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1. Introduction

Solid metal allovs and plastics have found many appications in medical practise
as biomaterials in prosthetics, artificial hearts, valves, stents, ete. They include,
among others, piezoelectric and magnetostrictive materials as bone growth stimu-
lators (Polk 1996) and thermosensitive shape memory alloys in (endo-)orthodontics,
vascular circulation (stents, valves) or as surgical tools (Lagoudas 2000). There is
an inereasing need nowadays for new materials in many medical applications, with
biomimetic functionalities in eye, ear, muscles and valve operations, drug target-
ing ete., that combine low cost, high efficiency and minor side effects. Hydrogels
with thermo-electromagnetic or chemical properties are good candidates, since they
combine better biocompatibility (hvdrophilic) along with more efficient actuation or
sensory mechanism (large deformation). Experiments on pH sensitive (Qing et al.
2001) and thermosensitive hydrogels (Lindlein et al. 2000} have been performed re-
cently. In a series of experiments Zrinyi et. al. (2000a—1b), Filipcsei et. ol. (2000) and
Fehér et. al. (2001) prepared electric and magnetic gels and tested their response to
electromagnetic fields, confirming their capability to mimic musecle contraction (ar-
tificial museles). Our previous research on the physical principles of micromagnetic
and magnetoelastic phenomena in solids (Voltairas ef. al 1999z — ¢; 20002 — d)
directed our motivation to examine possible applications of magnetic carriers in
medicine. In a recent paper (Voltairas et. al. 2000e) we proposed a phenomeno-
logical model in order to estimate if a ferrofluid internal tamponade, along with a
semi-solid magnetic silicon band {magnetic scleral buckle) can contribute to retinal
re-attachment in retinal detachment surgery. A condition for the elastic stability
of the ferrofluid was derived. In an attempt to quantify conditions for magnetic
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drug targeting and delivery, we developed a hydrodynamic model and compared its
predictions with available experimental data (Voltairas ef. ol 2002).

The present work constitutes the first part in a project aimed at examining under
what conditions electro- or ferrogels can replace non-recoverable injured muscles.
In this paper we focus on the control of the experimental apparatus that measures
the deformation of the electro-gels as a function of the external electric stimulus
(Filipesei et. al. 2000 and Fehér et. al. 2001), by proposing a suitable theory for
the phenomenon. The general continuum theory of nonlinear electro-elasticity is
summarized in §2. In §3 we introduce the basic model assumptions for: the geom-
etry of the problem, the displacement field (plane deformations), the electric field
(collinearity, uniformity) and the material properties (isotropy, homogeneity, etc.).
The constitutive laws are derived and comparison with experimental data is per-
formed. Finally in §4 we conclude with the limitations of the model, the possible
improvements and future generalizations to magnetic field sensitive gels (ferrogels)
and similar biophysical phenomena.

2. General equations and notation

When a polymer hydrogel containing electrically polarized micro- or nanoparticles,
from hereafter called electro-gel, is exposed to an electric field deforms, The observed
large strains can be measured experimentally as a function of the applied electric
field. The process is usually reversible for suitable applied fields and gel densities,
thus the elasticity of the electro-gel is analogous to the mechanical deformations
of hyperelastic materials. Hence, we will prefer the phenomenological description
based on the continuum theory of nonlinear electro-elasticity. In similar problems,
with large deformations in human soft tissues, the continuum approach proved
successful, for modeling purposes (Holzapfel et. al. 2000). Electro-elasticity theory
is well documented (see Eringen 1962; Eringen & Maugin 1989), including also
magnetic and thermal effects. Hereafter, bold and double bold characters will denote
vector and tensor fields, respectively. We consider that the electro-gel deforms as
a continuous body, which in the reference (undeformed) configuration occupies a
region {} C &, of the whole space &, inside the closed surface 8. The material
points are identified by their position vectors X in 1, with Cartesian coordinates
Xa (4 =1,23) After the deformation the electro-gel occupies the region (24, and a
point originally denoted by X is deformed to the position @ with coordinates r; (i =
1.2,3). The deformation gradient F = Vx ®@=2(X), has Cartesian components given
by Fiqa = 8x;/8X 4. For a uniform static applied electric field, the equilibrium
problem is described by the partial differential equations:

