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ABSTRACT
We consider the acoustic scattering of time-harmonic spherical waves from an
eccentric non coaxial spheroidal structure simulating the kidney-stone system. The
proposed analysis is based on the application of translational addition theorem for
spheroidal wave functions. The resulting theoretical model is frequency-independent.

Numerical results concerning the applicability of our approach are also presented.



1. Introduction

The investigation of exterior boundary value problems involving scattering processes
shares nowadays considerable attention since it disposes several application branches.
In particular, the exploitation of scattering methods to biomedical applications is one
of the most interesting and challenging scientific areas. In this framework, we focus
on the problem of kidney stones identification using sound scattering techniques.
Although there exist ultrasound, x-rays or pyelogram techniques for the localization
of kidney stones, it is of great importance to develop a model based on the scattering
of a point source generated field in the resonance region, which could be easily

interpreted by a physician suggesting a treatment method.

In previous works [1,2], the kidney-stone system has been simulated by a
multilayered spheroidal structure and the theoretical and numerical implementation of
the specific scattering problem has been developed, aiming at a parametric
investigation of the system. The spheroidal geometry is proved to provide with a
suitable and realistic configuration of the system, which also has the advantage of
permitting the development of analytical methods for handling with the underlying
scattering process. However, the results obtained are subject to the restrictive
(although reasonable) assumption that confocal spheroids simulate the two
components of the system, i.e. the kidney tissue and the stone. This requirement stems
from the initial desire to have a common spheroidal system with respect to which all
physical gquantities entering scattering mechanism must be expressed via spectral
analysis. This assumption cannot affront general situations in which the stone body is

simulated by different spheroidal parameters and is not necessarily confocal or even



coaxial with the kidney background. Actually the development of an efficient model
describing uniformly the specific scattering problem and aiming at continuing the
basis for the solution of the inverse scattering problem must allow general relevant

positions of the components of the system.

This work aims at developing a model remedying this restriction, allowing
independent configurations for the kidney and the stone. The two components are
again simulated by spheroidal structures, which now are not forced to belong to the
same system. The coexistence of two different spheroidal systems, along with the
spherical system introduced by the point source, renders the investigation of the
problem much more complicated. The involved secondary wave fields, produced by
the scattering process, can be represented in terms of the spheroidal eigenvectors
emerging from the two different spheroidal systems. Their determination consists of
the specification of the spectral decomposition expansion coefficients. As commonly
in boundary value problems, the boundary conditions on discontinuity surfaces
provide with the necessary equations for expansion coefficients determination.
However, in our case the discontinuity surfaces constitute coordinate surfaces of
different systems and the implication of intricate addition theorems [3] is necessary to
allow transition from one system to the other. This methodology is necessary though
to remain in the analytical regime. The price to pay is the development of an extended
and very demanding theoretical treatment, leading to the acquisition of a rather
complicated infinite algebraic non-homogeneous system, whose solution provides
with the aforementioned spectral expansions coefficients. A suitable truncation of the

above system has been applied leading to the numerical implementation of the method



for some special and indicative cases as far as the several parameters of the problem

are concerned.

2. Formulation of the problem

Let us consider an eccentric spheroidal structure consisting of two non-coaxial
spheroidal bodies. The inner spheroid with surface S, occupies region V, and is
centered at the origin of a primed Cartesian coordinate system O'(x',y'z". It has
focal distance a', corresponds to the kidney stone and is impenetrable and rigid. The
exterior region V; surrounded by surface S, corresponds to the kidney tissue and is
characterized by its density p; and the speed of sound ¢,. A Cartesian coordinate
system O(x, y,z) with its z—axis being parallel to the z'— axis is assumed to have its
origin at the center of the outer spheroidal body, which has focal distance a and is
penetrable. The spherical coordinates of O with respect to this coordinate system are
(r.6,.¢). The isotropic and homogeneous background medium occupying region V
has density p,,, and velocity of sound propagation ¢. The geometry of the problem is

given in Fig.1.

The kidney-stone system is illuminated by an acoustic spherical wave emanated by a
source located at point M in region V' with spheroidal coordinates (u,,6,.4,). The
acoustic wave generated by the source constitutes the incident field. The interference
of this field with the structure leads to the creation of the scattered field propagating
outwards the scatterer as well as the creation of an acoustic wave penetrating the outer

spheroidal surface but not the interior rigid body.



The time-independent part of the incident spherical wave is given by
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where we have suppressed the harmonic time-dependence exp{-iwi}, k =2 is the
¢

wave number in region V with @ standing for the angular frequency and :D is the

source position vector.

