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BSTRACT: In this paper we present and compare several approaches for the design of an intelligent system for the early diagnosis
of coronary artery disease. The aim of our work is the development of an innovative non-invasive methodology for the early
diagnosis and monitoring of coronary artery disease based on the evaluation of risk factors and vascular status indices. A database
was set up consisting of 139 patients without medical history of coronary artery disease, each patient record containing 24 attributes.
The data are preprocessed using Principal Component Analysis and several methods are used for classification, such as artificial
neural networks (MLP, RBF), support vector machines (SVM), fuzzy neural networks (fuzzy-ARTMAF), probabilistic belief
networks and decision tree learning algorithms. The problem of missing values in the input data is addressed and the diagnostic

value of the proposed methods is discussed.

INTRODUCTION

Atherosclerosis, the principal cause of coronary,
cerebrovascular and peripheral vascular disease, is responsible
for more than 50% of all mortality and morbidity in westernised
countries. The understanding of the pathophysiology of the
atherosclerotic disease, the diagnosis in its early and reversible
stages, the prevention of its development, the identification and
effective modification of the risk factors and the treatment of

= disease are of crucial importance. It is becoming
increasingly accepted that the vascular endothelium, and its
dysfunction, plays a pivotal role in the pathogenesis and
development of atherosclerosis through its effects on
vasoregulation, platelet and mocyte adhesion, vascular smooth
muscle growth, and coagulation [1]. The endothelial
dysfunction appears to have detrimental functional
consequences as well as adverse long-term effects [2,3] and the
relation between coronary risk factors and endothelial function
is complex [4]. However, the association between risk factors
and endothelial dysfunction is strengthened by observations
that risk factor modification such as cholesterol lowering,
smoking cessation, exercise, and oestrogen replacement
improves endothelial function [5,6] even in the presence of
atherosclerosis [7].

Risk factor assessment by the doctor during history taking is
still the crude measure used to estimate the overall risk of a
patient for coronary artery disease. Angiography remains the
gold standard for the diagnosis of overt atherosclerosis.
However, it is an invasive and costly procedure that cannot be
used for the early diagnosis of atherosclerosis, screening of

large population or the close follow-up of treatment. Other
recently developed non-invasive methods suffering from
similar problems are the computerised tomography for the
detection of coronary calcification and magnetic resonance
imaging of atheroma for the assessment of the function of the
aorta [8.,9].

The assessment of the endothelial function in both coronary and
peripheral arteries has expanded as a research tool to identify
potential factors and mechanisms related to the atherogenic
process and investigate methods of treatment [6]. In addition,
evidence of increased arterial stiffness (reduced aortic
distensibility, increased aortic pulse wave velocity — which can
be measured non-invasively using for example applanation
tonometry) has been proposed as a convenient surrogate marker
of atherosclerosis [10], but its use for early detection of
endothelial dysfunction has been questioned [11]. On the other
hand, the effects and impact of physical exercise on the patient
with atherosclerotic disease has not yet been fully determined.

The development of an automated diagnosis system that will
take all potential risk factors into account would benefit from
the introduction of arterial stiffness index and probably
endothelial health (change of arterial stiffness following
exercise stimulated NO release). The diagnostic power of such
a system will increase in the early stages of atherosclerotic
disease when the damage is still reversible and will throw some
light into the complex mechanism of the atherogenic process.
A diagnostic system can be used for the evaluation of the
importance and contribution of all nisk factors in the diagnosis
of the various stages of atherosclerosis in different disease



states and potentially help in the identification of the
appropriate treatment.

THE FROELEM AND THE DATASET

In our study, we present and compare several approaches for
the design of an intelligent system for the early diagnosis of
coronary artery disease (CAD). The aim of our work is the
development of an innovative non-invasive methodology for
the early diagnosis and monitoring of coronary artery disease
based on the evaluation of risk factors and vascular status
indices. The importance of the proposed approach lies in the
data-driven method used for the design of the intelligent
diagnostic system and the evaluation of different factors that
can reduce the development of the disease.

A database was set up collecting data for patients of the
Cardiology Department of the University Hospital. The
database consists of 139 patients (35 normal / 104 pathological)
without medical history of coronary artery disease. Each patient
record is composed of 24 input attributes including exercise
testing results, several risk factors for the coronary artery
disease (such as age, sex, family history for coronary artery
sease, smoking history, diabetes history, hypertension history,
distribution of body fat, body mass index, physical condition,
diet) and several measures such as lipid profile, plasma
glucose, oxidative stress markers, lipid peroxidation products
and indices of arterial stiffness (pulse wave velocity) [14-16].

