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Abstract:  In this paper we examine the classes of graphs whose complements are tree
graphs and quasi-threshold graphs and derive formulas for their number of spanning trees.
More precisely, we derive formulas for the number of spanning trees of the graph G = K,—H,
where H is (i) a tree graph, and (ii) a quasi-threshold graph; G is defined to be the graph
which results from the complete graph K,, after removing a set of edges that span H.
Our proofs are based on the complement spanning-tree matrix theorem which expresses the
number of spanning trees of a graph as a function of the determinant of a matrix that can
be easily construct from the adjacency relation of the graph. Our results generalize previous
results and extend the family of graphs of the form K, — H having formulas regarding the
number of spanning trees.
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1 Introduction

We consider finite undirected graphs with no loops nor multiple edges. Let G be such a graph on n
vertices. A spanning tree of G is an acyclic (n — 1)-edge subgraph. The complement G of the graph &
is defined to be the n-vertex graph containing exactly the edges of K,, which are not in G; K,, denotes
the complete graph on n vertices.

Let S be a set of edges that join pairs of vertices in K,,. The problem of calculating the number
of spanning trees on the graph G that results from K, after removing the edges of the set §, is
an important, well-studied problem in graph theory. Deriving formulas for different types of graphs
spanned by a set of edges can prove to be helpful in identifving those graphs that contain the maximum
number of spanning trees. Such an investigation has practical sequences related to network reliability
[2, 7, 17, 23].

Thus, for both theoretical and practical purposes, we are interested in deriving formulas for the
number of spanning trees of classes of graphs of the form K, — H, where such a graph results from
the complete graph K, after removing a set of edges that span the graph H. Many cases have been
examined depending on the choice of H. For example there exist formulas for the cases where H is a
pairwise disjoint set of edges [24], when it is a star [21], when it is a complete graph [1], when it is a
chain of edges, that is, a path graph [6, 16], when it is a cycle [6], when it is a multi-star [5, 20, 26],
and so on (see Berge [1] for an exposition of the main results).

The purpoese of this paper is to study the above problem and derive formulas regarding the number
of spanning tree of the graph G = K, — H in the cases where H is (i) a tree graph, and (ii) a
quasi-threshold graph. A graph H on n vertices is called a tree graph if it is a connected (n — 1)-edge
graph; H is called a quasi-threshold graph if it contains no induced subgraph isomorphic to Py or



Cy [9. 19, 25]). Our proofs are based on a classic result known as the Complement Spanning- Tree
Matriz theorem [23], which expresses the number of spanning trees of a graph @ as a function of the
determinant of a matrix that can be easily construct from the adjacency relation (adjacency matrix,
adjacency lists, ect) of the graph G. Calculating the determinant of the complement spanning-tree
matrix seems to be a promising approach for computing the number of spanning trees of families of
graphs of the form K, — H, where H posses an inherent symmetry (see [1, 5, 6, 20, 26]). In our cases,
since neither tree graphs nor quasi-threshold graphs posse any symmetry, we focus on their structural
and algorithmic properties. Indeed, both tree and quasi-threshold graphs possess properties that allow
us to efficiently use the Complement Spanning-Tree Matrix Theorem; tree graphs are characterized by
simple structures and quasi-threshold graphs are characterized by a unique tree representation [13, 19]
(see Section 2). We compute the number of spanning trees of these graphs using standard techniques
from linear algebra and matrix theory on their complement spanning-tree matrices. Our ideas and
techniques will be formalized and further clarified in the sequel.

It is well-known that various classes of graphs are subclasses of the class of the tree graphs; for
example, the classes of path graphs, star graphs, ice-graphs are all subclasses of the class of tree graphs
(an ice-graph is obtained from a multi-star graph Ku(b1,ba,...,b,) by setting K, := K, + K, [20]).
Moreover, the class of quasi-threshold graphs contains the classes of perfect graphs known as threshold
graphs and complete split (or, e-split) graphs (a graph is defined to be a e-split if there is a partition
of its vertex set into a stable set S and a complete set K and every vertex in S sees all the vertices
in K') [8]; we note that the quasi-threshold graphs are also perfect graphs. Thus, the results of this
paper generalize previous results and extent the family of graphs of the form K, — H having formulas
regarding the number of spanning trees.