The scattered field satisfies the time-reduced Helmholtz equation
A () + k2 (r)=0 , reV, (2)
and the Sommerfeld radiation condition at infinity
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Moreover, the interior field u' {;) satisfies also the Helmholtz equation

AP () + kUM () =0 |, reV;, (4)

where £k, =2 stands for the wave number in region V;. These fields are connected
G

through appropriate boundary conditions satisfied on the discontinuity surfaces §,
and §,. More precisely, a Newmann-type boundary condition must be satisfied on
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where & stands for the normal derivative operator. On §; the following
n

transmission boundary conditions must be satisfied
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The rest of the paper is devoted to the solution of the well-posed boundary value

problem described by Eqgs. (2)-(7).
3 The Solution of the Direct Scattering Problem

The acoustic fields introduced in the formulation of the underlying scattering problem
are expanded in terms of spheroidal wave functions, which constitute a complete basis
in the space of scalar Helmholtz’s equation solutions. These wave functions along
with the necessary framework concemning the spheroidal geometry are brefly
discussed in the Appendix. Furthermore, special attention must be paid on the fact
that, as explained in the Appendix, we have reformulated slightly the adopted basis
set, incorporating the complete range of the azimuthal separation constants in order to
ensure a more convenient representation of the forthcoming addition formulae. The
aforementioned expansions are expected to provide with the appropriate fields
expressions fitting suitably to the boundary conditions imposed on the spheroidal

surfaces.

More precisely, we adopt the following spheroidal representations
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In Eq. (8) the scalar solutions ¥'/)(&',n’,¢":c’) are defined with respect to the primed

spheroidal coordinate system associated to the enclosed spheroid. Moreover, we have
= g Ao . L : :
introduced the parameters ¢ =§kla and ¢ =5ka which constitute a measure of

the relation between the geometric characteristic dimensions of the system and the
wavelengths. In addition, A,,(c,),c, ={c',c™} are related to the normalization
constants of the angular functions S, (77;¢c,) as follows
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where we have trivially used the same symbol for the d." (c,) coefficients for both

m=0 and m <0 although they are determined through the solution of a specific
eigenvalue problem depending on m being positive or negative as it is explained in
the Appendix. Finally, we notice that the specific selection of the radial functions
R (£:¢™) to express the scattered field incorporates the outgoing propagating

character of the scattered wave.

Similarly to the secondary fields, the incident field has to be expanded in the same
function basis. Indeed, we employ a slightly modified version of an addition theorem

met in [4] concerning the spheroidal representation of a spherical wave
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In view of Eq. (8), the boundary condition (5) can be immediately satisfied yielding

ZZ Z R”] (cosh wy:¢")8§,,, (cos6';c Ne™ =, (12)
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for 08" <7, 0<¢ <2x, with 4, being the specific value of the coordinate '

characterizing the spheroidal surface §,. Exploiting orthogonality arguments of the

underlying trigonometric and angular spheroidal functions we conclude that

a R (cosh gly;c) +a’ 3peY (cosh t3,:¢)=0,n20, m =—n,...,n. (13)
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In order to satisfy for the boundary conditions (6)-(7) on S, we employ the following

translational addition theorem for scalar spheroidal wave functions [3]
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The coefficients A"/ are defined as

,uv[_,lj : pHV—R (I#I +;H+S] m.r: MV
E E E (c)dE™ (
- #,,(.:.-} (ul-p+s)! % & (15)

g=01 s=01 p
x a(m,|m|+q| | p| +s| P)Z;" (kn) P, (—cos 6 )e ™=,



where for the summation index p we have that p=|m|+q+|ul+s,

Im|+q+|4|+5-2...., “m|+q+|yf—s] if ||m|+q—|y1—s[2|m—,u|, In the case that

"m[+q-|y]—3[ <:|m—,u , the lower limit of p is replaced by |m— ,.r..s[ or |m—,u[+l

according as ]mi +g+ Lu| +5+|m— 4| is even or odd. Similarly the coefficients B,

are given as
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where p=|ml+q+v,|m[+g+v—2,...,||m|+q—v‘ if Ifm]+q-v|3_*|m—y|.lnﬂw case

that ||m|+q—v| <|m—- ], the lower limit ||m|+q—v| of index p is replaced by

|m— 4 or |m— p|+1 according as |[m|+ g +v +|m - 4 is even or odd.

