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Abstract: We prove algorithmic characterizations of weakly triangulated graphs,
which lead to efficient parallel algorithms for recognizing Ps-free and Pj-free weakly
triangulated graphs. For an input graph on n vertices and m edges, our algorithms
run in O(log®n) time and require O(m?/logn) processors on the CRCW PRAM
model of computation. The proposed recognition algorithms efficiently detect Fss
and Pss in weakly triangulated graphs in O(log n) time with O(m?/log n) processors
on the EREW PRAM. Additionally, the algorithms can be easily augmented to
provide a certificate for the existence of a Ps (or a Ps) in case the input graph is
not Ps-free (respectively, Ps-free) weakly triangulated.
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1 Introduction

Let G be an undirected graph with no loops or multiple edges, and let C (resp. P) be a simple
cycle (resp. path) in G. A chord of the cycle C (path P) is an edge of G incident on two
non-consecutive vertices of C' (P). A chordless cycle (chordless path) is a simple cycle (path)
containing no chords. The chordless cycle on k vertices (or equivalently, the chordless cycle
of length k) is denoted Cy; the chordless path on k vertices is denoted Fi.

An undirected graph G is called triangulated (or chordal) if it has no chordless cycle of
length greater than or equal to 4 (see Golumbic [9]); it is called weakly triangulated if both
G and its complement G have no chordless cycle of length greater than or equal to 5 (see
Hayward [10]). A weakly triangulated graph is called Ps-free (Ps-free) weakly triangulated if
it has no induced subgraph isomorphic to P; (Pj respectively).

Weakly triangulated graphs were introduced by Hayward [10] as a natural extension of
the well-known perfect class of triangulated graphs; triangulated graphs arise in the study
of Gaussian elimination on sparse symmetric matrices [20], in the study of acyclic relational
schemes [3], and are related to and useful for many location problems (see Golumbic [9]). Due
to a result of Chvétal [6], which states that a linear order “<” is perfect iff there is no chordless
path abed with a < b and d < ¢, it can be shown that the triangulated graphs are perfectly
orderable, that is, they admit a perfect order. Hayward [10] proved that weakly triangulated



graphs are perfect, but not all weakly triangulated graphs are perfectly orderable; in fact,
Hoang has shown that recognizing perfectly orderable graphs remains NP-complete for weakly
triangulated inputs [15]. In 1990, Chvétal conjectured that every Ps-free weakly triangulated
graph is perfectly orderable [7]. Recently, Hayward [11] proved the conjecture by presenting
a polynomial time algorithm to find a perfect order of any Ps-free weakly triangulated graph.
On the other hand, it is known that the Ps-free weakly triangulated graphs are not necessarily
perfectly orderable [11].

The problem of recognizing weakly triangulated graphs has been extensively studied,
mainly in the context of finding chordless cycles of length k > 5. Hayward [10] proposed
an O(n®m)-time sequential algorithm for detecting chordless cycles of length greater than or
equal to 5. This algorithm can be used to recognize whether a graph G is weakly triangulated
by checking for the presence of chordless cycles of length greater than or equal to 5 in G
and then in its complement @; this in turn leads to an O(n®)-time recognition algorithm
for weakly triangulated graphs. Hayward’s result was improved to O(n*3™) by Spinrad’s
hole-finding procedure [21] implying an algorithm for recognizing weakly triangulated graphs
of the same time complexity. Arikati and Rangan [2] gave an efficient algorithm for finding
2-pairs on a graph (a pair of non-adjacent vertices, say, = and y, such that every chordless
path from z to y has exactly two edges [12]), and Spinrad and Sritharan [22] used this to
provide a sequential algorithm for recognizing weakly triangulated graphs in O(n®m) time.
Hayward [11] introduced the notion of the so-called handle (a separable set of edges), which
was used recently by Hayward, Spinrad and Sritharan [13] to give an O(m?)-time recognition
algorithm; their algorithm finds a set of co-pairs by computing a handle of a handle recursively,
and repeatedly removing a co-pair, until no co-pair is left in the graph. More recently, Berry
et al. [4] proposed an algorithm for recognizing weakly triangulated graphs that is not based
on the notion of a 2-pair or a co-pair. Their algorithm matches the O(m?)-time complexity
of the algorithm of [13]; it requires more space, O(m?), compared to O(m) of [13].

