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ABSTRACT
A least-squares parameter fitting procedure is used with 1D and 2D formulations of
the Preisach formalism. The model can use any operator from a selection of 1D and
2D hysteresis operators appropriate for the modeling of hysteresis in ferromagnets
and shape memory alloys. The performance of the hysteresis operators is evaluated
and their applicability is discussed. The model is applied to experimental data from
ferromagnetic samples and shape memory alloys. The results suggest that the
proposed approach can be a useful and adjustable tool in the modeling of hysteresis in

various systems regardless of the underlying mechanism.



1 INTRODUCTION

Hysteresis is the non-linear response of a system which, in the context of this work,
can be described as a rate independent memory effect [1]: the output is delayed with
respect to the input but the input rate does not affect the output state, and the system
can store information, i.e. the output depends on the current as well as on previous
inputs. One of the approaches in modelling hysteresis is based on the Preisach
formalism. The Preisach formalism postulates that hysteresis is the aggregate
response of a distribution of elementary hysteresis operators [2]. The resulting model
is computationally efficient, and, for systems which fulfill the necessary and sufficient
conditions to be modeled by it, reliable [2]. The hysteresis operator of the classical
Preisach model (CPM) is a relay (Figs. 1a, 1b) that switches between two states, e.g.
(+1,-1) or (0,1), at two critical input values, e.g. (a,b) where a>5b. Hence, it is a
scalar operator describing only irreversible switching. An extensive discussion on the
mathematical properties, the hysteresis operator, the identification and the invert of

the CPM can be found in Refs. [1-3].

The inherently scalar nature of the classical model has drawn a considerable amount
of criticism on the grounds that the one-dimensional treatment of a hysteresis process
is not always valid and a lot of information is lost when modeling the one-
dimensional projection of a vector process. Furthermore, the experimental response of
a system with hysteresis to an input sequence contains, in general, a reversible
component that can be a significant part of the total response. To the extent that the
reversible part can be attributed to the reversible rotation of the output vector, one can

expect that a vector formulation of the CPM would address both issues. The original



formalism may be extended to two dimensions replacing the operator of Fig. la by a
2D operator (Figs. 1d-e) that allows for irreversible switching as well as reversible

rotation [4].

Because of the different operator, the 2D model does not have the same properties as
the CPM. Hence, some of the theorems and tools accompanying the CPM, as is the
case of the identification problem, cannot be applied in the 2D model. In the classical
scalar case, the identification of the model consists in the reconstruction of the
distribution of the hysteresis operators through a series of detailed measurements [2,
5]. It is not obvious how this method can be applied to two dimensions because of the
coupling between the two components of the output. To circumvent this, alternative

ways to determine the distribution have been investigated [4, 6].

The method presented in this work is based on the least-squares fitting of the
distribution parameters. The only requirement is that, regardless of the underlying
mechanism of hysteresis, a major loop measurement of the system or material is
available. Even though this method seems, for the time being, to be the only way to
identify the 2D model, because of its efficiency, it can also be used with the 1D
model. Furthermore, it can be used with a variety of hysteresis operators as long as
they are compatible with the Preisach formalism. For example, the Preisach model has
originally been designed to model hysteresis in ferromagnets, but can be applied,
among others, to elastoplastcity, e.g. shape memory alloys (SMA) [7], provided that

an appropriate hysteresis operator (Fig. 1b-c) is chosen.



The five operators that can be used with the one- or two- dimensional models and the
above mentioned identification method are described in section 2. In Section 3, the
performance of the models for the various operators is evaluated and compared for

three ferromagnetic samples and an SMA sample.
2 THE MODEL

Scalar operators

In the classical model the operator y ., hereafter referred to as “cmpl”, is a simple

relay with output =1 and upper and lower switching points aand b, respectively (Fig.

la). For an input u, , the output f, is given by

+1, u,>a

> (1
-1, u, <b )

fo=7gp o, = min{l, f,_; }, where 7, :{

It can be used to model hysteresis in ferromagnets where the output (magnetization)
varies between positive and negative saturation and the major loop (Figs. 4-5) is

traced in the counterclockwise direction.

The operator in Fig.lb, “cpm2”, is a modification of the classical operator and
suitable for hysteresis modeling in SMAs where the output (strain) varies between
zero and a maximum value and the major loop (Fig. 7) is traced in the clockwise

direction:

0, w,>a df '{If } i
Y = an =minil, f_;I. 2
L ab %1 u,{b t =1 [2)



The operator in Fig.lc, also known as the “kp” operator [7], allows for a linear
transition between the minimum and maximum values and bidirectional horizontal
movement at any point of the ascending or descending curve. It is appropriate for

hysteresis modeling in elastoplasticity, e.g. SMAs.