The paper is organized as follows. In Section 2 we establish the notation and related terminology
and we present background results. In particular, we show structural properties for the class of quasi-
threshold graphs and define a unique tree representation of such graphs. In Sections 3 and 4 we present
the results obtained for the graphs K, — T and K, — Q, respectively, where T is a tree graph and
@ is a quasi-threshold graph. Finally, in Section 5 we conclude the paper and discuss possible future
extensions.

2 Definitions and Background Results

Let G be a graph on n vertices and let V(@) and E(G) be its vertex set and edge set, respectively.
The neighbourhood of a vertex u is the set N(u) = Ng(u) consisting of all the vertices of G which
are adjacent with u. The closed neighbourhood of u is defined by N[u] = Ng[u] := {u} U N(u). The
subgraph of a graph G induced by a subset § C V(G) is denoted by G[S]; a subset T C E(G) spans
a subgraph H, where V(H) = {u € V(G) | u is an endpoint of some edges of T} and E(H) =T. A
spanning tree of G is an acyclic subgraph H of G spanned by n — 1 edges of G.

A graph G on n vertices is called free graph if it is a connected graph and has n — 1 edges. A graph
G is called a quasi-threshold graph, or QT-graph for short, if and only if & has no induced subgraph
isomorphic to Py or Cy (9, 15, 19, 23].

Let H be an undirected graph on p vertices and let K, — H be the graph that results from the
complete graph K, after removing a set of edges that span H; recall that K, denotes the complete
graph on n vertices. The purposes of this work is to derive formulas for the number of spanning trees
of the graphs K, — T and K, — Q, where T is a tree graph on & vertices and () a quasi-threshold
graph on p vertices; obviously, k < n and p < n. To this end, we use the Complement Spanning-Tree
Matriz theorem [23] (hereafter, CSTM theorem); it expresses the number of spanning trees of a graph
G = K, — H on n vertices as a function of the determinant of an n x n matrix that is called complement



spanning-tree matriz of G. The complement spanning-tree matrix A of a graph G is defined as follows:

1-4 jfi=j
Aiy=41 if i #§ and (i,) € E,
0 otherwise,

where d; is the number of edges incident to vertex u; in the complement of G; that is, d; is the degree
of the vertex u; in G. It has been shown [23], that the number of spanning trees 7(G) of G is given by

(G) = n"? det(A).

In the case where G = K, we have that det(4) = 1; the Cayley'’s tree formula [11] states that
T(Kp) =n"2,

We next provide characterizations and structural properties of T-graphs and show that such a graph
has a unique tree representation. The following lemma follows immediately from the fact that for
every subset S C V(G) and for a vertex u € §, we have Ngs)[u] = N[u]N S and that G[V(G) — §] is
an induced subgraph.

Lemma 2.1 ([13, 19]). If G is a QT -graph, then for every subset 5 C V(&), both G[S] and
GV(G) — 5] are also QT -graphs.

The following theorem provides important properties for the class of @T-graphs. For convenience, we
define

eent(G) = {z € V(G) | N[z] = V(&)}.
Theorem 2.1 ([13, 19]). The following three statements hold.

(i) A graph G is o QT -graph if and only if every connected induced subgraph G[5],5 C V(G),
satisfies cent(G[S]) # 0.
fii) A graph G is a QT -graph if and only if G[V(G) — cent(G)] is a QT-graph.

(iii) Let G be a connected QT -graph. If V(G) — cent(G[S]) # 0, then G[V(G) — cent(G)] contains at
least two connected components.

Let & be a connected QT-graph. Then V] := cent((G) is not an empty set by Theorem 2.1. Put
Gy =G, and G[V(G) - W3] = Ga UGy U...UG,, where each (; is a connected component of
G[V(G) = 17] and r > 3. Then since each ; is an induced subgraph of G, G| is also a QT-graph, and
s0 let V; := cent(G;) # 0 for 2 < i < r. Since each connected component of G;[V(G;) — cent(G;)] is
also a T-graph, we can continue this procedure until we get an empty graph. Then we finally obtain
the following partition of V(G).

V(IG) =V +Va +... 4+ V;, where V; = cent(G;).

Moreover we can define a partial order < on {13,V3,..., V3 } as follows:
Vi <V; if Vi =cent(G;) and V; CV(G;).
It is easy to see that the above partition of V(&) possesses the following properties.