Vx-S+f, = 0, in 0 (2.1)
V-D = gz, in & (2.2)
VxE = 0, in & (2.3)
and the jump conditions
ST +J (F'T,)'IN = 0, on 80 (2.4)
[D]:n = o,, on 8 (2.5)
t-[E] = 0, on G0, (2.6)
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in the reference configuration. Here
L.=Vx-(JF ') =IV -Ta=J (P-V)E+4E, (2.7)

is the electric body force with

T92=D®E—Eg%]l, (2.8)
the Maxwell stress tensor, due to Einstein and Laub (see Toupin 1956),
§=JF'T, (2.9)

is the nominal stress tensor (Ogden 1997),
D=:zE+ P, (2.10)

is the displacement vector, 6(z) = 1 for # € f4 and é(x) = 0 for x € & — {1,
[A] = Acus—Ain, E is the electric field, P is the polarization vector per unit volume,
gy and o, are the free body and surface charges, respectively, J = detF, T is the
Cauchy stress tensor, Vx and V are the gradient vector operators in the reference
and present configurations, respectively, £g is the electric permeability of vacuum,
[ is the identity tensor, @ and - denote tensor and inner product, respectively, ¢ is
the unit tangential vector on &0y and N and n are the outward unit vectors on
80 and 911, respectively, with

T

n=J(FY' N, (2.11)

Gravitational effects are neglected due to strong electric forces f,. The above for-
mulation of the electro-elastic boundary value problem is due to Toupin (1956).
The only difference is that we have included the external applied field E; in the
Maxwell stress tensor,

E = Fx + Ey, (2.12)

with Ep the depolarizing field, which is identical to Toupin’ s Maxwell-self field
Ews. The notion of the Lorentz local field Ep = —F is frequently used. If we
decompose the electric field E in tangential and normal components on 801, neglect
mechanical surface tractions and make use of the definitions (2.7-12) and the jump
conditions (2.5-6), the balance of electro-mechanical surface tractions (2.4) reduces
to:
P g2

STNz"ETﬂ‘”n+aaEg, P.=P-n, ondf. (2.13)
The boundary value problem (2.1-6) is derived from an energy variational principle
(Toupin 1956). The derivation is not unique. It depends on the form of the elec-
trostatic energy. For the great controversy regarding the form of the electrostatic
energy, or equivalently the form of the Maxwell stress tensor, the reader should
consult the footnotes in Eringen (1962). The variational principle imposes also con-
straints on the form of the constitutive relations, which in our case read:

aw
§ = SEM=—, (2.14)
oW 3
E = E[H. F} — ﬁ {210}
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The free energy depends both on the strain and the polarization:
W = W(E, II), (2.16)

where E = %{]FT]F —1I) is the Green finite strain tensor and IT = P/p is the
polarization per unit mass. p is the density in Q4 and is related to the density g
in 1 through the equation py = Jp. For more rigour about the constrains that
both the material symmetry and the second law of thermodynamics impose on the
exact form of the constitutive laws (2.14-15) see Eringen & Maugin (1989). For
small concentration of the charged micro- or nanoparticles {diluted electro-gel), the
polarization contributions to the free energy density W are negligible, thus

W =~ W(E). (2.17)
Then equations (2.14-15) are replaced by the more traditional uncoupled ones:
aw
8 = 8B[F)= 5F (2.18)
P ~ P(E). (2.19)

