SOLVING DIFFENTIAL EQUATIONS WITH
NEURAL NETWORKS:
IMPLEMENTATION ON A DSP PLATFORM

K. Valasoulis, D.l. Fotiadis, |.E. Lagaris and A. Likas

10— 2002

Preprint, no 10-02 /2002

Department of Computer Science
University of loannina
45110 loannina, Greece

SOLVING DIFFERENTIAL EQUATIONS WITH NEURAL NETWORKS:
IMPLEMENTATION ON A DSP PLATFORM

K. Valasoulis, D. I. Fotiadis, I. E. Lagaris and A. Likas

Department of Computer Science, University of Ioannina

Biomedical Research Institute, FORTH
PO. Box 1186 - GR 45110 loannina, Greece
{csst9731, fotiadis, lagaris,arly}@cs.uoi.gr

Abstract:

Artificial neural networks have been successfully employed for the solution of ordinary and partial differential equations.
According to this methodology, the solution to a differential equation is written as a sum of two parts. The first part
satisfies the initial/boundary conditions and contains no adjustable parameters. The second part involves a feedforward
neural network (MLP) whose weights must be adjusted in order to solve the equation. A significant advantage of the above
methodology is the ability of of direct hardware implementation of both the solution and the training procedure. In this
work we describe the implementation of the method on a hardware platform with two digital signal processors. We address
several implementation and performance issues and provide comparative results against a PC-based implementation of

the method.
1. INTRODUCTION

Artificial neural networks have been recently shown that
they can be successfully integrated into solution methods
for differential equations, both ordinary {ODEs) and par-
tial (PDEs) [3, 4, 6]. These solution methods rely on the
function approximation capabilities of feedforward neu-
ral networks and result in the construction of a solution
written in a differentiable, closed analytic form. This
form (model function) employs a feedforward neural net-
work as the basic approximation element, whose parame-
ters (weights and biases) are adjusted to minimize an ap-
propriate error function. The model function is expressed
as the sum of two terms: the first term satisfies the ini-
tial/boundary conditions and contains no adjustable pa-
rameters. The second term involves a feedforward neural
network to be trained so as to satisfy the differential equa-
tion.

The employment of a neural architecture adds many
artractive features to the method:

e The solution via ANN's is a differentiable, closed
analytic form easily used in any subsequent calcu-
lation. Most other techniques offer a discrete so-
lution (for example predictor-corrector, or Runge-
Kutta methods) or a solution of limited differentia-
bility (for example finite elements).

e The employment of neural networks provides a so-

lution with very good generalization properties. Com-

parative results with the finite element method pre-
sented in this work illustrate this point clearly.

o The required number of model parameters is far
less than any other solution technique and, there-
fore, compact solution models are obtained with
very low demand on memory space.

» The method can be realized in hardware and hence
offer the opportunity to tackle in real time difficult
differential equation problems arising in many en-
gineering applications.

In this work we focus on the last issue and present de-
tails and results from the implementation of the method
on a hardware platform with rwo digital signal proces-
S0rS,

2. THE SOLUTION METHOD

The proposed approach for solving differential equations
using neural networks [3, 4, 6] can be described in terms
of the following general differential equation definition:

G(Z, ¥(F), V(F), V2U(F) =0, D (1)

subject to certain boundary conditions (B.Cs) (for instance
Dirichlet andfor Neumann), where T = (zq,..., Tn) €

R", D C R" denotes the definition domain and T(7) is

the solution to be computed.

To obtain a solution to the above differential equa-
tion, the collocation method is adopted, which assumes a
discretization of the domain D into a set points D). The
problem is then transformed into the following system of
equations:

G(&, U(F), VE(), V2U(5)) =0,¥5 € D (2)

subject to the constraints imposed by the B.Cs.
If ¥, (£, 7) denotes a trial solution with adjustable pa-
rameters ., the problem is transformed to:

ming Y (G(a%, Wu(#5, B), V(. §), VAU, 5)))?
I-.Ef?