Theorem 2.2 ([13, 19]). Let 7 be a connected QT -graph, and let V(G) = Vi + Vo +... + Vi be the
partition defined above; in particular, V] := cent(G). Then this partition and the partially ordered set
({Vi}. <) have the following properties:



(P1) If V; < Vj, then every vertez of V; and every vertex of V; are joined by an edge of G.
(P2) For every Vi, cent(G[{UV; | V; < V1)) = V.

(P3) For every two V, and Vi such that V, < Vi,G[{UV; | V; < Vi < W}] is a complete graph.
Moreover, for every maximal element Vi of ({Vi}, <), G[{UV; | V1 < V; < 1i}] is a mazimal
complete subgraph of G.

(P4) Every edge with both endpoints in V; is a free edge; an edge (z,y) is called free if N[z] = N[y].

(P5) Every edge with one endpoint in Vi and the other endpoint in V}, where V; £ V}, is a semi-free
edge; an edge (z,y) is called semi-free if either N[z] C N{y] or N[z] > N[y|.

The results of Theorem 2.2 provide structural properties for the class of QT-graphs. We shall refer to
the structure that meets the properties of Theorem 2.2 as eeni-tree of the graph G and denote it by
T:(G). The cent-tree is a rooted tree with root V1; every node V] of the tree T.(G) is either a leaf or
has at least two children. Moreover, V; < 1} if and only if V5 is an ancestor of V;. Thus, we can state
the following result.

Corollary 2.1. A graph G is a QT-graph if and only if G has a cent-tree T.(G).

If Vi and V; are disjoint vertex sets of the above defined partition of the vertex set of a QT-graph G
and Vi < V; or V; £V}, we say that V; and V; are cligue-adjacent and denote Vj = Vj.

3 Tree Graphs

Let T be a tree graph on k vertices and let TV be a rooted tree of T rooted at vertex r € V. We
partition the vertex set of the graph T, with respect to the rooted tree T', in the following manner:

We set T := T" and let leaves(T]) be the set of leaves of the tree T]. Then 1] = leaves(T])
is not an empty set. We delete the leaves of the tree 7] and let T3 be the resulting tree. We set
Vo = leaves(T}) and we continue this procedure until we get an empty tree. Then, we finally obtain
the following partition of V(T):

VIT) =W + V2 +...+ Vy,where V; = leaves(T!), T.,, = T} — leaves(T]) and T} = T".

We call the above defined partition st-partition of the tree graph T or, equivalently, st-partition of the
rooted tree T,

Figure 1 depicts a tree graph T on ten vertices; we can also view the graph T as a tree, say, T,
rooted at vertex uig. The vertex sets of the st-partition of the tree graph T, with respect to the rooted
tree T, are the following: Vi = (us, u1, us, us, ug, u3), V2 = (ur,ug), V3 = (ug) and Vy = (uyp).

We consider the vertex sets 17, Va,..., Vj of the st-partition of a graph T, with respect to a rooted
tree T', as ordered sets; we here adopt the left-to-right ordering of the leaves of the tree T'. Notice
that V,"!(u;) denotes the position of the vertex tij in the ordered set ;. For example, in the partition
of the vertex set of the tree of Figure 1 we have ¥V, (ug) = 3,V (ur) = 1, ete.

We label the vertices of the graph T from 1 to k in the order that they appear in the ordered sets
V1, Vs, ..., Vi More precisely, if I; and [; denote the labels of the vertices u; and u;, respectively,
then I; < [; if and only if either both wvertices u; and u; belong to the same vertex set 1, and
Vi H{ui) < V' (u;) or vertices u; and u; belong to deferent vertex sets V}, and Vj, respevtively, and
© < g. This labeling defines a vertex ordering of the tree graph T'; we call it st-labeling of the tree
graph T or, equivalently, st-labeling of the rooted tree T,
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Figure 1: A tree graph T on ten vertices.

Let T be a tree graph on k vertices and let (I3,ls,...,1;) be the labels taken by the st-labeling
of the graph T with respect to a rooted tree T'. For every vertex u; of T, we define the vertex set
chii) C V(T as follows:

ch(i) ={u; € V(T) | uj € N(us) and 4 > l;}.

