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ABSTRACT: The development of an artificial neural network model is studied for the classification of the cardiac beats as ischaemic
or not. The network is designed to be part of a more general algorithmic schema, which detects ischaemic episodes in long duration
electrocardiographic recordings. An interval from the recorded signal containing both the 5T segment and the T wave is the input to
e network. Due to the large dimension of the input vector, principal component analysis was adopted and any redundant features
were eliminated. Different feed-forward neural network architectures were examined after modifying the number of nodes in the
hidden and input layers. Also, various algorithms were applied for network training. A task specific cardiac beat database was
developed in collaboration with three medical experts in order to perform network training and testing. This database contains
excerpts from the European Society of Cardiology ST-T database which were diagnosed beat-by-beat from the three experienced
cardiologists. The efficiency of each network was tested in terms of sensitivity and specificity. The results show that the employed
method can classify the cardiac beats more accurately than other reported technigues.

INTRODUCTION
The knowledge-based approach has been implemented on a

Myocardial ischaemia is the most common cause of death in the previous work [6] with very good results. A set of rules was

industrialised countries. It is caused by insufficient blood flow
to the muscle tissue of the heart. This reduced blood supply
may be due to narrowing of the coronary arteries, obstruction
by a thrombus, or less commonly, to diffuse narrowing of
arterioles and other small vessels within the heart. In the
electrocardiographic (ECG) signal ischaemia is expressed as
slow dynamic changes of the ST segment and/or the T wave
1.2, Long duration electrocardiography, like Holter
-cordings or continuous ECG monitoring in the coronary care
unit, is a simple and non-invasive method to observe such
alterations. The development of suitable analysis techniques
can also make this method a very effective one.

ECG has 3 main waveforms: the P wave, the QRS complex and
the T wave (Figure 1). P wave corresponds to the sequential
activation (depolarization) of the right and left atria, QRS
complex to the right and left wventricular depolarization
(normally the ventricles are activated simultaneously) and the
5T segment with the T wave to the ventricular repolarization.
In order to detect ischaemic episodes, the 8T segment and the T
wave need to be evaluated. The evaluation process can be
based upon medical knowledge, where a set of rules is applied,
[3-T], artificial neural networks [8-12], fuzzy logic [13.14],
wavelet theory [15,16] or other signal processing techniques
[17-19]. The performance of these techniques depends on the
correct cardiac beat classification and the accurate episode
definition. The problem with beat classification is that different
doctors can make contrary diagnoses for some beat waveforms.
This directly reflects to episode detection where sequences of
ischaemic beats need to be assessed in order the margins of the
episode to be defined.

developed and the threshold values used by the rules were
provided from the doctors’ experience. However, there are
more sophisticated methods to address the problem of
ischaemia detection, especially in what concerns the cardiac
beat classification. Use of predefined threshold values is a rigid
method to swudy the dynamic ECG changes of ischasmic
episodes.
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Figure 1: ECG cardiac beat.

Aiming at a more accurate classification of the cardiac beats as
normal or ischaemic, the development of an artificial neural



network model is studied in the present work. Instead of using
doctors” experience to define and adjust the set of rules we used
it to construct a dataset and train an artificial neural network.
The training and testing sets were developed in collaboration
with three medical experts who diagnosed in beat-by-beat mode
11 h of two-channel ECG recordings. The constructed feed-
forward neural network was used to classify each beat as
ischaemic or normal. The network’s input was an ECG interval
containing both the 5T segment and the T wave, but due to the
large dimension of this input vector a principal component
analysis was adopted for dimensionality reduction. In order to
properly adjust the network, various architectures were tested
as well as different training algorithms.

MATERIALS AND METHODS

The proposed overall algorithmic schema for ischaemic episode
detection can be divided into four stages (Figure 2). In the first
stage the ECG signal is preprocessed and the noise is
successfully filtered. ECG has three basic types of noise:
baseline wandering, A/C interference and electromyographic
contamination (Figure 3). Baseline wandering is a slow type of

ise and can be approximated for each cardiac beat separately
by a first order polynomial [20]. The subtraction of this
polynomial from the recorded beat can eliminate the baseline
wandering effect. A/C interference and electromyographic
contamination are handled by the application of a 20 ms
averaging filter. To be more precise, the above filter is applied
around the area of the J point (start of the ST segment). Using
an edge detection algorithm [21] and the averaged signal, J
point is accurately detected. Cardiac beats that contain
substantial amount of noise (J point cannot be defined) are
rejected at this stage.
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Figure 2: The four-stage algorithm.

For the beat classification stage a feed-forward neural network
{multilayer perceptron) with one hidden layer was utilised. The
interval 8T-T = [I, J400] of the filtered ECG signal was the
input vector to the network. J400 is the point that lies 400 ms
after J. It also corresponds to a point that lies approximately
after the offset of the T wave. The exact location of this point
depends on the heart rate. The large dimension of the input
pattern (100 data points, when 250 Hz is used as sampling
frequency) would introduce great difficulties in the network's
training. For this reason, we applied a dimension reduction

technique to the input vector using principal component
analysis (PCA). The overall neural network architecture is
shown in Figure 4.
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Figure 3: The three types of ECG noise.