Although triangulated graphs have been the focus of much research in both sequential and
parallel process environment, weakly triangulated graphs have not received as much attention
in the parallel environment, despite the fact that the definitions of the triangulated and the
weakly triangulated graphs rely on the same principle.

The results of Hayward [10] imply a parallel recognition algorithm for weakly triangu-
lated graphs running in O(logn) time with O(n®) processors on a CRCW PRAM. On the
other hand, the weakly triangulated graph recognition algorithm proposed by Spinrad and
Sritharan [22] does not seem to be amenable to parallelization. Recently, Chandrasekharan
et al. [5] presented a parallel algorithm for obtaining a chordless cycle of length greater than
or equal to k > 4 in a graph in O(n*~*m?) time sequentially and in O(logn) time using
D{n"_4m2} processors in parallel on the CRCW PRAM, whenever such a cycle exists. By
setting k = 4, we see that a chordless cycle of length greater than or equal to 4 can be found
in O(logn) time using O(m?) processors, while by setting k = 5, a chordless cycle of length
greater than or equal to 5 can be found in O(logn) time using O(nm?) processors. These
results lead to parallel algorithms for recognizing triangulated and weakly triangulated graphs
running in O(log n) time on a CRCW PRAM using O(n*) and O(n®) processors, respectively.
Recently, Nikolopoulos and Palios [19] described a parallel version of the weakly triangulated
graph recognition algorithm of Berry et al. which runs in O(log? n) time using O(m?/log n)
processors on the CRCW PRAM. Table 1 summarizes the results on parallel algorithms for
the recognition of weakly triangulated graphs.



Authors Time Processors Model

Hayward [10] O(logn) O(n®) CRCW
Chandrasekharan et al. [5] O(logn) O(n?) CRCW
Nikolopoulos and Palios [19] O(log?n)  O(m2/logn)  CRCW

Table 1: Parallel algorithms for recognizing weakly triangulated graphs.

In this paper, we present parallel algorithms for the recognition of Ps-free and Ps-free
weakly triangulated graphs. We prove characterizations of weakly triangulated graphs, which
enable us to efficiently detect Pss and Pss in them. In particular, we can detect Pss and
Pss in weakly triangulated graphs in O(logn) time with O(m?/logn) processors on the
EREW PRAM. The combination of these algorithms with the parallel algorithm of [19] for
recognizing weakly triangulated graphs results in algorithms to recognize Ps-free and Ps-free
weakly triangulated graphs, which run in O(log® n) time using O(m?/ log n) processors on the
CRCW PRAM computational model. Additionally, the algorithms can be easily augmented
to provide a certificate for the existence of a P5 (or a Pj) in case the input graph is not
Ps-free (respectively, Ps-free) weakly triangulated.

The paper is organized as follows. In Section 2 we present the notation and related ter-
minology and we prove properties of weakly triangulated graphs under which such a graph
contains a Ps or a Ps as an induced subgraph. In Section 3 we present the parallel recogni-
tion algorithms and analyze their time and processor complexities. Finally, in Section 4 we
conclude the paper and discuss possible future extensions.

2 Definitions and Characterizations

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph;
we denote the vertex set of G by V(G) and its edge set by E(G). The subgraph of a graph &
induced by a subset 5 of the vertex set V(G) is denoted by G[S]. For a vertex subset S of
G, we define G — 5 := G[V(G) — §].

A chord is an edge between two non-consecutive vertices of a cycle or a path. We denote
a chordless cycle (resp. path) on n vertices by C,, (resp. F,). A hole is an induced chordless
cycle on five or more vertices, and an antihole is the complement of a hole. In light of the
definition of a hole and an antihole, the weakly triangulated graphs are defined as the graphs
that contain no hole or antihole.