For the descending branch,

[1 u £a-9o ;
:}’ab =<yﬂ a_éﬁ:ﬂf'ﬂ:ﬂ'i'E, Whﬁl’ﬂ yﬂ:i-‘_{s{HI_a+§]v
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f, :min{l,max{fr_t,ya }} (3a)

For the ascending branch,

0 u, z2b+o

Yab =17y b+0>u,>b-0 , where ?b=l_§]§(“:—b+5),
i u, <b-4
and
¥ =max{ﬂ,min{f,_|,yb}}, (3b)

where 24 1is the difference between the two input values at the beginning and end of

the switching process.

A comparison between the responses of the operators, “cpm2” and “kp”, for the same
input sequence and twod -values is shown in Fig. 2. The & -parameter controls the

steepness of the ascent (or descent) from 0 to 1 (or from 1 to 0).



Vector operators

The Preisach formulation can be extended to two dimensions using vector 2D
operators [4]. The operator of Fig.1d is known as the Stoner-Wohlfarth (sw) astroid
and is borrowed from the theory of ferromagnetism. It results from the minimization

of the free energy equation of an ellipsoidal magnetic particle with umaxial anisotropy

under an applied field as the locus of equation u

X

2
S -'-.-u".'fj =1, where u_ and u are

the components of the input u« along the easy and hard axis of the particle,
respectively. The solution ¢ is the angle of the output vector with respect to the easy
axis of the astroid: u, tang—u, +sing =0. It is the tangent to the astroid passing
from the tip of the input vector. Switching occurs only if, during the transition from
flr=1) to £(r), the output vector crosses the astroid from the inside out. Otherwise,

the output vector rotates reversibly. Because the solution of the transcendental

¢

equation can be time consuming, the transformation k =tan— and the roots of the

resulting equation: “vki +2u, -1}1'3 + 20, +1)u -u, =0 can be used instead.

Then, f, =cos¢ and f, =sing.

The second vector operator (Fig. le), the diamond (dm), is the first order

approximation of the sw-astroid: u,+wu,=1 and uses a similar hysteresis

mechanism. It is computationally more efficient but it does not have any physical
attributes. Both vector operators are used for hysteresis modeling in ferromagnets.
For inputs along the x-direction, the vector operators respond identically to the

classical scalar operator of Fig. la.



A comparison between the two 2D operators is shown in Fig. 3. The output is
calculated for rotating inputs of constant magnitude. For very small inputs, the
response is practically identical. As the input increases but not enough to cause
switching, the sw-astroid rotates harder than the diamond. For large inputs, the sw-

astroid allows for more switching.

Modeling the hvsteresis process

In the Preisach approach, the parameters a and b of the hysteresis operators are
distributed according to a probability density function pla,b) over a half-plane,
called the Preisach plane, that is defined by a =b. The hysteresis process is then
modeled as the aggregate response of the distributed operators to a sequence of inputs.

The output f(z) is then given by

firy=[f pla,b)y ,, o ult)dadb . (4)

azh

Using a 2D-operator 7y, instead of (4) describes a 2D-model for a perfectly oriented

(po) system, i.e. all the easy axes of the operators lie along the same orientation
direction. However, actual systems, as a rule, are not perfectly oriented and the
question of orientation dispersion needs to be addressed. Systems that are not

perfectly oriented can be modeled by

-7

fi)= [ p(6)de [f pla.b)y, o u(t)dadb. (5)

/2 azp
where p(#) is the probability density function of the angles that the easy axes of the
2D operators 7y, form with the model's axis of orientation [4]. Fig. 4 shows

calculated major loops obtained by the model of Eq. (4) and the operators “cpml™,



“sw”, and “dm” (the perfectly oriented case) and the model of (5) using the two vector
operators “sw” and “dm”. The scalar and perfectly oriented models yield identical
results for fields along the model's easy axis, as expected. Adding dispersion makes
switching easier, which is in agreement with experimental evidence in ferromagnets,
and accounts for the reversible behavior and the slope of the curve at the remanent

state, f(u =10). Note that the model using the “sw” predicts narrower loops than the

one using the “dm”. This is in agreement with the previous remark that the “sw”

allows for more switching.

The densirv p(a,b)

In order to identify a Preisach-type model for a given system, its characteristic density

-d “+d
£ and b=—c————.the

7 7

pla,b) must be determined. Using the transformation, a =

density can also be determined in terms of the variables ¢ and d: pla.b)= plc.d). It

can be shown that, if ¢ and d are independent, the following relationships apply:

pla.b)= ple.d)= plc)old). (6a)
Elc)E[d] = %[E[b]z — E[a]?) and E[d]=0, (6b)
Varla) = Var[p] = _; (Varlc]+ Varla]), (60)

where E[] and Var{ ]are the expectation and the variance respectively of a parameter.
It follows that Efa]= —E[b] and L’ar[a]: Var[b]. In that case, the loops obtained are

symmetric like the ones shown in Fig. 4: f(-u)=-f(u).