(3)

subject to the constraints imposed by the B.Cs,

In the proposed approach, the trial solution T, em-
ploys a neural network (which is a multilayer perceptron
(MLP) in our implementation) and the parameters 7 cor-
respond to the weights and biases of the neural architec-
ture. The trial function T,(7) can be cast in a form that
by construction satisfies the BCs. This is achieved by
writing it as a sum of two terms:

V(%) = A(F) + F(&, N(Z,9)) (4

where V[#, 7) is a single-output feedforward neural net-
work with parameters § and n input units fed with the
input vector £. The term A(F) contains no adjustable
parameters and satisfies the boundary conditions, while
the second term F employs the neural network whose
weights and biases are 10 be adjusted in order to deal with
the minimization problem. In this way the problem has
been reduced from the original constrained optimization
problem to an unconstrained one which is much easier to
handle.

In [3] a systematic way is presented to construct the
trial solution, i.e. to define the functional forms of both
Aand F. As indicated by the experiments, the above
solution method is very effective and provides in reason-
able computing time accurate solutions with impressive
generalization {interpolation) properties.

It must be noted that the efficient minimization of
equation (3) can be considered as a procedure of training
the neural network where the error corresponding to each
input vector 7; is the value (1) which has to become
zero, Computation of this error value involves not only
the network output (as is the case in conventional train-
ing) but also the derivatives of the output with respect to
any of the inputs. Therefore, in computing the gradient
of the error function with respect to the network weights,
we need to compuie not only the gradient of the nerwork
but also the gradient of the network derivatives with re-
spect to its inputs. It has been shown | 3] that derivative of
a multilayer perceptron (with one hidden layer) with re-
spect to any of its inputs is also a multilayer perceptron,
thus it can be efficiently implemented in hardware.

3. DSP IMPLEMENTATION

We implemented the solution methods on the following
two architectures:

1. Daytona67 Board

This is a DSP Board with mve processing nodes.
Each node consists of a TMS320C6701 floating
point DSP (167 MHz) and several memory chips

[1].

2. PC Ordinary PC based on a single Intel PIII pro-
cessor (733 MHz).

We implemented the NNs on the TMS320C6701 EVM
entirely in software using the C language and the features
available in the CCS Ver 1.2 [CCS]. Moreover, in order
to better exploit the capabilities of the Daytona6é7 Board,
we used some hand-optimized assembly routines for fast

computation of the dot product of two vectors, the matrix-
vector multiplication and the sum of two vectors.

For the time-consuming computation of scalar divi-
sion, we implemented a special function instead of us-
ing the standard division operator /", Our function is
based on the combined use of the reciprocal "RCPSF()”
call [2] with the Newton-Raphson method and provides
a sufficiently accurate reciprocal value of the denomina-
tor. Then the outcome is multiplied with the dividend
to provide the final division result. The whole procedure
requires no more than 62 cycles, while the use of the stan-
dard division operator requires at least 172 cycles.

Another time-consuming procedure is the computa-
tion of the log-sigmoid activation function of each hidden
layer unit:

1
flil':'=m

Apart from the previously mentioned division operation,
the sigmoid computation also involves computing the ex-
ponential which in its standard form “exp()” or “expf()”
requires 1030 and 390 cycles respectively. We imple-
mented a special exponential function {which consumes
less cycles) based on the following formula:

—&

e = e—iTLTEyET'{I] E—_”m:t[u."]

where integer(x) and float(x) are the integer and the dec-
imal part of x respectively. In case that integer(x) is a
non-negative number, only multiplications are required
for the computation of the first term of the product. Oth-
erwise, an additional call to the division function men-
tioned above is required. In order to compute e~ /te2t(=)
the dot preduct of the following vectors must be com-
puted:

[].:y,?_,fE, yan"':yzg] = —f{ﬂﬂ-tl:.f['}
and 11 1
L1550 550 550

The first vector is constructed each time the exponen-
tial functicn is called and the second vector is constructed
once during program initialization. The dot product above
actually corresponds to the Taylor series approximation
of e=/12282} thay involves thirty terms. The above imple-
mentation of the log-sigmoid function are required 175-
230 cycles.

Before implementing the neural system that solves
differential equations, we considered an implementation
on the Daytona67 board of a conventional MLP training
method for a classification dataset with 20-dimensional
patterns and four classes. The selected MLP architecture
contains 20 input units, one hidden layer with ten hid-
den units and four output units. We used used off-line
back-propagation as the training algorithm and the aver-
age number of cycles per epoch for the two implemena-
tions (Daytona67 Board and PC) is presented in Table 1.