Henceforth, we will restrict attention to diluted electro-gels, with constitutive equa-
tions of the form (2.18-19) and vanishing mechanical surface traction. In that case,
Maxwell’ s equations of electrostatics (2.2-3) are no longer coupled with the “me-
chanical” ones (2.1). Introducing the electrostatic potential & in (2.2-3) results in

£oVi® =V . P — gy d(z), = -Vd. (2.20)

If we express the nominal stress tensor S in terms of the Biot stresses tgl]. tg”, i)
(the principal values of the Biot stress tensor (Ogden 1997)):

TV = (SR +RT8T)/2, (2.21)

where B is the finite rotation tensor, the derived problem is a complicated but well
posed one; it involves four second-order partial differential equations (in tEn, (3=
1,2,3). ®;,) in the region [} inside J11, one second-order partial differential equa-
tion (in $oye) in the region & — O outside 39, four boundary conditions on 811, the
continuity [®] = 0 of the potential on &0 and the usual regularity conditions at
infinity. Even for relatively simple prescribed deformation modes, that satisfy (2.1),
the nonlinearities involved in (2.20} due to (2.19), make the resultant potential
problem a formidable task. For its solution, in special cases, a number of simpli-
fications must be introduced, guided by the observed geometry of deformation, as
well as from physical considerations.

3. Theory and experiment

Consider a homogeneous, isotropic, diluted electro-gel, in the form of a rectangular
block of cubic cross-section, of width ¢ and height L that is placed at a distance R
from the coordinates origin, between the two electrodes of figure 1. Let L. be the
distance between the electrodes and Ey the uniform static electric field produced
by them. We assume that the electro-gel admits plane deformations of the form

r=f(X1), #=g(X2), z3=4Xs, (3.1)
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Figure 1. Problem geometry.

shown in fipure 1. Then the displacement field,
u=X —-z(X), (3.2)

corresponds to the bending of the dashed rectangle, of figure 1, into a section of a
circular disc, with radius difference A R = £, The electro-gel is kept fixed at points
X =(R,0) and (R +¢,0), that is:

ulR0)=u(R+{,0)=0. (3.3)

Since the electro-gel is considered incompressible, its volume v remains invariant,
during the electrically driven deformation, v(f) = v(Q;). This condition determines
the maximum deflection angle 8, in terms of geometrical parameters:

8. =2L/(2R 4+ (). (3.4)
The principal stretches A;, i = 1,2, 3 are given, due to (3.1) by the relations:
M= f(X), A=fX)d (X)), =1, (3.5)

where the prime denotes differentiation with respect to the argument. The incom-
pressibility constraint

AAzAs=1 (3.6)
results, due to (3.5), after separation of variables, to the solution:
r=v2B1X1+B,, 0=X;/Bi+Bs. (3.7)
The unknown constants By, i = 1,2, 3 are determined from the conditions (3.3)

B, = R+(/2=L/8,,
By = —R(R+¢)=(¢/2)* - (L/6.)%, (3.8)
Bs: = 0.
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In order to treat in a relatively easy manner the electrostatic problem, we assume
that the polarization vector P and the electric field E, either inside or outside the
electro-gel, are constant and collinear to the external uniform applied field Ej :

Ein = X« Eo, (3.9)
E.. = Eq, (3.10)
P=Eg X= E[n =EgXr Xe E.n_. [311}
Es=-EE;, E =const.>0, (3.12)

where y. and y. are dimensionless functions of the electric field E and the shape of
the electro-gel L/¢, and F; and &;, (i = 1,2) the unit vectors in the reference and
present configuration, respectively. The above assumptions are valid for the bulk of
the electro-gel but not close to the boundary 802, The solution (3.9-12) satisfies the
electrostatic problem (2.2-3), while the jump condition (2.5) reduces to

el -x)Ea-n=0,, on &y, (3.13)
with y the electric susceptibility given by:
x =x(E, L/C) = xe (1 + xx) - (3.14)