The neighborhood N(z) of a vertex x € V(G) is the set of all the vertices of G which
are adjacent to z. The closed neighborhood of r is defined as N(z] := {z} U N(z). The
neighborhood of a subset A of vertices is defined as N(A) := (U,c4 N(z)) — A and its closed
neighborhood as N[4] := AUN(A). If e = xy is an edge of G, then we use N(e) (resp. N|e])
to denote the vertex set N({z,y}) (resp. N[{z,y}]); we call the vertex sets N{e) and N|e]
neighborhood and closed neighborhood of the edge e, respectively. For an edge ¢ = zy, we
consider the following three sets:

A(zie) = N(z) = N(y),
A(yie) = N(y) — N(z),
A(e) = N(zx) N N(y).
Clearly, the sets A(x;e), A(y;e). and A(e) partition the neighborhood N(e) of the edge e.



Figure 2

We next provide characterizations of Ps-free and Ps-free weakly triangulated graphs. In
order to simplify the notation, we use the following definitions:

Definition 1. Let e = xy be an edge of a weakly triangulated graph G. Then, the edge e of G
is said to be a Ps-wifness if there exist vertices a € A(x;€e), b€ A(y;€), and u € V(G) — Ne]
such that ab € E(G) and ua € E(G). (See Figure 1.)

Definition 2. Let e be an edge of a weakly triangulated graph G. Then, the edge e is said
to be a Pg-witness if there exists a vertex u € V(G) — Nle] such that N(u) contains vertices
from both A(z;e) and A(y;e). (See Figure 2.)

We prove the following results.

Lemma 2.1. Let G be a weakly triangulated graph. Then, G is Ps-free weakly triangulated
if and only if none of its edges is a Ps-witness.

Proof: (=) Let G be a Ps-free weakly triangulated graph, and suppose, for contradiction,
that there exists an edge e = zy of G which is a Ps-witness; this implies that there exist
vertices a € A(z;e), b € A(y;e), and u € V(G) — Nle] such that ab ¢ E(G) and ua € E(G).
Because G is weakly triangulated, ub ¢ E((), for otherwise G would contain a 5. Then, the
path uaryb is a F; in &, a contradiction to the fact that G is a Ps-free weakly triangulated
graph. Therefore, no edge of & is a Ps-witness.

(<) Suppose that none of the edges of G is a Fs-witness. Then, G is a Ps-free weakly
triangulated graph. If not, G would contain a P; as an induced subgraph; let this P be
pgrat. But then, the edge e = rs would be a Ps-witness; note that the vertices p, ¢, 1 meet the
conditions of Definition 1 for the vertices u,a,b, respectively. This is a contradiction; hence,
G is a Ps-free weakly triangulated graph.

Lemma 2.2. Let G be a weakly triangulated graph. Then, G is Ps-free weakly triangulated
if and only if none of its edges is a Ps-witness.

Proof: (=) Let G be a Ps-free weakly triangulated graph, and suppose, for contradiction,
that there exists an edge e = zy of G which is a Ps-witness. This implies that there exists
a vertex u such that u € V(G) — Nle] and N(u) contains vertices from both A(z;e) and
A(y;e); let a,b € N(u) and a € A(z;e) and b € A(y; e) (see Figure 2). The vertices a and b
are adjacent in G; otherwise, the vertices u,a, z,y,b induce a C; in G, in contradiction to the



fact that G is a weakly triangulated graph. Then, the subgraph of G induced by z,y.a,b,u
is a P5 in G, a contradiction to the fact that G is Ps-free. Therefore, none of G's edges is a
Ps-witness.