At the third stage we constitute windows with cardiac beats of
approximately 30 seconds in duration (following the European
Society of Cardiology recommendations). A sliding adaptive
window technique is applied to every available lead and each
constructed window is characterised as normal or ischasmic
depending on the percentage of ischaemic beats contained in it
(more than 75%). In the last stage all the consecutive ischaemic
windows are merged and the overall ischaemic episodes are
defined.
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Figure 4: The artificial neural network architecture for beat classification.

The first, third and fourth stages of the overall algorithm have

been studied in a previous work [6] where a rule-based method

was used for beat classification. In this framework each cardiac

beat was classified depending on the values of four ECG

features:

i) ST segment deviation from the isoelectric line (this line
defines the zero voltage).

1) ST segment slope.

iii) T wave amplitude deviation.

iv) T wave polarity.

Currently, the second stage is examined by means of

developing an artificial neural architecture capable of

classifying the cardiac beats as ischaemic or not. Different

network architectures were tested after varying the number of

nodes in the hidden layer and also the dimensionality reduction

percentage. PCA produces the amount of contribution of each

component to the total variance in the training set. The overall

amount of the desired contribution determines the number of

the principal components. Different threshold values for this

amount were used providing different dimensions of the

network’s input vector. Furthermore, several techniques were

examined for network training:

i) gradient descent with adaptive learning rate and momentum
[22],

ii) resilient backpropagation [23],

111} scaled conjugate gradient [24],

iv) BFGS quasi-Newton [25],

v) one step secant [26],

vi) Levenberg-Marquardt [27] and
vii)Bayesian regularisation [28,29].

For the training and testing of the nerwork we developed a task-
specific ECG database based on the recordings of the European
Society of Cardiology ST-T (ESC ST-T) database [30]. 11
hours of continuous two-channel recordings were extracted
from 10 representative files of the ESC ST-T database (whole
20104 recording and the first hour of the e0103, eD105, e0108,
eQl113, e0114, 0147, 0159, e0162 and e0206 recordings).
The excerpts were diagnosed in beat-by-beat mode from three
experienced cardiologisis of the University hospital. This
accumulated experience yielded in a dataset of 86,384 cardiac
beats characterised as normal, ischaemic or artefact. From these
beats those that are not detected by the utilised QRS detector
[6] and the artefacts were rejected, leaving a total of 76,989
beats. 37,663 beats from the final dataset (48.92%) were
characterised as ischaemic and the remaining as normal. The
training set was constructed after selecting the first beat out of a
sequence of 40 (2.5% of the final dataset) and contained 954
ischaemic beats and 982 normal. The remaining beats were
used as test set.

RESULTS

In order to study the efficiency of the proposed ANN
architecture several experiments were performed. Sensitivity
(Se) and specificity (Sp) were the performance measures used
to evaluate the method with the data of the test set. Sensitiviry



is the fraction of correctly detected ischaemic beats and is given
by the following formula:

TP

Se = —nuo—
TF + FN

where TP is the number of beats correctly classified as

ischaemic while FN is the number of beats falsely classified as

normal. Specificity is the fraction of beats correctly defined as

normal and i$ given by:

™
Sp=—m—
TN +FP
where TN is the number of beats correctly classified as normal
and FP is the number of beats falsely classified as ischemic.

Multilayer perceptrons with 10 and 25 nodes in the hidden layer
were tested. Initially, the amount of total contribution of the
components to the variance in the training set was chosen to be
93% (only the components that contribute 95%, in total, will be
used and the remaining will be rejected). The above threshold

sulted in four principal components reducing the dimension
of the input vector from 100 to four. When the threshold was
set to 90%, PCA produced three principal components and
when it was set to 97.5%, it produced six.

Table 1 shows the sensitivity and specificity for each one of the
seven training algorithms, mentioned in the previous section,
when the PCA threshold is 95% and the hidden layer has 10
nodes (4= 10= 1 network architecture). Table 2 has the same
results but for a 4 x 25 % 1 neural network architecture. Tables 3
and 4 examine the modification of the PCA threshold. This time
the employed training algorithms are four: resilient
backpropagation, scaled conjugate gradient, Levenberg-
Marquardt and Bayesian regularisation. In Table 3 the PCA
threshold is 90% (3= 10x 1 architecture) while in Table 4 it is
97.5% (6= 10x 1 architecture).

It is apparent from Tables 1 and 2 that when the number of
nodes in the hidden layer increases, the network’s performance

‘ghtly increases also. The same is observed also in Tables 3
and 4, where the input vector encloses more information for the
presented beat (larger percentage threshold during PCA).
Nevertheless, this improvement is not significant leading to a
conclusion that 10 nodes in the hidden layer and 95% threshold
for PCA (four input nodes, in accordance with the four ECG
features used in the knowledge based approach) can sufficiently
address the problem of cardiac beat classification when
ischaemia is under study. As for the training algorithm, mainly
the Levenberg-Marguardt algorithm and the Bayesian
regularisation method produced the best results. We believe
that Bayesian regularisation should be the most appropriate for
ischaemia detection, since it has been proven to have very good
generalisation capabilities [28.29]. It should be noted, that
when a set of rules based upon medical knowledge [6] was used
to classify the cardiac beats, the obtained sensitivity and
specificity were 70.13% and 62.98%, respectively.