In the case of ferromagnets, p(c) and p(d) are related to the distribution of

coercivities and interactions, respectively, and it i1s valid to assume that the



coercivities and interactions are uncorrelated and that the mean interaction field is

zero [4,6].

In the case of the classical model of Eq. (4), the density p(a.b) can be determined
experimentally using the Everett functions [5, 2]. However, in the 2D model of Eq.
(5), it is not obvious how the effect of the transverse and longitudinal components on
the distribution can be decoupled and determined experimentally. In this case, Eq.
(6a) can be utilized and the density can be reconstructed as the product of two
independent single-variable densities. p(c) and p(d) can then be modeled by
standard probability density functions (Gaussians, Lorentzians). The parameters of the

densities are fitted using major loop data [4,8]. This method will be referred to as

“old”.

The “new” method, used in this work, is using a Gaussian N{#1O’2]I to model the
original density p(a,b) and a least-squares fitting procedure to determine its

parameters [8]. An array of { points of the experimental major loop is fed to the least

squares algorithm along with an array of initial estimates of the parameters and the

algorithm iterates on the parameter values until ¥ (f, 4 — fexp]z <&, where ¢ is a
;

small positive number.
3 RESULTS AND DISCUSSION

To evaluate the performance of the models and the operators discussed in section 2 in

relation with the identification method proposed, major loop data from three



ferromagnetic samples and an SMA sample have been modeled. In ferromagnets,
hysteresis occurs during the switching from positive to negative magnetization and
the opposite. For an applied magnetic field (input) H(t). the resulting magnetization
(output) is a function of the applied field as well as an internal interaction field, which
is in turn a function of the magnetization M (t). Hence, the resulting magnetization
state contains a positive feedback mechanism leading to hysteresis:
M(t)=M(H(1),M(t)). In shape memory alloys, hysteresis can be observed as the
material undergoes the transformation from the martensitic to the austenitic phase and

vice versa. The input is the temperature, T(¢), and the output is the strain x(r) [7].

The ferromagnetic case

The ferromagnetic data has been modeled using the 1D-model of Eq. (4) with the
operator “cpml”™ of Eq. (1), and the 2D-model of Eq. (3) with the vector operators
“sw” and “dm”. Because of the observed symmetry of the loops in ferromagnets
H, =ty =u and o, =0, =0c . If the Preisach plane is modeled as a K x K array,

s s 2 : TR
the initial estimates for the parameters are given by u,=u,=—+H and

2
5-#)
LY S

3

values. u . and standard deviations, o, of aand b. H_ is the measured coercivity of

T, s , wheres, u,, G,, &, are the initial estimates for the mean

the magnet, defined as the field at which the magnetization is zero, M| g =0.



Table | summarizes the results of the least squares fitting procedure for the first

sample, SmFeN, with coercivity H_=15 kQe. Table 2 shows the results for the

second sample, a-Fe/SmFeN, with coercivity H_=3 kQe.

Table 1: The SmFeN parameters

cpml SW dm
K 70 60 60

49.859 | 51.132 | 43.223
o | 5.721 4.007 2.216

Table 2: The a-Fe/SmFeN parameters

cpml sW dm
K 30 70 50
| 19.651 | 40.831 | 29.210
¢ | 2915 2.872 2.971

Figs. 5 and 6 show the major loop curves generated by the 1D- and 2D- models and
operators using the parameters of Tables 1 and 2, respectively. They are compared
against the corresponding measured curve and a calculated curve generated by the
2D-model using the “old” identification procedure. The magnetization, M , is

normalized to the saturation magnetization M. In both cases, the results are
consistent. The “new” identification procedure is more accurate and the 2D-model is

superior to the 1D-model at the region of the remanence, M, = MiH:n' where most

of the reversible processes take place. The fitting of the curve obtained using the “sw”
operator is as good (a-Fe/SmFeN) or worse (SmFeN) than the “dm"”-curve and is not

shown here. The “dm” routine is more efficient than the “sw” routine, so. unless the

11



“sw-operator performs better than the “dm” the latter is preferred. In the case of the
a-Fe/SmFeN sample (Fig. 6), the fitting is excellent. On the other hand. the SmFeN
loop is very steep around the coercivity, i.e. it has a high coercivity squareness,

g dM

= E—I_ . but it i5 not square at the remanence, i.e. it has a low squareness ratio,
Hl’

M ; :
S= M’ . Therefore, the rotational properties of the 2D-model are needed around the
K

remanence but the switching properties of the classical operator would be desirable
around the coercivity. The optimum choice, as shown in Fig. 5, is the 2D-model with
the “dm™ operator but it leaves room for improvement. A possible alternative is to use
the least-squares fitting of the parameters along with Eg. (6a) and a Lorentzian instead

of a Gaussian for the interactions distribution, p(d).