Hereafter, we shall also use i to denote the vertex u; of the graph T, 1 < < k. We call leaf a vertex
i € V(T), if ch(i) is an empty set. Given a rooted tree T' of a tree graph T, we define the following
function L on V{T):

a; if i is a leaf,

=4
a; — b —— otherwise,
2. 15
Jeeh(i)

where, a; = 1—d;b and b = 1/n; recall that n > k and d; is the degree of the vertex i in the graph T.

We call the function L st-function of the tree graph T or, equivalently, st-function of the rooted tree
T; hereafter, we use L; to denote L{i), 1 <i < k.

We consider the graph G = K, — T, where T i3 a tree graph on £ vertices. We first assign to each
vertex of the graph G a label from 1 to n so that the vertices with degree n — 1 obtain the smallest
labels; that is, we label the vertices with degree n — 1 from 1 to n — k. We label all the other vertices
with degree less than n — 1 from n — k41 to n according to an st-labeling of the tree graph T. Notice
that the vertices with degree less than n — 1 induce the graph T. Then, we form the complement
spanning-tree matrix 4 of the graph G; it has the following form:

"12{1” B]'

where the submatrix B concerns those vertices of the graph K,, — T that have degree less than n — 1;
throughout the paper, empty entries in matrices or determinants represent ('s. Let

-Fl = [H]_,.'Hg, daw g u‘ﬂ}!

Va2 = (Ui, Upya, - - Us),



= st neas s sl

Vi = (uz)

be the vertex sets of an st-partition of the graph T; recall that the vertices uy,wa, ... up of K, — T
have degrees less than n — 1. Thus, B is an k x k matrix having the following structure:

aq 7

af
LR {E‘]_:'.z'

dgt1

(B)i.5

s

L ke

where, according to the definition of the complement spanning-tree matrix, a; = 1 —d;b, and the entry
(b)i,; of the off-diagonal position (i,j) is b if j € ch{i) and 0 otherwise, 1 < i, j < k. Note that
b=1/n and d; is the degree of the vertex i in the graph T.

Starting from the upper left part of the matrix, the first I rows of the matrix correspond to the I
vertices of the set V1; the next r — I rows correspond to the vertices of the set V2, and so forth. The
last row corresponds to the root of the tree T'. For example, when we span the tree graph of Figure 1
from a complete graph K, the matrix B has the following form:

ia b T
131 b
ag b
oy b
g b
RS as b -‘
b b aT b
b b Qg b
b b b g b
L b b aup

whereas =g =ag=as=ay=az=1-b, ar=ag=1—-3b, ap=1—4b and oy =1—2b, and
h=1 I,"ﬂ..

From the matrix 4, we obtain that det(4) = det(B). Thus, we focus on the computation of the
determinant of matrix B,

In order to compute the determinant det(B), we start by multiplying each column i, 1 € <[, of
the matrix B by —b/a; and adding it to the column j if (b);; = b (i < j < k). This, makes all the
strictly upper-diagonal entries (b); ;, that is, i < j, into zeros. Now expand in terms of the 1,2,...,1
rows, getting

1



ff+1
fi {E?:I_]-,
: Fona ‘
det(B) = [] L =[] L: det(B"),
i=1 =1
(b5 i
f
where

L;=ua;, for 1 <i </, since the vertices 1,2,...,[ are leaves of T, and

1
fl=a -0 Y I forl+1<t<k

i€chie) ¥

rEigl
We observe that the (k — ) » (k — 1) matrix B’ has structure similar to that of the initial matrix B;
see Eq. (1). Thus, for the computation of its determinant det(B'), we follow a similar simplification;
that is, we start by multiplying each column i, 1 < i < s, of the matrix B' by —b/ _;F_,§ and adding it to
the column j if (b); ; = b (s < j < k). Then, we obtain:

fia
L () :
det(B) = J[L: J]Ls £ =[] L: det(B"),

i=1 f=+1 - i=1

where

Li=fl.forl+1<i< s, and

1
¥ = g — b —, fors+1<t<k
Ii=m _ > I Ao <i<
igchid)
1g5iga
The matrix B" has also structure similar to that of the initial matrix B; see Eq. (1). It alters only on

the smaller size and on the diagonal values. Thus, continuing in the same fashion we can finally show
that

k

det(B) = [] L.,

i=1
where L is an st-function of the tree graph T and k is the number of vertices of T.