Several classification methods are applied and compared for
the design of an intelligent diagnostic system based on the
association of the above set of symptoms and measurements.
These approaches include computational intelligence
techniques, such as artificial neural networks (MLP, RBE),
support vector machines (SVM), fuzzy neural networks (fuzzy-
ARTMAP), probabilistic belief networks and decision tree
learning algorithms.

The focus of our study is on the prediction of the presence of
CAD with the results of coronary angiography used as the
golden standard. In our experiments, we preprocess the data set
by applying principal component analysis (PCA). In addition,

2 retain only those components which contribute more than a
specified fraction (defined 0.01) of the total variation in the
dataset. The dimension of the final input patterns is 22. The
problem of missing input data is also addressed. As a first
approach, missing values were replaced by 0 (data set
WValue_(01). Another approach to the problem of incomplete data
is to substitute the missing value with an estimated value, in
particular we used the averaged value of the attribute to replace
the missing value (data set: Value_av).

The performance of the proposed diagnostic methods is
described using the classification accuracy, sensitivity and
specificity defined as:

number of true positive + true negative test results
number of all patients

number of true positive test results

number of all patients with disease

number of true negative test results

number of all patients without disease

accuracy =

Sensitivity =

specificity =

The goal of our study is to improve the diagnostic performance
using non-invasive diagnostic methods by evaluating all the
available diagnostic information using Machine Learning (ML)
techniques which are presented below.

ARTIFICIAL NEURAL NETWORKS

Neural nerworks offer several advantages over conventional
computing architectures. In this paper we present an extensive
comparison among several feedforward neural network models
in the context of the detection of coronary artery disease. We
present results from the application of multilayer perceptrons
(MLP) and radial basis function networks (RBF).

Multilayer Perceptrons

Multilayer perceptrons are the most popular feedforward neural
network models consisting of fully interconnected layers of
neurons. The conventional training algorithm for training MLPs
is the backpropagation algorithm which constitutes an
implementation of the pradient descent method and is relatively
slow. To improve training speed and effectiveness, we have
employed the BFGS guasi-Newton optimization algorithm [12].
Two termination criteria have been considered: (1) maximum
number of iterations (in our case 100) or (2) achieved mean
square training error less than 0.05. To assess the generalisation
performance, a separate test is presented to the MLP after the
completion of training.

We considered MLP architectures consisting of 22 input units
(set of symptoms and measurements after applying PCA), 2
hidden layers (3 to 20 sigmoid hidden units) and 2 output units
(one corresponding to each of the two classes). Weights were
randomly initialised in the range [-1,1].

To compare the different network architectures, several series
of experiments have been conducted. For each type of MLP,
ten experiments were performed with random splits of data into
training and test sets of fixed size (119 patterns for training and
20 for testing). We study both Value_0 and Value_av data sets.
The average results were calculated from these ten trials and
the best results are summarized in Table 1. The outputs of the
MLP provide values in the range between 0.0 and 1.0 and the
input sample is attributed to the class whose output neuron has
the highest value,

Table 1: Average results using BFGS quasi-Newton algorithm
for training MLP, for both Value_ 0 and Value_av data sets.

Data set | MLP* | Average Average Average
Accuracy | Sensitivity | Specificity
(Fe) (%) (%)
Value 0 | 15+ 5 74 24 41
Value_av |10 +10 76 26 54

*Network architecture: Number of units in the first hidden layer
+ number of units in the second hidden layer.

Moreover, in order to increase the classification reliability of
the method [22], we have used a cut-off point of 0.8 for the
output value of the winning class, below which the result was
considered as unclassified. The average results from ten trials
using a cut-off point are summarized in Table 2.



Table 2: Average results using a cut-off point for both Value_0
and Value_av data sets.

Data set MLP* Average | Average Average
Accuracy | Sensitivity | Specificity
{%e) (%) (Fe)
Value 0 | 15+5(19) 76 86 46
Value_av [10+10(18.8) 78 &8 46

*Network architecture: Number of units in the first hidden layer
+ number of units in the second hidden layer. The average
number of test patterns classified from ten experiments is
indicated in parentheses.