(=) Suppose that none of the edges of G is a Ps-witness. If G is not Ps-free, G contains
a Pj as an induced subgraph; let this subgraph be the complement of the P5 pgrst. Let us
consider the edge e = gs of G. Clearly, r € V(G) — Ne] and it is adjacent to both p and
t, where p € A(g;e) and t € A(s;e). Hence, the edge e is a Ps-witness; a contradiction.
Therefore, G is a Ps-free weakly triangulated graph.

3 Recognizing Ps-free and Ps;-free Weakly Triangulated Graphs

In this section we present parallel algorithms for the recognition of Ps-free and Ps-free weakly
triangulated graphs. The algorithms are based on the notions of a Ps-witness and a Ps-
witness: they process each edge of the input graph to verify whether it is a Ps-witness (or
a ﬁ-witntﬁ}; if any of them is so, then the graph is not a FPs-free {F5-free respectively)
weakly triangulated graph, otherwise it is. This is a direct application of Lemmas 2.1 and
2.2. However, for Lemmas 2.1 and 2.2 to be applicable, the graph in question must be a
weakly triangulated graph. To ensure that, our algorithms employ at a preprocessing step the
parallel algorithm described in [19] for recognizing weakly triangulated graphs; the algorithm
is a parallel version of the weakly triangulated graph recognition algorithm of Berry et al. [4]
and relies on an optimal parallel co-connectivity algorithm. Its complexity is summarized in
the following theorem.

Theorem 3.1 ([19]). Weakly triangulated graphs can be recognized in O(log® n) time using
O(m?/logn) processors on the CRCW PRAM model, where n and m are the numbers of
wvertices and edges of the input graph respectively.

3.1 Recognizing F;-free Weakly Triangulated Graphs

We next describe a parallel algorithm which takes as input a weakly triangulated graph G
and determines whether it is Ps-free. The graph G is assumed to be given in its adjacency list
representation. The algorithm checks if there exists an edge in G which is a Ps-witness; if no
such edge exists, then the graph is Ps-free, otherwise it is not (Lemma 2.1). The algorithm
operates as follows:

Algorithm P;-FREE-WT_REC:

1. construct an array E[] of size 2m, which, for each edge uw of the input graph G,
contains both the fwin pairs (u,w) and (w,u): the contents of the array are so that
all the pairs with the same first element occupy consecutive positions in the array, and
additionally each pair (u,w) is linked to its twin (w, u);
make m copies of the array E[], and associate with each edge e of G one such copy, say,
E,:[]:_

2. For each edge e = zy of the graph G do in parallel

2.1 compute the vertex sets A(x;e), A(y;e), and V(G) — Nle], and the cardinalities
|A(z;€)| and [A(y;e)l;



2.2 for each vertex a in A(z;e) do in parallel
count the neighbors of a which belong to A(y:e);
if their number is less than |A(y; e
then mark the vertex a;

2.3 for each vertex b in A(y;e) do in parallel
count the neighbors of b which belong to A(z;e);
if their number is less than |A(z;e)|
then mark the vertex b;

2.4 Mle] — 0 {M]] is an auziliary array of size m}
for each vertex u € V(G) — Nle] do in parallel
if any of the neighbors of u is marked
then Mle] «— 1;

3. If there exists an edge e such that Me] = 1, then the edge e is a Ps-witness, and,
thus, G is not a Ps-free weakly triangulated graph; otherwise, G is a Ps-free weakly
triangulated graph;

Correctness. The correctness of the algorithm follows from Lemma 2.1, taking into ac-
count that if for a vertex a € A(z;e) it holds that |N(a) N A(y;e)| < |A(y;e)|, then there
exists a vertex in A(y;e) which is not adjacent to a in G.

Time and Processor Complexity. Let us now analyze the time and processor complex-
ity of the algorithm. We assume that the input graph is connected (otherwise, we work on
its connected components); thus, logm = ©(logn). We compute the complexity of each step
separately. For details on the PRAM techniques mentioned below, see [1] or [17].