Table 3 summarizes the parameter values obtained for the descending curves of a thin
film sample measured at 610 °C and 560 °C. The temperature dependence of the
magnetic properties and the microstructure is reflected in the phenomenology of the
curves. As seen in Fig. 7, the 610 °C curve is accurately reproduced by the 1D-model
using the classical operator (cpm1) and the 560 °C curve by the 2D-model and the 'sw'

operator. As expected, for square loops like the 610 °C curve the classical 1D model

can be very accurate and the high S of the curve is reflected in the low o -value

obtained. As the temperature decreases, the loops become less square both at the

remanence and the coercivity and the 2D model is needed. For low §  loops, like the

560 °C curve, the sw-astroid performs better.

12



Table 3: The thin film sample parameters

T (°C) 560 610
model 2D/sw | 1D/cpml
K 60 40
u 51439 | 25.827
c 2.798 0.480

The SMA case

In this case, the input variable is temperature and the output variable is deformation
(strain). The SMA data are modeled using the 1D model of Eq. (4) and the hysteresis
operators “cpm2” (Fig. 1b) and “kp” (Fig. lc) described by Eqgs. (2) and (3),
respectively. SMA loops are traced in the opposite direction compared to magnetic
loops. The ascending branch is the one to the left and is traced as the temperature
decreases. The output is normalized to the maximum % strain observed and ranges
from O to 1. Unlike the case of ferromagnets, the loop is not symmetric but skewed

and shifted to the right with respect to the origin. This suggests that u; > u_and

s e s

Let T, be the temperature at which the normalized % strain has reached 0.5 on the
ascending branch (martensite to austenite) and 7,, the temperature at which the

normalized % strain has reached 0.5 on the descending branch (austenite to
martensite). The initial estimates used in the identification algorithm are:

K K
- tm i __T.:J

2




Table 4 summarizes the least-squares fitting results for the density parameters used in
the modeling of the SMA curves. Fig. 8 shows major and minor loops obtained using
the two operators “cpm2” and “kp™ against the corresponding experimental curves

obtained on a Nitinol sample, with T, =0 and T,, =20. The & -parameter in Eq.

(1c) depends on the loop width of the operator: & = k(a—b), k < 1. For the results

shown in Fig. 7, k=0.6.

Table 4: The SMA parameters

cpm2 kp

K g1 81
20.401 20.386
Oy 1.726 5.016
M 40.339 38.889
O 11.377 10.960

The loops that were calculated using the “kp” operator are closer to the experimental
data. Note also that the o -values obtained for “cpm2” are higher than “cmp3™. It is
important to note that the minor loops are also adequately reproduced by the model,
even though the data used for the identification were taken from the major loop curve
only. The use of minor loop points did not provide any improvement to the fitting of
the curves while it considerably increased the time for the least-squares computation.

The discrepancies observed are due rather to the shape of the distribution than the

choice of operator.

The model, the operators and the identification procedure were all implemented in

MATLAB 5.0. A major loop calculation for 100 input values would need

14



approximately between 0.5 and 5 minutes on a Celeron PC at 330Hz. The efficiency
of the computation depends on the choice of operator and the dimensionality of the
model, e.g. the 1D model with “cpm1™ or “cpm2” is the most efficient routine while

the 2D model using the “sw" operator results in the lengthiest calculation.

4 CONCLUSIONS

The proposed model in the 1D and 2D version equipped with a selection of 1D and
2D operators and an identification method based on a least squares fitting of the
density parameters can be a handy tool in the reproduction of hysteresis processes. It
can model efficiently a variety of hysteresis loops, regardless of the microstructure of
the material or the mechanism of hysteresis, as long as the appropriate operator is
chosen. The identification method relies on a mere major loop measurement, a feature

that makes it attractive even for use with the 1D model.

More specifically, the 1D model using the classical operator is appropriate for square
loops. In the case of ferromagnets, for loops with lower squareness values, it is
necessary to use the 2D-model along with a vector operator to account for the effect
of the rotation of the magnetization vectors. Loops with low coercivity squareness are
better modeled by the “sw™ operator. The “kp” operator is appropriate for the
modeling of hysteresis in SMAs even though the normal distribution may not be the

best choice. The choice of the shape of the distribution is still an open question.
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Figure 1: Hysteresis operators: (a) cpml, (b) cpm2, (c) kp, (d) sw, and (e) dm.
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Figure 5: SmFeN experimental and calculated curves.
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