In Egs. (15)-(16), we also meet the spherical functions Zfﬂ introduced in (A.7)-

(A.10) and the coefficients a(m,n|u,v|p), which can be identified through the

relation
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where the last two factors are the Wigner 3-j symbols [5].

(17)



Using the addition theorem (14), the representation (8) of the interior field u" is
transformed into the following one, expressed in the O(x, y,z) system
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which has the suitable form for handling the boundary conditions (6)-(7). Hence, in
view of Egs. (9), (11) and (18), the boundary condition (6) after a suitable relabelling
of the summation indices and a functional projection on the basis of the azimuthal

functions is written as
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Projecting then Eg. (19) on the complete and orthogonal set of functions

S, (08 8¢ ) and again relabelling the summation indices, we obtain the following

algebraic relation for every pair (m,n),n20;|m|<n
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where the brackets (Sm-,Sm> indicate the mixed “inner” products of angular

functions
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which do not share mutual orthogonality, i.e., they would be diagonal only in the

special case ¢ =™

Following similar manipulations, the boundary condition (7) assumes the form
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which is also valid for every specific pair of (m,n) with (m,n),n20;m|<n. Egs.

(20), (22) may be rewritten as follows

a R (cosh Hop: € ) + 2ikS,, (cos Gy:c™ )e ™0 R (cosh g5 ™ )RY (cosh T
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(24)
where again (m.n),n=0;m|<n and the “primed” summation over n' has been
combined with the summation running over the index p in the definition (16) of the
coefficient B, yielding the modification of this definition by a multiplicative parity

factor Z(p,t) =0 or 1 depending if p—1 is odd or even.

Finally, the algebraic equations (23)-(24), which are equivalent to the boundary

conditions on S, are written in the condensed form

12



as RE’} (cosh ;¢ ) + 2ikS,,, (cos B, ;¢ }e'mﬂm {cosh o™ )Rﬂ{ (cosh gy, ;c™)
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Egs. (13), (25), (26) corresponding to the boundary conditions (5), (6), (7),

respectively can be organized in matrix form by first defining the matrices

m",n" 0 0
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when m"=m and n"=n where
W= [Rm' (cosh ug,:c"), Rﬁﬁfr (cosh g3 C'}:| ; (35)
_ ) T

Yo =[R,Ef,2 (cosh tg3¢™), RS (cOSh pty36° }} : (36)

and 0=[0 ﬂ]. Hence the resulting non-homogenous system of equations is
Dx=b, (37)

where the supermatrix D is given as
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BDI] Bﬂl,l Eﬁ;l Bﬂ',l 35 Bﬂ.l e B{J.]
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B Bre: Bse Bhp s Bae s Beps
0,0 -1l 0,1 1.1 —K K s
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L . : - .

ext 1 1.1 13 ext 1,1 1.3 ext 1.1

. 11 1.3 : i 13 exf |-
X-|:ﬂn.ﬂ Dy ﬂﬂ.u| alj; alj; 4, Gy G,; 4G, d; a; 9, l
(39)
| 11 13 £xt i1 1.3 £xt | i
|a’-.r.r a—.-c.:r a—?c’,r J‘rI.'l.‘,.'l: KK ax.x | *
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with

b, = |:(], ~2ikS;; (cos Bz )e Rf]' (cosh py:c™ }R,fr.”' (cosh gy, :¢™),
(41)

~2ik P, S (c0s Gp; ¢ e "® R (cosh ;¢ )R} (cosh sy, :¢™ }:|,

4, Numerical Solution-Results

The determination of the scattered field expansion coefficients is accomplished
through the solution of the non-homogeneous system (37). Obviously, a suitable
truncation procedure needs to be imposed for this system to be solved numerically. In
particular, the infinite system (37) gives place to the finite truncated replica of it
D®x® =p® x=0,1,2,.., (42)

()

where D™ is a square matrix of dimension 3(x +1)? x3(x+1)*as imposed by the

structure of matrix D while the matrices x*, b™ are of dimension 3(x+1)*. The
parameter k naturally corresponds to the truncation level of the summation index n"
appearing in Eqgs. (25,26). Truncation level N, i.e. x =N in (42), is chosen in such a

way that ensures the convergence of |[u™| computed using Eg. (9), to the desired

accuracy. This is achieved by repeating calculations for successively larger values of

N and fixed values of the several parameters entering the problem, until

]”xl ~
N

3

u = 0(107).