In general, E;, < E.., due to the presence of polarization effects, so 0 < y, <1
and y» > 0. For vanishing free body charges, gy = 0, and due to the assumptions
(3.9-12), equation (2.7) gives f, = 0. Then, due to the constitutive laws {2.18-19),
the equilibrium problem (2.1} reduces to the purely mechanical one:

Vx-§=0. (3.15)

Moreaver, since the electro-gel is considered isotropic and due to deformation mode
considered (3.1-8), the nominal stress tensor § admits, according to Ogden (1997),
the decomposition:

S=T'RT=tVE @& +tiVE: @ &, (3.16)
with ti") = 8W/a\,, (i = 1,2). If we substitute (3.7-8) into (3.5), we obtain
M =1/da = A= By/r = [26. X, /L + ¢?62/ (4L%) — 1] "2, (3.17)

and the Biot stresses tE”_. (i =1,2) become

e T(A) = W(A), (3.18)
£ = —A%r(h), (3.19)

where prime denotes differentiation with respect to the argument. Then, with the
aid of (3.16) and (3.18-19), the mechanical equilibrium equation (3.15) reduces to

AT'(A) —7(X) =0, (3.20)
since from (3.17) 8" /@X,; = 0. The general solution of (3.20) is
A =W/(A) =CrA, W) =Ci X /2+Cs, (3.21)
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where C;, (i = 1,2) are undetermined constants. For vanishing free surface charges
(g, = 0), in accordance with our assumption for a diluted electro-gel, the balance of
the electro-mechanical surface tractions (2.13) results, due to the solutions (3.9-12)
and (3.16), (3.18-19) to 7(A) = P2/ (22q) , or equivalently, due to (3.21) to:

oA —e?(1-x)cos?8=0, e=E/E, E,=/(2C/e)""?, (3.22)

on the boundary X; = R + (. The assumption o, = 0 implies, from (3.13), that
E, = E..; or x = 1, since Ey-n # 0 on 8Q. In order to preserve the positive
definite character of the strain-energy function W(A) we must have C; > 0. Notice
that equation (3.22) does not hold for every & on 80, but since our primary concern
is to model available experimental data, we just have to satisfy (3.22) only for
the maximum deflection angle #., since what is measured in the experiments is
ur = u (R + ¢,L) for given E and L/{. From (3.17) and (3.22) we obtain, for
Xi=R+{andf8=48.:

e (1= xe)?[1 + ¢6./(2L)] cos® 8, = 2. (3.23)
If we solve (3.23) for &, and substitute the result in
u=ur/(R+¢{)=1-cosf,, (3.24)

we derive the displacement u, as a function of the applied field e and its shape L/,
provided that the function x. = x.(e, L/{) will be specified. Fehér et. al (2001)
observed, that u(e = 0) = 0. Unfortunately, the solution 8, of (3.23) and thus u of
(3.24) are singular at e = 0, for a diluted electro-gel, x.(0, L/{) = 0. This singularity
is a consequence of isotropy, collinearity and especially homogeneity introduced in
(3.9-12). Since the main physical mechanisms, observed in the experiments, are
present in our model, we can overthrow the singularity at e = 0, by neglecting (3.4)
and replacing the geometrical definition of A (3.17), with a suitable function of e
and L/{. Thus, if we substitute,

A=M(14x)/(L+7xe), ro=e?(1-x)%/2 (3.25)

with 5 > 1, in (3.22) and solve for cos#,, the displacement (3.24) reduces to

wug/Le=1-[(1+x)/(1+vx)N2 . (3.26)

The longer is the surface of the electro-gel, that is exposed to the uniform exter-
nal field, the larger the depolarization effects induced on it and as a consequence
the smaller the total electric field inside. In order to take into account this shape
dependence of the constitutive law (3.11) we admit for x, the simple power law:

xe = a(L/¢)*? €2, (3.27)

where all o, 3 and ~ are dimensionless constants. Although the form (3.25) has the
drawback that Ale = 0) = 0, compared to the expected Ale = 0) = 1, it recovers
the observed u{e = 0) = 0, due to (3.27). According to experiment (see Fehér et. al.
(2001)), inerease of the height of the electro-gel L resulted in larger deformations
for the same externally applied electric field E. This is predicted from our model,
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20 [(OL=298cm
M L=2.06 cm
1.5t |O L=1.58 cm