Radial Basis Function Networks

The Radial Basis Function (RBF) neural network is a simple,
yet powerful, machine learning algorithm for nonlinear
regression and classification. Consider the approximation of a
function f:RY — R based on samples I, = {fl., Yio=L.n
in the form of a linear combination of m basis functions:

foEW) = w g (X,7,)+w,
J=1
o In normalized form

M
Z W.-' g ! (x' v.-' }
SiiE ful
fm (I“ w} = - m
Y g (%)
k=1
In the case of RBF, the basis functions are usally radially
symmetric gaussians of the form:
[ %=,

2a, ‘

The different layers of an RBF network (hidden layer of basis
functions and output layer of their combination) perform
different tasks, so we are able to separate the optimization of
the hidden and output layers using different techniques and
operating in different time scales. That is, the parametric vector
w of the output layer is estimated from data via linear least

g,;(x,v,) =exp(-

uares, while the positions of the centers v ; and their widths

a ; can be estimated using several learning methods [25,30].

The unsupervised training procedure used to estimate the

parameters of the gaussian can be summarized by the following

algorithm [29]:

I. Choose the number of basis functions in the hidden layer
{m).

2. Estimate centers V ; using the X values of training data by

unsupervised training such as k-means clustering or self-

organizing maps (SOM).

Determine width parameter a

Led

; using the following

heuristic rule: For a given center v ;» find the distance to
the closest center r; and set the width parameter @ ;1 =i
where ¥is a parameter controlling the overlap between
basis functions (in practice 1 £ < 3).

4. Estimate W via linear least squares.

The Radial Basis Function classifier uses multi-output
nonlinear regression to built a decision boundary and training 15
performed in the same way as in the case of RBF regression.

In this dataset, the standard SOM method, as well as the
following SOM-based variant were used to estimate parameters

v ; and & ;. Suppose that a m;xm; self-organizing map was

trained using the ¥ values of training data. Instead of using
the m=m;=m; units and their corresponding weight vectors as
RBF centers, the following two-step operation (pruning +
splitting) has been performed:

1. Prune all units that are favored by less than T training
patterns {where 1 is a threshold value).

2. Split each unit (cluster) into so many units as the
categories of the training patterns that are in favor of
the particular unit. Set the weight vector of each of
unit to be the centroid of the patterns that belong to
the same category.

Estimate parameters @, and W as described

Fad

previously.

The two algorithms were used to estimate the parameters of a
two — class normalized RBF neural network and the results are
illustrated in Table 3. The data were normalized so that their
mean is zero and their standard deviation is one. PCA was
found to deteriorate the results under these methods. Twenty
experiments were performed with random splits of data into
training and test sets of fixed size (119 patterns for training and
20 patterns for testing). The 20 patterns of the test set are
restricted to correspond to 15 positive and 5 negative patients.

Table 3: Average results using RBF-50M and RBF-S0OM
Pruning + Splitting, for both Value_0 and Value_av data sets.

Average Average Average
(Dataset) - Method Accuracy | Sensitivity | Specificity
(%) (%) (%)
(Value O)RBF - SOM 76 86 47
(Value_0)RBF -S0M T 85 54
Pruning + Splitting
(Value_av)RBF - SOM ¥ 89 41
{Value_av)RBF -50M 78 78 75
Pruning + Splitting

In the experiments presented in Table 3, we set parameter y =
1.5 and parameter t = 2. For this particular dataset, pruning
without splitting has improved accuracy but has resulted in
worse specificity while the application of splitting has resulted
in more balanced classification results.

SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) is a constructive learning
procedure that applies the Structural Risk Minimization
principle to construct rules that exhibit good generalization
abilities [13]. In doing so, it extracts a small subset of the
training data called the “Support Vectors™.

A support vector machine is based on the following two
operations:

s Nonlinear mapping of an input into a high-dimensional
feature space.




* (Construction of an optimal hyperplane for separating
the above features.

The applied SVM approach uses radial basis functions as the
nonlinear transformations from the input space to the feature
space:

7

N i~
f{X) = sign Za‘. o e

i=l o

Here o is a width parameter defined a priori and o; , i=1,....N
(N: number of training patterns) are parameters (Lagrange
multipliers) determined optimally by the SVM algorithm. The
3WM was trained several times with different values for o and
the regularization parameter C of the SVM algorithm. For each
SVM, ten experiments were performed with random splits of
data into training and test sets of fixed size (119 patterns for
training and 20 for testing). Both Value_0 and Value_av data
sets have been studied. The average resulis were calculated
from these ten trials and the best results are summarized in
able 4.

