
ifa=*
if no match(DBF,, a)) return(NO MATCH)
m=-1
fork=1top Mtraverse the path and check for '*' to split the path */
ifa="*
n=p+2
p=k-1

fori=ntop /*check all the subpaths of the path of length k-1 %/

forj=1topy=1 /™ until the '™ %
]-.fi+j£p]
/*if any of the sub-paths do not exist reurn failure™’

if no match(DBF; . 5, (2 / 8+ /.. / &) return(NO MATCH)

elseifk=p /*if there is no patk, or for the last part of the path®/
fori=p;+2 top /after the last * we repeat the above procedure™®/
forj=ltop-1
ifi+j=p

if no match(DBF; . 1, (i / a1 /.../ 83)) return(NO MATCH)

return(MATCH) /7 if statement 18 is reached we have a match™'

Fig 11. Depth Bloom Filter Lookup procedure