Thus, based on the formula that gives the number 7(G) of the spanning trees of the graph G =
Kyn — T and the fact that det{A) = det(B), we obtain the following result.

Theorem 3.1. Let T be a tree graph on k vertices and let L be an st-function on V(T). The number
of spanning trees of the graph G = K, — T is equal to

k
Q) =n"] L,

i=1

where K, is the complete graph on n vertices and n > k.

Remark 3.1. We point out that Theorem 3.1 provides a simple linear-time algorithm for computing
the number of spanning trees of the graph G = K, — T, where T is a tree graph on k vertices, k < n.



4 Quasi-threshold Graphs

In this section, we derive a formula for the number of the spanning trees of the graph K, — @, where
@ is a quasi-threshold graph, using the work of the preceding section as motivation.

Let @ be a QT -graph on p vertices and let V1,V3,....V: be the nodes of its cent-tree T.(Q))
containing g, ps, ..., P vertices, respectively. We denote d; the degree of an arbitrary vertex of the
node V. Recall that all the vertices u € V(@) of a node V; have the same degree. In Figure 3 we show
a cent-tree of a (JT-graph on 12 vertices. Nodes V3 and V3¢ contain two vertices, while all the other
contain one vertex. The degree of a vertex in node 1y is 4.

Vi

Figure 2: A cent-tree T,.(()) of a QJT-graph on 12 vertices.

We next form the submatrix B of the complement spanning-tree matrix A for the graph K, — ) based
on the structure of the cent-tree T.(Q), as well as on the si-labeling of T.(Q).

Let Iy, l3,..., [ be the st-labels of the nodes Vigyy, Vag2y,-- - V), respectively, of the cent-tree
T.((}). Then, we label the vertices of the graph @ from n — p+ 1 to n as follows: First, we label the
vertices in Vi) from (n—p)+1 to (n—p)+ p1; next, we label the vertices in V2 from (n—p)+p1+1
to (n—p)+p1 + p2; finally, we label the vertices in V. ;). For example, in the QT-graph with cent-tree
T.(() that of Figure 2, we have = = (9,10,5,6,7,8,4,3,2,1).

Thus, based on the above labelling of the vertices of the (T -graph ), we can easily construct the
matrix B of the graph K, — @; it is an p x p matrix and has the following form:

[ My |

MG
M,

+1 [’b 1.3
B= M, - (2)
ﬂ’fs+1

(b]s.5
M,




where M; is an p; x p; submatrix of the form

a; b --- b
b a; --- b
M; = ) ) .
b b - @y

and the entry [b]; ; of the off-diagonal position (i, j) corresponds to an p; x p; submatrix with all its
elements b's if node V; is a descendant of node V; in T.(Q) and 0's otherwise, 1 < i, j < k. Recall
that a; = 1 — d;b, where d; is the degree of an arbitrary vertex in node Vi of T.(@), and b = 1/n.

For example, the matrix B of the graph K, — @, where @ is the QT-graph with cent-tree T.(Q)
that of Figure 2, has the following form:

[ ag b boob ]
210 b b b b
b a10 b b b
as b b
ag b b
ar b b b
A= g b b b
b b b iy b b
b b ay b b
b b b a3 b
b b b b b b as b
b b b » b b b B b B b m

In order to compute the determinant of the matrix B we will first simplify the determinants of the
matrices M;, 1 <{ < k. To this end, we multiply the row of the matrix B which corresponds to the
first row of the matrix M; by —1 and add it to rows of B which correspond to rows 2, 3,...,p; of M.
Then, the determinant of matrix M; becomes:

a; b .- B
dﬁt[_lui} o —[ﬂ,‘:— b} a; — b .
_(ﬂi-" b) a; = b

Now we multiply the column of B which corresponds to the last column p; of M; by —1 and add it
to the columns of B which correspond to columns 1,2,....p; — 1 of M;. Consequently, we add the
columns of the matrix B which correspond to the eolumns 2.3.....p; — 1 of M; to the column of B
which corresponds to the first column of M;. Then, we obtain:

ﬂi—b b

a;—h
det{M;) =

—pia —b8) —(m—1) ‘ a;—b

In order to simplify the determinant of matrix M; we multiply the column of B which corresponds
to the first column of M; by —b/(a; — b) and add it to the column of B which correspond to (i) the
last column of the matrix M;, and (i#Z) the last column of the matrix M; if node V; is a descendant of
node V; in T.(Q), where i + 1 < § < k. Then, we obtain:



ag—ﬁ

!
det(M) = R = (as = b Ha = (1 - p)b).