Table 4: Average results using SVM for both Value 0 and
Value_av data sets.

Data set SVM* Average | Average | Average
Accuracy |Sensitivity | Specificity
(Fe) (%) (%)
Value 0 | (14.2,20) 67 70 63
| Value_av [( 14.2 , 1000) 75 83 54
*SVM parameters: (g , C).
FUZZY ARTMAP NETWORKS
ARTMAP networks [21] are incrementally trained

classification networks. An ARTMAP model consists of two
adaptive resonance modules (ARTa and ARTb) that create
stable recognition categories in response to sequences of input
patterns. During supervised learning the ARTa  module

ceives a stream {a(p)} of input patterns, and ARTb receives
a stream {b(p)} of input patterns, where {bip)} is the correct
prediction given {a(p)}. These modules are linked through an
associative network and a controller.

Table 5: Results using ARTMAP networks for both Value 0
and Value_av data sets.

Data set #ARTa Average | Average | Average
nodes* Accuracy |Sensitivity | Specificity
(%) (%) (Fe)
Value_0 | 4 voters 76% s81% 47%
24.35 nodes
(16-37)
Value_av | 8voters, T8% 83% 53%
25.24nodes
(18-40)
Training Time: 44sec (user time), Ultra Spark 4.

*Network architecture: average number/range of ART, nodes.

The current application was based on an ARTMAP simulator
(see http:/fwww.cs.cmu.eduw/afs/cs/project/ai-repository/aif
areas/fuzzy/systems/artmap/0.html), which implements a voting
strategy. The ARTMAP network was trained several times on
input sets with different orderings of patterns. Each of these
orderings constitutes the training set of a voter (recall that the
training order in ARTMAP is important because of the
incremental learning which takes place). The final prediction
for a given test set is the one made by the largest number of
voters. The data (139 vectors, of 24 dimensions, 2 categories)
are split into the training set (119 vectors) and test set (20
vectors). The results, which are reported in Table 35, are
averages over 10 experiments. The ARTMAP parameters were
set as follows : u=1.0, £=0.1, Learning Rate=1, Min ARTa
Vigilance=0.1, ARTb Vigilance=1.0.

PROBABILISTIC NEURAL NETWORK MODELS

Consider a classification problem with K classes and a
training set X={(x".k").n=1..,N)}. where x" is a d-
dimensional pattern and &" is an integer in the range (LK)
indicating the class of the pattern x" . The original set X can
be easily partitioned into K independent subsets X, so that
each subset contains only the data of the corresponding class.
Let N, denote the number of patterns of class C, ie.

N'Q =|Xk|'

The application of probabilisic models t the above
classification problem presupposes the estimation (using the
available training set X ) of the conditional density p[x |C,)
of each class C; [23]. Then, in order to classify a new patiern
x, the conditional densities are combined with prior
probabilities P{Ck] through Bayes' theorem, and provide the
posterior probabilities P(C, | x):

P(Cy)p(x|Cy)

K

D P(Cp)p(x|Cy)
k'=1

The final classification decision is performed by selecting the
class with maximum posterior probability.

P(Cy | x)=

The computation of each conditional density plx|C;) is

performed though the training of probabilistic neural networks,
ie. neural network models whose outputs correspond to
probability density functions. The most widely wsed
probabilistic neural network model is the Gaussian mixture
model [24]:

A Gaussian mixture
described as follows:

M
p(x)=2 = ;p(x]|J)

model with M spherical kernels is

=1
where
pix|j) = P ——"x-ﬂj]-
T 207
with u;. & ; representing the center and vanance of kernel j.

while for the priors 7, (0< 7, <1 it holds that



M

Z;r =1

i=l
Two approaches have been proposed for training of
probabilistic neural networks: the separate mixtures model
[23.25] and the Probabilistic EBF model [26,27].

The separate mixtures model (SM)

In the first approach [23, 25], a separate Gaussian mixture
model (with M, kernels) is employed to estimate each class

conditional density p(x|C,) using only the data of the

corresponding class C,. For such models efficient

unsupervised density estimation training procedures have been
developed that are based on the EM algorithm [25, 28].