It is clear, from Table 1, that the training process on
the Daytona6? Board requires less cycles per epoch. In
addition we have also observed (using other datasets) that
as the dimensionality of the input patterns increases, the
advantage of the DSP board becomes more clear. This is

Daytonat7 Board intel P ||
Mumber of Regquired cycles Required cycles
patterns per epoch per epoch
10 35.900 22110.000
100 340,730 =], 100000
1000 3.389.030 221 1.000.000

Table 1. Cycles per epoch of MLP training for a classifi-
cation problem.

mainly due to the employvement of the previously men-
tioned hand-optimized assembly routines (e.g. matrix-
vector multiplication) of the Daytona67 Board.

3.1. ODE example

As a first implementation example we assumed the fol-
lowing ODE problem:

v 1 .
‘a;-'-g"l"= «ms[c}
and
T(0) =0 311![!}—1} € [0,2
B = =El,

The form of the trial solution ¥, can be found in [3].
We used an MLP which contains one input unit. one hid-
den layer with ren hidden units and ene output unit. We
implemented the off-line back-propagation as a training
algorithm and the number of execution cycles per epoch
using the Daytona67 Board and the PC are presented in
Table 2.

|| ODE Problem | lntel PIII Daytona 67 ||
MNumber of Number of cvcles | Mumber of cycles
training points per epoch per epoch
10 ==36.650 44702
50 =183.250 221.502
100 _____#.359.1?‘] 442 502

Table 2. ODE example: Cycles per epoch for different numbers of
training points.

3.2. PDE example

As a second implemetation example we assumed the fol-
lowing PDE problem:

Vi(zr,y) =e = (z—2+° + 6y)

with
z,y € [0,1],

and bounday conditions
(0,y) =y, ¥(Ly)=(1+y%)e,

Pz, 0)=xe™", Tz, 1ll=e"Fz+1).

REQUIRED | NUMBER OF
CYCLES TRAINING POINTS

PER EPOCH 25 00 | 625
10 || 172225 | 689.020 | 4.284.385
NUMBER OF |[20 || 333.515 | 1.319.400 | 8.231.590
HIDDEN 30 || 488911 | 1.957.110 | 12.167.800
NEURONS || 40 || 648705 | 2.580.160 | 16.150.922
50 || §17.295 | 3.225.200 | 20.069.540

Table 3. PDE example: PC with Intel PIIl using back-propagation
with off-line update of network parameters as the training algorithm.

REQUIRED NUMBER OF
CYCLES TRAINING POINTS

PER EPOCH 1 25 1040 625

10 M 127.279 506,688 3.181.501
NUMBER OF 20 230.835 914,590 5.697.200
HIDDEN 0 331.558 | 1.323.960 8.200.210
NEURONS 40 || 433.582 | 1.731.887 | 10.800.102

50 536.047 | 2.140.260 | 13.400.854

Table 4. PDE cxample: Daytona67 Board using back-propagation
with off-line update of network parameters as the training algorithm.

The form of the trial solution is described in [3]. We
used an MLP with rwe input units, one hidden layer with
varying number of hidden units and one output unit. We
implemented both the off-line back-propagation and the
Polak-Ribiere conjugate gradient method [5] as training
algorithms. The number of execution cycles per epoch
are presented in Tables 3, 4, 5 and 6.

In order to provide a clearer view of the way that the
number of hidden units and the number of training points
affect the performance of the method, we present in Ta-
bles 7 and 8 the value of the parameter

- cycles(Intel)
~ eycles(DaytonabT)’

It is clear from Tables 7 and 8 that the number of train-
ing points almost does not affect the value of &, On the
other hand. the number of hidden units significantly af-
fects the value of . More specifically, when the hidden
units increase, the Daytona67 Board becomes more ef-
fective. This is due to the increase in the input dimension
of the assembly hand-optimized routines, which makes

REQUIRED NUMBER OF
CYCLES TRAINING POINTS
PER EPOCH 33 | w0 | 625
| 10 || 432470 | 1.627.993 | 10.045.765 |

NUMBER OF || 20 £13.6%6 3.093.260 | 21.223.282
HIDDEN 30 || 1194790 | 4.568.056 | 32.393.460
NEURONS 40 1.577.228 | 6.052.381 | 43.260.389

30 || 1.960.388 | 7.521.810 | 33.905.122

Table 5. PDE example: PC with Intel PIIl using Polak-Ribicre con-
jugate gradient method as the training algorithm.