—-pila; =b) —(a; —b) a; — b+ p;b
It now suffices to substitute the above value in the determinant of matrix B. We point out that after

simplifying the determinant of matrices M; only the diagonal and the last row of each matrix M, have
non-zero’s entries; the diagonal has non-zero's entries since d; < n — 1. Thus, we have:

13
det(B) = [ pi(a: - b} ~" det(D), (3)
i=1
where
i ]
ay
Tl (b
D= Os (4)
Fgt1
()i
o 8
L ai

is an k = k matrix with diagonal elements o; = —'*-1—'-'3’-]— 1 <i <k and the entry (b);; of the
off-diagonal position (,7) is b if node V; is a desc:Enda.nt of node Viin Tp(Q) and 0 otherwise.

We observe that if we set p; = 1 in matrix D, 1 € i < k, then D is equal to the submatrix B of the
graph K, — @, where @ is a graph of a special type; it is a QT-graph on k vertices possessing the
property that each node of its cent-tree T.(Q) contains a single vertex; see Figure 3. The matrix D of
the QT-graph of Figure 3 is the following:

[ as b Bob ]
ay b ] b
g ] b
g f b
[P ¥ b b
= iy b b
b b iy b b
b b g b
b b b b b ag b
. b b b b b b b b b G1p |

It is easy to see that, if we form the submatrix B of the complement spanning-tree matrix A of the
graph K, — €}, where () is the QT-graph of Figure 3, using an appropriate vertex labeling, that is,
lb=n=9 L1 =n-8, ..., Ijp =n, then we obtain D = B,

10
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Figure 3: A QT-graph ¢ on 10 vertices. Every node V] of the cent-tree T.(Q)
contains exactly one vertex.

The idea now is to transform the k x k matrix D into a form similar to that of the k x k matrix B of
a tree graph T on k vertices; see Eq. (1) in Section 3.
To this end, we first apply the following operations to each row i = 1,2,...,k of the matrix D:

e We find the minimum index j such that i < j < k and D[i, j] # 0, and then

¢ we multiply the jth column by —1 and add it to the Ith column, if D[i,l]= D[i,jland j +1 <
t<k

Next, we apply similar operations to each column j =1,2,...,k of the matrix D:
* We find the minimum index i such that 1 < j < ¢ and D[i, j] # 0, and then
» we multiply the ith row by —1 and add it to to the [th row, if D[l j] = D[i,j]and i+ 1 < < k.

Thus, we obtain:

1 ﬂ'l

aj (b5)5.4

det(D) = o
(¥ )i i

11



where

T if V; is a leaf of T,(Q),
a; = (3)
T + Z (rj —2b) otherwise,
FEehii}
I+1€i<k
and
b if ; is a leaf of T,(Q),
b, = (6)

b—a; otherwise.

Recall that o; = 2= ;_ 18, in the case where each node of the cent tree T:(Q) contains a single vertex,
we have o; = a; (in this case p; = 1, for every i = 1,2,..., k).

It is easy to see that the structure of the resulting k& x k matrix D is similar to that of the the
k x k matrix B of a tree graph; see Eq. (1) in Section 3. Thus, for the computation of the determinant
det(L?), we can use similar techniques.

We next define the following function ¢ on the nodes on the cent-tree of a QT-graph Q:

al if i € V; and V; is a leaf of T.(Q),

&(i) = AT
al — Z [—-3}— otherwise,
JEch(i) ¢(7)

where a; and b} are defined in Eq. (5) and Eq. (6), respectively. We call the function ¢ cent-function
of the graph @) or, equivalently, cent-function of the cent-tree T.(Q): hereafter, we use ¢; to denote
i), 1<i<k

Following the same elimination schemes as that for the computation of the determinant of the
matrix B in Section 3, we obtain that

k

det(D) = [] ¢:- (7)

i=1

Now we are in a position to prove the following theorem.