DISCUSSION

ECG is one of the most common signals in the everyday
medical practise. This is mainly due to its simple acquisition
and non-invasive nature. In addition, ischaemia is the most

Table 1:Sensitivity (Se) and specificity (Sp) for a neural
network architecture with 10 hidden and four input nodes
using different training algorithms.

Number of nodes in the hidden layer: 10

PCA percentage threshold: 95%

Training algorithm Se (%) Sp(%)
Resilient backpropagation 88.82 87.64
Scaled conjugate gradient 88.44 88.20

BFGS quasi-Newton 90.21 89.06

One step secant 86.67 90.06

Levenberg-Marquardt §9.60 89.15

Bayesian regularisation 89.62 89.65

Table 2: Sensitivity (Se) and specificity (Sp) for a neural
network architecture with 25 hidden and four
input nodes using different training algorithms.

Number of nodes in the hidden layer: 25
PCA percentage threshold: 95 %

Training algorithm Se (%)  Sp (%)

Gradient descent with adaptive

learning rate and momentum B7.45 20-14
Resilient backpropagation 90.26 90.89
Scaled conjugate gradient 09042 90.23

BFGS quasi-Newton 89.59 89.25
One step secant 8939 89.11
Levenberg-Marquardt 00.84 89.24
Bayesian regularisation 90.54 89.76

Table 3: Sensitivity (Se) and specificity (Sp) for a neural
network architecture with 10 hidden and three
input nodes using different training algorithms.

Number of nodes in the hidden layer: 10

PCA percentage threshold: 90 %

Training algorithm Se (%) Sp (%)
Resilient backpropagation 88.78 87.95
Scaled conjugate gradient 88.98 88.90

Levenberg-Marquardt 87.45 87.10
Bayesian regularisation 88,49 §8.97

Table 4: Sensitivity (Se) and specificity (Sp) for a neural
network architecture with 10 hidden and six
input nodes using different training algorithms.

Number of nodes in the hidden layer: 10

PCA percentage threshold: 97.5%
Training algorithm Se (%) Sp (%)
Resilient backpropagation 90.79 92.03
Scaled conjugate gradient 91.63 93.06
Levenberg-Marquardt 88.76 89.51
Bayesian regularisation 91.83 90.85




common cardiac disorder. As a result, many efforts have been
made during the last decades for the automated detection of
ischaemia. These efforts were based on rule-based systems [3-
7], artificial neural networks [8-12], fuzzy expert systems
[13,14] or various signal processing techniques [15-19]. In
those works two problems have to be addressed: cardiac beat
classification and ischaemic episode definition. An improper
beat classification procedure will directly affect the accurate
definition of the episode.

Currently, we study an artificial neural network methodology
for the classification of recorded cardiac beats in long duration
ECGs. The obtained results are better than those of other
similar approaches [6,11] in terms of both sensitivity and
specificity. It should be noted that in [11], data from the ESC
ST-T database were also used, but the employed recordings
were not diagnosed beat-by-beat. Each annotated ischaemic
episode in the database was considered to contain only
ischaemic beats and this was used as the golden standard to test
their method. Apparently, this is not a valid assumption, since
ischaemic episodes in several cases contain some normal beats
as well.

Different feed-forward neural networks were trained using
several training algorithms. The ST-T interval was the input to
all the designed networks, but due to its large dimension PCA
was employed to eliminate any redundant features. In every
experiment that was carried out, the cardiac beats were
classified very accurately (high scores were obtained for both
sensitivity and specificity). The task specific database that was
developed played an essential role for the achieved
performance. Similarly, the rejection of artefacts from the
training process assisted in the proper adjustment of the
network weights,

The network’s performance can be further improved. The main
reason for the incorrect beat classification was the wrong
detection of the J point. When this happened, the network’s
input vector contained a shifted ECG interval, other than the
ST-T, and the classification was produced more or less
randomly. In order the J point to be accurately detected, more
sphisticated filtering techniques are needed. Modern ECG
.ecorders acquire less noisy signals than those included in the
ESC ST-T database and consequently the proposed method is
expected to perform better. Also, in order for the described
neural network architecture to be used in clinical practice, the
developed cardiac beat database should be extended and
additional types of ischaemic and normal ECG waveform
patterns should be included.

CONCLUSIONS

We propose a neural network method for cardiac beat
classification that combines a feed-forward network with a
dimension reduction technique (PCA). The network can be used
as part of an ischaemic episode detection algorithm. It was
trained using information extracted from ECG recordings and
mare specifically using data from both the ST segment and the
T wave. The rejection of artefacts in the first stage of the
method is very crucial for the network’s performance. Also, the
task-specific ECG database contributed significantly to the
construction of effective networks. Comparative results with
other proposed techniques, indicate that the presented neural
network approach is superior.
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