The Probabilistic RBF model (PRBF)

The second approach is based on the Probablistic REF model
[26, 27] which comprises a special case of the RBF neural
network where the basis functions are taken to be probability
densities and the second laver weights are constrained to

present prior probabilities. In this way, the outputs of the
#BF represent class conditional densities. This interpretation of
the outputs has given the opportunity to treat RBF training as a
maximum likelihood problem and derive an one-stage EM
algorithm for adjusting the model parameters.

Assume that we have a number of M spherical Gaussian kernel
functions pl(x| j):

.

||x'*”i|
= 3

plx] j)= e p

|:2:i'n:rJl

We would like to utilize p(x | j] for estimating the conditional
densities of all classes by considering the kernels as a common
pool. Thus, each class conditional density function p(x|C,) is

modeled as
M

p(x|Cy)=2 7 ,p(x| )
=

aere the mixing coefficient x; represents the prior

probability of the pattern x having been generated from kernel
J - given that it belongs to class C, . The priors take positive

values and satisfy the following constraint for each &

M

"T_.'i: =]

j=l
Training of the PRBF network can be performed using the EM
algorithm for likelihood maximization [26,27]. The parameter
update equations at r+/ iteration of the algorithm are as
follows:

"r_.l:'cmpu}{-’: | )
272ap 0 )
-

P':I}{jl Ch_r} =
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The training algorithm for the PRBF network can be
summarized as follows:
1. Specify the number of kernels M and the initial parameter
values.

2. E-step: For each training point (x",k")e X compute the
posterior probabilities p) using the current parameters
) _ (1) Ll ()
0 —(JJJ HF g )
3. M-step: Find the new
ﬁfh—'ljl o8 [}‘ﬂ.r-r]i,ﬂ_{.!-rl:l E[-ﬂ_l]).

i PR
4. Tterate going to step 2 until convergence is achieved.

parameter Vector

Experimental results

We applied the two probabilistic models (SM and PREF) 1o the
PCA preprocessed two-class data. The leave-one-out cross
validation method was employed in order to estimate the
classification performance. The results are illustrated in Table 6
for both methods. In the SM case M, denotes the number of
kernels of each separate mixture, while in the PRBF case, M
denotes the total number of utilized kernels.

Table 6: Classification performance for different SM and PRBF
architectures for Value_0 data set.

Average Average | Average
Accuracy | Sensitivity | Specificity
(%) (%) (%)
SM (M, = 1) 68 68 68
SMiM,.=2) &7 67 68
SMiM.=13) 66 66 65
PRBF (M =4) 58 59 57
PRBF (M = 6) 63 60 68
PRBF (M = §) 67 64 74

DECISION-TREES

Decision Trees [17-19] constitute cne of the most effective and

successfully utilized methods of inductive learning [20] that is

particularly suited for classification and prediction tasks. A

decision tree structure is either,

* aleaf, indicating a class or,

*  adecision node that specifies some test to be carried out
on a single feature value, with on branch and sub-iree of
the node for each possible outcome of the test (feature’s
values).

Starting at the root and moving down the tree until a leaf is

encountered, we are able to identify all the relevant and

informative feature-values for concluding the class recorded at
the leaf.

The way that the tree is constructed (induced) is based on a

“divide and conquer” strategy. Within this approach, the given

set of data is partitioned into subsets and for each of the subsets

the ‘most informative' feature (based on the Information Gain
metric) 15 identified. Following a “hill-climbing™ approach and
iteratively dividing the data set into subsets by selecting the




most informative feature, the whole tree is constructed. An
outline of the decision tree construction algorithm is shown in
Figure 1 and constitutes a variant of Quinlan's C4.5 algorithm
[18].

Main
Stepl: E = All set of observations {examples)
Step2: Call Best_Feature(E,BestFeature) sub-routine
Step3:  Divide E into sub-sets E[BestFeature(Value)]
Step4 -lterate
Set E = E[(BestFeature(Value)]
If
Call Single_Class(E[Best_Feature(Value)]) sub-routine
Then Stop for current branch and conclude to a leaf
labeled with the single class labeling all examples in
E[BestFeature(Value)]

Else Goto Step2
Best_Feature(E,BestFeature)
Stepl:  Compute Entropy(E)
Compute Entropy(E/Feature;)
Compute InfoGain{Feature;)
Step2: Compute BestFeature = max{Featurey/Feature;

>Feature;, 1<i, j< #Features)

Single_Class(E[Best_Feature(Value)])

Check if all examples in data set E[BestFeatre(Value}], i.e., all
examples have value Value for BestFeature, are assigned to the
same class.