Step 1. The array E|] is built as follows: We compute the ranks of the elements in each of the
adjacency lists. The largest rank in each adjacency list is its size; we collect these sizes in an
auxiliary array of size n and we compute parallel prefix sums on it. Then, for each vertex v;
(i=1,...,n) of the input graph G, we store the pairs (v;, v;), for all neighbors v; of v;, in the
entries E[ps(i — 1] + 1],..., E[ps[i]], where ps[k] denotes the k-th prefix sum and ps[0] = 0.
To do that, we copy the neighbors of each vertex v; to an auxiliary array, and we pass the
values of v; and ps[i — 1] to them by applying interval broadcasting on the array; then, if the
j-th record of the adjacency list of u; corresponds to the vertex v, the (ps[i — 1]+ j)-th entry
of the array E[] is set equal to (v;,vz). The above operations can be executed in O(logm)
total time using O(m/logm) processors on the EREW PRAM model. The linking of the
pairs (v;,v;) and (vj,v;), for each edge vjv; of G, is achieved in two phases by means of a
©(n?)-size array A[]: in the first phase, for each entry E[k] = (v;,v;) the entry A[i, ] is set
equal to k; in the second phase, for each entry E[k] = (v;,v;) the content of A[f,i] is read;
this is equal to the position of the pair (v;,v;) in the array E[]. The linking takes O(logn)
time using O(m/logn) processors on the EREW PRAM model. Finally, making m copies
of the array E|] takes O(logm) time using O(m?/log m) processors on the EREW PRAM
model.

Step 2. This step is executed for each one of the m edges of the graph G.

Substep 2.1: The vertex set A(x;e) is stored in an array A, .[] of size n. The entries of the
array are initialized to 0; next, for each entry (z,v) of the array E.[], the entry A, ;[v] is set
to 1; finally, for each entry (y,v) of the array E,|[], the entry A, .[v] is set to 0. The updating

f



of the array A, ;[] takes O(1) time using O(m) processors, or O(logn) time using O(m/ logn)
processors on the EREW PRAM model. An array A, ,[] storing the set A(y:e) is computed
similarly. An array R.[] storing the set V(G) — Nle] is also computed in a similar fashion:
its entries are initialized to 1; next, for each entry (z,v) of the array FE.[]. the entry R.[v]
is set to 0; finally, for each entry (y.v) of the array E.[], the entry R.[v] is set to 0. The
cardinalities of A(z;e) and A(y;e) can be computed by summing the entries of the arrays
A, z[] and A, ,[]; this takes O(log n) time using O(n/ log n) processors on the EREW PRAM
model.

Substep 2.2: Each vertex p uses interval broadcasting to pass to all the pairs (p.q) of the
array E.[] a value which is equal to 1 if p € A(y;e), and 0 otherwise. Next, these values are
passed to and stored at the twin pairs so that each pair (u,v) stores 1 if v € A(y;e), and 0
otherwise. Then, the number of neighbors of vertex u which belong to A(y:e) is computed
by summing the values of 0 or 1 stored at all the pairs (u,v). The above computations for
all vertices of G take O(logm) time using O(m/logm) processors on the EREW PRAM.
Checking whether the resulting numbers are equal to |A(y;e)| takes O(1) time and O(n)
processors, or O(logn) time and O(n/ log n) processors, on the EREW PRAM assuming that
each vertex has its own copy of |A(y: €)|, something which can be easily achieved in O(logn)
time using O(n/log n) processors on the EREW PRAM.

Substep 2.3: Similarly to Substep 2.2, this substep can be executed in O(logm) time using
O(m/ log m) processors on the EREW PRAM model.

Substep 2.4: This substep too is similar to Substep 2.2. Each vertex p uses interval broadcast-
ing to pass to all the pairs (p,q) of the array E,.[] a value which is equal to 1 if p is marked,
and 0 otherwise. Next, these values are passed to and stored at the twin pairs, and finally,
for each vertex u, the values stored at all the pairs (u,v) are summed. These computations
take O(logm) time using O(m/logm) processors on the EREW PRAM model. If the sum
is not 0 for any vertex in V(G) — Nle|], then M|e] needs to be set to 1. Directly setting
the entry M|e| results in concurrent writing; instead, we mark each such vertex u and we
set Me] «— 1 if and only if there exists a vertex in V(G) — Ne] which has been marked
(this is determined by computing the disjunction of the values of the predicate “belongs to
V(G)— Nle] and has been marked” for each vertex of the graph, and takes O(log n) time and
O(n/logn) processors on the EREW PRAM).