N+l
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In our computations the scattered field is computed on the minimum sphere
containing the kidney external surface and for a frequency of incident wave 20 kHz.
A suitable transformation is adopted to represent the obtained results in spherical
geometry. In addition, we have used the following properties for the kidney material

and the surrounding medium
o =1,022 kg!ma,cl =1,533m/sec
Loy =1,000kg /m* ,c=1,493m/sec.

Moreover, we have considered the case when the point source is located on the
symmetry axis of the spheroidal kidney at distance 0.0lm. Finally, the spheroidal

kidney stone is assumed to have a specific ratio of semi-axis &, /6, =1.5. Having in

mind realistic configurations and aiming at settling a model which assures stability as

the confocal geometry gives place to the eccentric one, we have adopted that the
spherical coordinates of the stone center are r, (parameter), & =0.1° and ¢ =0". Our
first result motivated by this discussion is the computation of the scattered field for
some special cases to check both the validity and accuracy of the results. We consider
a perturbed confocal structure consisting of two spheroids with focal distances
a, = a, =0.015. We examine three indicative cases in which the spheroidal systems
centers distance # takes the values 7 =107,107* and 10~ m respectively. We remark

that for the first case, there is an excellent agreement with the result obtained in [2]

where the confocal case is examined. In addition, the distance r affects the scattered
field as Fig.2 indicates, though the influence is rather slight. More precisely for the

case r, =107 m, the average relative deviation of the scattered field from the confocal
case is up to 3.17x107*, for 5 =10"*m we have an average relative deviation of

order 3.2x107° while for the case 7 =107 m this quantity is up to 32321072,

16



The sensitivity of the measurement of the scattered field as the distance r, of the
(diagnostic equipment) point source varies is shown in Fig.3 (where r is selected to

be 10~*m). It is clear that an increase of the source distance results in a considerable
decrease of the scattered field computed. Fig. 4 shows the shape dependence of the
scattered field as the spheroidal kidney deviates from the spherical geometry

(ag; ! By =1) . This indicates that the scattered wave can provide with information on

the spheroidal ratio of radii.

5. Conclusions

We have developed a theoretical model for the acoustic scattering of time — harmonic
spherical waves from an eccentric non — coaxial spheroidal structure. Our approach is
frequency independent and it is based on transitional addition theorem on the
spheroidal wave functions. We have the model to provide with numerical results for

the kidney — stone system.

To our knowledge other researchers have addressed similar problems using numerical
treatment such as boundary elements etc. The importance of our work is twofold.
First it provides with a theoretical model for a complicated problem. In the system
under consideration two spheroidal systems along with a spherical system are
involved. The additional difficulty appears in the treatment of the boundary
conditions on the discontinuity surfaces, which constitute coordinate surfaces of
different systems. Second the numerical results indicate that acoustic scattering can

be used as diagnostic tool which permits the identification of stones in kidneys and

17



their characteristics (e.g. size, orientation, position, etc.).  In this direction further
results must be obtained for different system parameter values in order to construct an

expert system which can used for the inverse scattering problem.

18



6. Appendix

Let us present briefly the geometry under investigation, which is the spheroidal one as

we have already stated.

The connection between Cartesian and spheroidal coordinates as well as the scalar

factors are given by the relations

X =g—sinhysin§c05¢, y=%sinhpsin§singﬁ, z=%mshpcos$, (A.1)

h, =hy =%fx\fcoshpz-cnszﬁ', hy =%cxsinhysin§, (A.2)

where the spheroidal coordinates range over the intervals 420,08 <7,0<¢ <27.

The case p=0 corresponds to the line interval connecting the two foci of the

1
spheroidal system located at z = ot and z=—.
a a

The solvability of Helmholtz equation

A¥ +E°¥ =0, (A3)
is based on separation of variable techniques adapted to the spheroidal coordinate
system. In [4], the scalar spheroidal wave functions are presented under the
hypothesis of real azimuthal dependence, which is equivalent to the positive sign of
the azimuthal separation of variables parameter m. However, the uniform
applicability of addition formulae requires the adoption of the following spheroidal

wave functions
Y (&£,1,8,c)=RY) (£:¢)S,,, (1:0)e™ ,np=cosB,& =cosh i, (A.4)

m =[},il,:l:E,...;n=|m|,im]+l,!ml+2,....
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where the azimuthal dependence is complex and incorporates the full range of

parameter m .