Theorem 4.1. Let ) be a quasi-threshold graph on p vertices and let Vi,V3,..., Vi be the nodes of
the cent-tree of Q). Let ¢ be the cent-function of the graph Q. Then, the number of spanning trees of
the graph G = K,, — () is equal to

k
(@) = n" 22 [T piln — d; — 1)7 19,

i=1

where p; is the number of vertices of the node V; and d; is the degree of an arbitrary verter in node
Vi,1<i<k.

12



Proof. As mentioned in Section 3, the complement spanning-tree matrix A of a graph K, — @} can be
represented by
! P
A= v
[ 8]

where the submatrix B concerns those vertices of the graph K, — @ that have degree less than n —1;
these vertices induce the graph Q. Since a; =1 — d;b and b= 1/n, from Eq. (3) we have

k
det(B) = n*~? [] pi(n — di — 1) =" det(D).

i=1

From the above equality and Eq. (7), we obtain:

&
det(B) = n*~? Hpi['n —di - 1)" 19,

=1

Consequently, the number of spanning trees 7(G) of the graph G is equal to n"~? det(A). Thus, since
det(A) = det(B), the theorem follows. O

Remark 4.1. As mentioned in Introduction, the class of quasi-threshold graphs contains the class
of c-split graphs (complete split graphs); recall that a graph is defined to be a c-split if there is a
partition of its vertex set into a stable set § and a complete set K and every vertex in § sees all the
vertices in K) [8].

Thus, the cent-tree of a e-split H consists of |S| + 1 nodes V1, V4,..., Vg4, such that V; = K and
the nodes V2, V3, ..., Vg4 are children of the root V}; each child contains exactly one vertex u € S,

Let H be a c-split graph on p vertices and let V(H) = K + § be the partition of its vertex set.
Then, by Theorem 4.1, we obtain that the number of spanning trees of the graph G = K, — H is given
by the following close formula:

7(G) = "=~ (n — |K|)/S1} (n — p) K1,
where p= |K| + |5| and p < n.

5 Concluding Remarks

In this paper we derived formulas regarding the number of spanning trees of the classes of graphs of
the form K, — H, where H is (i) a tree graph, and (ii) a quasi-threshold graph. We took advantage
of the structural properties of these graphs and used the Complement Spanning-Tree Matrix (CSTM)
theorem as a tool for deriving the proposed formulas.

The results of this paper generalized previously known results; path graphs, star graphs, ice-
graphs are all special cases of tree graphs, and extend the family of graphs of the form K, — H having
formulas regarding the number of spanning trees; the classes of tree graphs, quasi-threshold graphs,
threshold graphs and e-split graphs are now members of this family; for the class of e-split graphs, see
Remark 4.1.

It is well-known that the classes of threshold and quasi-threshold graphs are perfect graphs. Thus, it
is reasonable to ask whether the CSTM theorem can be efficiently used for deriving formulas, regarding
the number of spanning trees, for other classes of perfect graphs such as the class of cographs [14].
We note that cographs contain the class of quasi-threshold graphs and they also have a unique tree
representation. We pose it as an open problem.
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A more general class of perfect graphs is that of permutation graphs; an undirected graph & is a
permutation graph if there exists a permutation = on N, = {1,2,...,n} such that G is isomorphic
to the inversion graph G[]: V(G[z]) = N, and (i,j) € E(G[x]) iff (i - j)(=;" = #}') < 0, where
7; ! is the index of the element i in 7 [8, 18]. It has been shown that a permutation graph G[x] can
be transform into a directed acyclic graph and, then, into a rooted tree by exploiting the inversion
relation on the elements of = [18]. Based on the results of this paper, it is interesting to investigate
whether the class of graphs of the form K, — G[r] belong to the family of graphs that have formulas
regarding the number of spanning trees.

In closing, we point out that calculating the determinant of the complement spanning-tree matrix
seems to be a promising approach for computing the number of spanning trees of families of graphs
of the form K, — H, where H posses an inherent symmetry (see [1, 5, 6, 20, 26]). We note that there
have been also developed other methods for determining the number of spanning trees and deriving
formulas in more general classes of graphs; see, for example [3, 4, 10, 12, 27, 28].
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