Thus, in total, Step 2 is executed in O(log n) time with O(m?/log n) processors on the EREW
PRAM model.

Step 3. This step can be executed in O(logm) time and O(m/logm) processors on the
EREW PRAM model by computing the maximum among the m entries of the array M[] and
testing whether it is equal to 1.

Taking into consideration the time and processor complexity of each step of the algorithm,
we have the following result.

Theorem 3.2. Given a weakly triangulated graph on n vertices and m edges, it can be deter-
mined whether it is a Ps-free weakly triangulated graph in O(logn) time using O(m?/logn)
processors on the EREW PRAM model.

The algorithm Ps-FREE-WT_REC assumes that the input graph is weakly triangulated;
so, if we combine the parallel weakly triangulated graph recognition algorithm of [19] with



Algorithm FPs-FREE-WT_REC, we obtain an algorithm to determine whether a given graph
is Ps-free weakly triangulated. This result is summarized in the following corollary:

Corollary 3.1. P;s-free weakly triangulated graphs can be recognized in O(log® n) time using
O(m?/logn) processors on the CRCW PRAM model, where n and m are the numbers of
vertices and edges of the input graph respectively.

Certification of the Existence of a Ps.  The algorithm can be easily augmented to
output a certificate whenever it decides that the input weakly triangulated graph is not Fs-
free. Indeed, in Substep 2.4, if, for an edge e and a vertex u in V(G) — Ne|, there exists
a neighbor of u which is marked, then we assign to M|e] a positive integer uniquely coding
the index numbers of u and its marked neighbor. Subsequently, in Step 3, if there exists
an edge €' such that M|e'] # 0, then the algorithm reports the edge €' and the two vertices
encoded in M|e'], from which the fifth vertex of the P; can be easily extracted.

3.2 Recognizing Ps-free Weakly Triangulated Graphs

We next describe a parallel algorithm which takes as input a weakly triangulated graph G
and determines whether it is Ps-free. Again, the graph G is given in its adjacency list
representation. The algorithm checks if there exists an edge in G which is a Ps-witness;
if there exists, then the graph is not Ps-free, otherwise it is (Lemma 2.2). The algorithm
operates as follows:

Algorithm P;-FREE-WT_REC:

1. construct an array E[] of size 2m, which, for each edge uw of the input graph G,
contains both pairs (u,w) and (w,u): the contents of the array are so that all the pairs
with the same first element occupy consecutive positions in the array, and additionally,
for each edge uw, the pairs (u,w) and (w,u) are linked to each other;
make m copies of the array E[], and associate with each edge e of G one such copy, say,
E,[];

2. For each edge € = zy of the graph G, do in parallel

2.1 for each entry E.[i] = (u;,w;), 1 < i < 2m, do in parallel
(i) if u; € V(G) — Nle] and w; € A(z;e)
then E,[i] « (u;,1);
(ii) if u; € V(G) — Nle] and w; € A(y;€)
then E. [ﬂ £ {uir 2)1
(ili) in all other cases, E.[t] — (u;,0);
2.2 remove from the array E.[] the entries (*,0) and then compact the remaining
entries into consecutive locations;
2.3 for each entry E.[i] = (u;, ;) do in parallel
if £&; = 1 and either E.[i — 1] or E,[i + 1] is equal to (u;,2)
then set E.[i] — (u;,3);



2.4 compute the maximum over the second field of the entries of the array E.[]; if it
is equal to 3, then set M(e] — 1, else set M[e] « 0 (M[] is an auxiliary array of
size m);