Figure 1: Qutline of the Decision Tree construction algorithm
Experimental results

The testing-course with the coronary artery disease dataset

include the set of experiments summarized in Table 7. The

available dataset was carefully cleaned for cases with too-many
unknown values in order to exclude as-much-as-possible the

potential noise in the data. The resulted dataset consists of 124

cases.

* All the experiments were conducted with the use of the
See-C5  decision-tree  construction  algorithm, a
commercially available offspring of C4.5.

* For all experimenis a 10-fold cross-validation procedure
was followed (using the 100% of the data) in order to
assess the predictive accuracy of the final output.

# For each of the experiments, the rules induced using the
100% of the respective dataset are to be considered as the
knowledge-base to be incorporated in the intelligent
system for the primary diagnosis of the coronary artery
disease.

Table 7: The specifics of the experiments conducted with the
decision-iree induction approach

Focus on restricted dataset of 96
male patients; cases are assigned
into two- (2) classes: patients
with ‘normal’ status of vessels
(i.e., no infraction) and patients
with ‘abnormal’ status of vessels
(i.e., vessels with less30% and
more30% infraction).

Males_Normal_vs
_Abnormal

Focus on restricted dataset of 81
male patients with abnormal
vessels status: cases are assigned
into two- {2) classes; paticnis
with ‘less50%" infraction, and
patients  with ‘moreS0%"
infraction.

Males_LessS0_vs
_Mores0D

Focus on restricted dataset of [ili]
male patients with more30%
infraction vessels status; cases
are assigned into three- (3)
classes: ‘in_1", ‘in_2", and
‘in_3" for more30% infraction
in only one wvessel. in two
vessels and in three vessels,

Males_Mores0

respectively.
Females_Normal_ | Focus on restricted dataset of 27
vs_Abnormal female patients; cases  are

assigned into two- (2) classes:
patients with ‘normal’ status of
vessels (i.e., no infraction) and
patients with ‘abnormal’ status
of wvessels (e, wvessels with
less30% and more50%

infraction).

The results of all experiments are summarized in Table 8.

Table 8: Results on the set of experiments conducted with the
decision-tree induction approach.

Experiment name Explanation #cases

All_Normal_vs_A
bnormal

The whole dataset is used (both 124
male and female patients
included); cases are assigned
into two- (2) classes: patients
with ‘normal’ status of vessels
(i.e., no infraction) and patients
with “abnormal’ status of vessels
(1.e., vessels with less50% and
more30% infraction).

Experimet name Predictive | # Rules | Complexity of
Accuracy Rules
V-loldy=0/ MinMean/Max*
Standard Error number of
conditions
All_Normal_vs_A T9.8/3.6 9 1/2.6/4
bnormal
Males_Normal_vs_Al  83.3/3.8 14 2134175
normal
Males_LessS0_vs Mol 77.8/4.6 7 1/24/8
resl
Males_Mores0 490/ 6.6 12 1/24/6
Females Normal_| 79.8/3.6 9 1/2.6/4
vs_Abnormal
* Min, Mean, and Max are the minimum, mean

_# of / # of rules ) and
maximum number of conditions used in the respective induced
set of rules. These measures are used as an indication of the
complexity of the final learning result.

(=total_#_of_conditions_in_all_rules

CONCLUSIONS

In this paper we present and compare several classification
methods, applied to the problem of the early diagnosis of
coronary artery disease. The classification method along with
the data selection-storage system (knowledge base) composes
the diagnostic system for coromary artery disease, which
accepts as input the data of a patient and provides a decision for
the patient. The proposed intelligent system architecture is




quite general and applicable to a wide class of models and
classification techniques, allowing the training and evaluation
of different approaches and the combination of their decisions.

The results of our study, using the available patient data, give
us very promising classification performance. Due to the high
specificity obtained, only a small number of persons not
suffering from the disease have to be examined with
angiongraphy which is invasive and painful. The proposed
approach results in shorter treatment time for the patients and is
more cost effective. However, it should be taken into account
that the results are obtained on a significantly restricted
population and therefore the proposed approach may not be
generally applicable to the normal population.

In the near future, the proposed algorithms have to be adapted
to design an intelligent system for the classification of patients
in five categories: patients with normal coronary arteries,
patients not featuring alterations in angiography but with
endothelial disfunction, patients having atheromatic coronary
vessels but without significant stenosis (<50 %) and patients
with significant coronary arterial stenosis (>30 %).
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