3
E (kV/em)

Figure 2. The displacement w. as a function of applied electric field E, for varying length
L. The full lines correspond to equations (3.26-27). Circles, triangles and cubes are exper-
imental data from Filipesei ef. al. (2000).

Table 1. Calculated parameters from erperimental dota

L {em) 7 ax10"" E,(kV/cm)
298 206 0.47351 0.41228
2.06 70 1.B665T 0.45290
1.58 4.0 3.08580 0.41176

due to shape dependence introduced in (3.27). The comparison between our model
(3.26-27) and the experiments of Fehér et. al (2001), is performed in figure 2, for
three values of the length of the electro-gel. All the full lines in figure 2, correspond
to 5 = 2, because in the limit of infinitesimal applied electric fields (E — 0) the
displacement (3.26) reduces to:

ue = AL/ E?, A=a(y-1)L./(2E3). (3.28)
This law, in the form
u:=DIL*V2, D=91x10"kV-2em3, (3.29)

where V' is the applied voltage, has been observed by Fehér ef. al (2001). Thus
with the substitution £ = V/L, in (3.28) and comparing the result with (3.29), we
express E,, or equivalently C;, due to (3.22), in terms of o, v and D as:

Cr=az(y-1)/(4D¢ L,). (3.30)

The full curves in figure 2 correspond to the values of the parameters in table 1, with
=2 ¢=01em and L. = 3cm. Better agreement with the experimental data,
for E < 2kV/cm, could be obtained by allowing 3 to vary. In order to emphasize
on the observed linear dependence (3.29), for E — 0, we present on figure 3 the
displacement u, as a function of L? V2. The dashed line corresponds to (3.29).
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g : comen s
= O L=298 cm
= A L=2.06 cm
0.5 O L=1.58cm
0
05 1.0 15
V2L x10°(kViem*)

Figure 3. Same as figure 2, but with the displacement u. as a function of the L* V2,

4. Discussion

In this communication, we developed the theoretical framework, for treating large
deformations in electric field sensitive gels, based on the continuum theory of
electro-elasticity. The simplified model proposed in §3, includes all the informa-
tion for quantitative interpretation of electric field dependent deformation mea-
surements, since it captures the main physical mechanisms: shape, charged micro-
or nanoparticle concentration of the electro-gel and nonlinearities on constitutive
laws. The preservation of the basic features of the geometrical character of the ob-
served deformation (maximum deflection angle, aspect ratio) were essential for the
success of the theoretical approach. Drawbacks like the limitation to unit eleetrie
susceptibilites (y = 1), are consistent with diluted electro-gel assumptions and not
of major concern, due to bic-compatibility issues. Stabilitv topics, either experi-
mental or theoretical, related to applied electric field strength and external loads
(mechanical, hydrodynamical, gravitational, chemical, etc.), should be examined,
for future biomedical applications. Electrophoretic forces, due to inhomogeneities
in electric field distribution (f, # 0) can also be taken into account, with the cost
of complicating the solution procedure. Due to its generality, the presented theoret-
ical analysis easily conforms with similar observed mechanisms in biophysics (para-
and diamagnetic elastic responses of plants and biclogical tissues in magnetic fields
(see Kuznetsov et. al. 1999)), as well as in prototypes in the rapidly developing
field of micro-electro-mechanical systems (MEMS) and their medical counterparts,
biomedical microdevices (Bio-MEMS). With minor modifications in the general
theory, similar deformation phenomena in ferrogels in external magnetic fields can
be explained. Results will be published in the near future.
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