REQUIRED NUMBER OF
CYCLES TRAINING POINTS
PER EPOCH 25 00 | 625

10 || 397976 | 1.568.006 | 9.758.006

NUMBER OF || 20 || 748571 | 2.951.696 | 18373571
HIDDEN 30 || 1.099.116 | 4335416 | 26.989.166 |

NEURONS |[40 || 1.449.659 | 5.719.109 | 35.605.259

| 50 || 1.B00.173 | 7.102.748 | 44.220.773

Table 6. PDE example: Dayiona67 Board using Polak-Ribiere con-
jugate gradient method as the training algorithm.

NUMBER OF

a= el || TRAINING POINTS

25 [100 | 625
10 || 1353 | 1359 | 1346
NUMBEROF || 20 || 1448 | 1432 | 144
HIDDEN 30 || 1.474 | 1478 | 1466
NEURONS a0 || 149 | 1489 | 1.495

50 || 1524 | 1506 | 1497 |

Table 7. Training using off-line back-propagation.

them much more efficient compared to the corresponding
PC routines.

It can also be observed that the performance of the
Daytona67 Board decreases more (compared to the Pen-
tium performance) when the Polak-Ribiere conjugate gra-
dient method is used. This is because this training method
contains a line search procedure [5] which uses some
computations that require much more cycles at the Day-
tona67 Board than at the PC. Nevertheless, it must be
mentioned that most of those tfime-consuming computa-
tions can be implemented using hand-optimized assem-
bly routines which are commercially available. In the cur-
rent implementation, we did not make use of these rou-
tines. Consequently, the Daytona67 implementation has
the potential to exhibit much better performance in the
case where these optimized routines will become avail-
able.

Except for this immmediate future research plan, we
are also examining the possibility of implementing the
method in alternative platforms which may be more ef-
fective for neural computations such as boards employ-
ing neurochips. Another issue that needs to be examined

NUMBER OF
o eyeles{ Intel
a= mﬂgﬁ TRAINING POINTS
5 | 100 | &5
10 1.0%6 | 1.036 | 1029 |
NUMBER OF 20 1.087 | 1.047 | 1.155 |
| HIDDEN 30 1.087 | 1.053 | 1.200 ||
NEURONS 40 1.088 | 1.058 | 1.215 ||
0 1.089 | 1.059 | 1219

Table 8. Training using the Polak-Ribiere conjugate gradient method.

is the possibility of performing the computation of the
sigmoid activation function using tables and interpolation
methods. Finally, we are aiming at using the platform for
the solution of differential equations appearing in real-
world problems and especially in biomedical engineering
applications.

Acknowledgement This work is partially funded by
the European Commission: PLACEBO 1ST-2001-35270,
An Innovative Computational Platform for Solving Dif-
ferential Equations of Modelling Biomedical Processes.

REFERENCES

[1] Dayiona Technical Reference,

www.spectrumsignal.com, 2000,

[2] TMS320C600 Code Compeser Smudio Tutorial,
www.ti.com, 2000.

[3] L. E. Lagaris, A. Likas and D. 1. Fotiadis, Artificial
Neural Networks for Solving Ordinary and Partial
Differential Equations, [EEE Trans. on Neural Net-
works, vol. 9, no. 5, pp. 987-1000, 1998.

[4] L. E. Lagaris, A. Likas and D. G. Papageorgiou,
Neural Networks Methods for Boundary Value
Problems with Irregular Boundaries, IEEE Trans.
on Newral Networks, vol. 11, no. 5, pp. 1041-1049,
2000.

[5] R. Fletcher, Practical methods of optimization, sec-
ond edition, John Wiley 1987.

[6] 1.E. Lagaris, A. Likas and D.I. Fotiadis, Artificial
Neural Network Methods in Quantum Mechanics,
Computer Physics Communicarions, vol. 104, pp.
1-14, 1997.