3. If there exists an edge e of G such that M[e] = 1, then the edge e is a Ps-witness, and,
thus, G is not a Ps-free weakly triangulated graph: otherwise, G is a Ps-free weakly
triangulated graph;

Correctness.  Note that after Step 2.1, an entry (u,1) (or (u,2)) in E.[] implies that
u belongs to V(G) — Nle] and is adjacent to a vertex in A(z;e) (A(y;e) respectively). The
array E,.[] is built so that pairs with the same first element are stored in consecutive positions;
this property continues to hold after the completion of Step 2.2, as the array compaction
maintains the relative positions of the remaining entries. This implies that if a vertex u €
V(G) — Nle] is adjacent to both a vertex in A(z:e) and a vertex in A(y:e), then after
Step 2.2, the array E,[] contains both an entry (u, 1) and an entry (u,2) among entries with
first element u and second element 1 or 2. But then, at least a pair of entries (u, 1) and (u,2)
are located in consecutive positions, which in Step 2.3 will leave an entry (u, 3) in the array.
The correctness follows from Lemma 2.2

Time and Processor Complexity. Next we present the complexity analysis by dis-
cussing each step separately. Again, we assume that the input graph is connected, which
implies that log m = ©(logn).

Step 1. This step is identical to Step 1 of Algorithm P;-FREE-WT_REC: it can be executed
in O(logm) time and O(m?/log m) processors on the EREW PRAM model.

Step 2. This step is executed for each one of the m edges of the graph G.

Substep 2.1: We use an auxiliary array V.[] of size n, which we update so that V.[v] = 1 if
v € A(zie), Velv] =2if v € A(y;€), Ve[v] =3 if v € V(G) — Nle], and V,[v] = 0 in all other
cases. In order to assign the correct values in V,[], we do the following for each vertex v of
G: We use O(degree(v)) processors, one at each of the pairs (v,v'), where v’ is a neighbor of
v. Each such processor checks if the corresponding vertex v’ is z, y, or none of them; in the
former case, it produces a 1, in the second a 2, or otherwise a (). Next, by using a tree-shape
structure of processors, we compute the sum of the numbers produced by the processors at
all these pairs (v,v'): if it is 1 and v # y, then we set V.[v] to 1; if it is 2 and v # z, then
we set V.[v] to 2; if it is 0, then we set V,[v] to 3; in all other cases, we set V,[v] to 0. The
updating of the array V.[] can be completed in O(logn) time using O(m/logn) processors
on the EREW PRAM model. Then, Substep 2.1 can be executed in O(1) time on the EREW
PRAM as soon as each entry E.[i] = (u;,w;) obtains its own copy of V.[u;] and V.[w;]. The
latter is achieved as follows: for each vertex v of G, the value of V,[v] is passed to and stored
at all the pairs (v,v') in E.[] by means of interval broadcasting (recall that all such pairs
occupy consecutive entries in E,[]); next, each pair (u,w) in E.[] obtains V.[w| from the
entry storing (w,u) to which it has a link. The above implementation can be executed in
O(log m) time with O(m/logm) processors on the EREW PRAM model.

Substep 2.2: The removal of the (*,0) entries from the array E.[] can be done by marking
these entries with 0 and the remaining entries with 1 and then by using array packing on

the array. This can be done in O(logm) time using O(m/logm) processors on the EREW
PRAM model.



Substep 2.3: This step takes O(1) time using O(m) processors, or O(logn) time using
O(m/ logn) processors on the EREW PRAM model; obtaining the values of E.[i], E.[i — 1],
and E,[i+ 1], for each i, needs to be done in three separate phases in order to be implemented
using exclusive read operations.

Substep 2.4: Computing the maximum on an array of size m can be done in O(logm) time
using O(m/ logm) processors on the EREW PRAM; checking whether it is equal to 3 and
assigning the correct value to M|e| takes one processor and constant time.