It is proved [4] that the functions R and S for m=0.1,... ;n =2 m are given by

. Y 3 @B m, n=m=even
Sum@0)= Y A (OB ) =1"T (A.5)
D BB s (), m=m=0dd.
&=l

R (&) =

-1
[z ' (2m + K]Id:.m (CJ] (l—ijmuz ' I-.'c+m—n (2m+1f‘)1 Fm {CJZ{j} (C(f),
x! &

x=0,1 d oy K! - e
(A.6)
where four alternatives for the spherical Bessel functions Z{/ exist
ZO(2)=j.(2); (A7)
2B =949, (A8)
ZO(2) =B (2) = (o () + iy, (2)) (A.9)
ZP(2) =12 (2) = (ju () -7, (2), (A.10)

while P,"(7) denotes the associated Legendre functions of the first kind. In addition,

the symbol Z ', as it is clear from Eq. (A.5), indicates summation over even or odd
x=0,1

indices, depending on the starting index. Given that we have used the complete range

of m, ie. m=0,21,+2,..., in the definition (A.7) of the scalar spheroidal wave

functions then Egs. (A.5) and (A.6), must be extended to
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Zd (e)R |+2.c{r:"]! h—m=gcven
m.rz (I}'!C} Z dm(c}}i’nﬂ+r(n} =1 (AII}
L zdﬂ’q () Rz (M), n—m=odd,
L x=0

RO (Fic)=RD  (£0)=

-1
D, ame| asgr) e R ez e,
=1 K-‘ wml)d K.l

(A.12)
Crucial role to the numerical calculation of the spheroidal functions play the
coefficients d]"(c) [6]. Their full determination is accomplished through the solution
of a specific eigenvalue problem (which has a different formulation depending on m
being positive or negative) provided that a normalization condition is imposed. More

precisely, exploiting the ordinary differential equations satisfied by the S, (7:c) and
Im + (1) functions as well as suitable recurrence relations of the latter functions we

obtain the following recursive scheme

((m|+m+x+2)(|m|+m+x+1) 2 gm
(2| m|+2c+5)(2| m|+21c+3) 2ena(©)
2(|m|+x)|m|+x+1)-2m* -1
(2| m|+2x-1)(2|m|+2x +3)
(! |-m+x 1}(|m| -m+K) 2™
(2|m|+2x-3)2|m|+2x— 1}

c21d™(c) (A.14)

H(m|+)m|+x+1) =4, (c) +

a(c)=0.

Formula (A.12) gives rise to the following eigenvalue problems

B a4 0 0 .. ..7d"©)] [d™ ()]
Va By @ 0 . .. |d(0) d™ (c)

GO 1.0l% O, (@15
0 e Z2e Bae @ | dm™(e) ar (c)
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for (n -|m|) even and

B 0 0 o . [d"O] d" (c)
i By 0 i || (e) d;" (c)

GO | ol F Q| (a6
T )8231-4.-1 Eapei d;i__](f:‘:ll ff;n:ﬂ{c}

for (n—|ml|) odd, where the coefficients e, f, and y, are determined through the

relations

_ 2m+x+2)2m+x+1) o

a, = (A.17)
(2m+x+5)2m+2x+3)
2|[m+Jvcjlli:m+:rf41-1}—2m2 -1 5
=(m+x)m+rx+1)+ A.l8
Py = (m + K)om ) (2m+ 2k -1D(2m+2x +3) ¢ ( )
Ve = L) A, (A.19)
(2m+ 26 —2m+2x-1)
in the case that m > 0 while for m <0 it holds that
a, = (et 2 i) 2, (A.20)
(2| m|+2k+5)(2|m|+2x +3)
ALYy 2 S
L SRR R N T ) = (A.21)
(2| m|+25 =1)(2 | m| +2x +3)
2 e
o (2| m|+x-1)(2|m|+x) 3 (A22)

T 2]m|+26=3)2|m|+2x-1)

Hence Egs. (A.15) and (A.16) provide with the eigenvalues ‘?'mq'ml(cj’ jm.|m|*2':‘3]*'“
and *:"*m{m|+1'[¢) ,x?.mllmlﬂt:c),...,rcspective]y, For every A4, (c) obtained above, the

d;"(c) coefficients are determined modulo a multiplicative constant. As we have

22



already mentioned, a normalization condition must be imposed in order for these

coefficients to be uniquely determined [4, 6]).
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Figure 2: Iu“‘ as a function of ¢ for varying distance r for a perturbed confocal case

(aq; =a, =0.015).
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Figure 3: |u"'"| as a function of @ for varying distance r,
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Figure 4: |u"“ as a function of & for varying ratio ay, /S,
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