Step 3. This step is identical to Step 3 of Algorithm Fs-FREE-WT_REC; it can be executed
in O(logm) time and O(m/ log m) processors on the EREW PRAM model.

Therefore, we have:

Theorem 3.3. Given a weakly triangulated graph on n vertices and m edges, it can be deter-
mined whether it is a Ps-free weakly triangulated graph in O(logn) time using O(m?/ logn)
processors on the EREW PRAM model.

Finally, combining Algorithm F;-FREE-WT_REC with the parallel weakly triangulated
graph recognition algorithm of [19], we have:

Corollary 3.2. P;-free weakly triangulated graphs can be recognized in 0(1052 n) time using
O(m?/logn) processors on the CRCW PRAM model, where n and m are the numbers of
vertices and edges of the input graph respectively.

Corollaries 3.1 and 3.2 lead to the following result.

Corollary 3.3. (Ps, Ps)-free weakly triangulated graphs can be recognized in O(log® n) time
using a total of O(m?/logn) processors on the EREW PRAM model, where n and m are the
numbers of vertices and edges of the input graph respectively.

Certification of the Existence of a P;. As with the previous algorithm, this one can
be augmented so that, if the input graph is not Ps-free, it outputs a certificate (e, u), where
e = zy is an edge of the input graph and u is a vertex adjacent to vertices from both A(z:e)
and A(y;e). What we need to do is to locate an entry (u;,3) of the array E.|], whenever the
maximum in Step 2.4 is found equal to 3; then, u is precisely u;. In particular, Step 2.4 is
augmented as follows: while computing the maximum, we also maintain a pair (u;, ;) with
a maximum value of £;. In this way, if the resulting pair is (u;,£;) and ¢; is equal to 1, then
we encode u; in Me]; u; is precisely the sought u for the edge e. Subsequently, in Step 3,
if there exists an edge €' such that M|e'] # 0, then the algorithm reports the edge €' and
the vertex encoded in M[¢'], from which the remaining two vertices of the P5 can be easily
extracted.

4 Concluding Remarks

In this paper we present efficient parallel algorithms for recognizing Ps-free weakly trian-
gulated graphs, a subclass of perfectly orderable graphs, and Ps-free weakly triangulated
graphs. Our algorithms run in O(log® n) time using O(m?/logn) processors on the CRCW
PRAM model of computation, where n is the number of vertices and m is the number of
edges of the input graph. It is worth noting that our algorithms can be easily augmented to
provide a certificate for the existence of a P; (or a Ps) in the input graph.
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As mentioned in the introduction, Hayward [11] proved Chvatal’s conjecture that every
P;-free weakly triangulated graph is perfectly orderable. This result implies that various
subclasses of Ps-free weakly triangulated graphs are now known to be perfectly orderable,
namely,

o Pi-free graphs (they are also known as cographs) [18],

o (bull, P;)-free weakly triangulated graphs [7], where the bull is a graph with vertex set
{a,b,c,d, e} and edge set {ab, be, cd, be, ce},

o (Dg, Ps)-free weakly triangulated graphs [10], where Dg is the complement of the
domino graph; the domino is a graph with vertex set {a,b,c,d,e, f} and edge set
{ab, be, cd, de, ef,af,ad},

o (Pg, Ps)-free weakly triangulated graphs [16].

Due to the work of Dahlhaus [8] and He [14], the class of Py-free graphs can be efficiently
recognized in parallel in O(log® n) time with O(n+m) processors; the algorithm in [8] uses the
CREW PRAM, whereas the one in [14] uses the CRCW PRAM model. Thus, it is reasonable
to ask whether there exist efficient parallel algorithms for recognizing the remaining of the
above mentioned subclasses of the Pi-free weakly triangulated graphs. Moreover, another
interesting question is whether there exist efficient parallel algorithms for finding a perfect
order on such graphs (Hayward [11] proposed a sequential O(n®)-time algorithm for finding
a perfect order of a Ps-free weakly triangulated graph). We leave both questions as open
problems.
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