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Abstract

The typical approach to classification using mixture models for class
densities assumes that each class density is modeled independently us-
ing only data of the specific class. Consequently, the components of each
mixture are exclusively used to represent the corresponding class data.
Following an alternative approach, in previous work we considered the
problem of class conditional density modeling using mixture models whose
components are shared by all class models. In this paper, we propose an
intermediate mixture modeling formulation that allows for models where
each mixture component is utilized in a subset of the class densities. We
provide an analysis suggesting that in many cases the most efficient clas-
sification model is obtained by appropriately determining the sharing of
components among class densities. In order to discover such a efficient
model, a training method is proposed based on the EM algorithm that au-
tomatically adjusts component sharing and provides solutions with good
classification performance.

Index terms: mixture models, classification, density estimation, EM algo-

rithm, component sharing.

1 Introduction

Class conditional density estimation is the computationally intensive part of
designing a classifier based on statistical theory and Bayes decision theory [3].
In the typical approach, this estimation proceeds by first partitioning the data
set into subsets based on class membership and subsequently computing each
class density using only the data of the corresponding subset [1, 3]. If we restrict
our attention to density estimation methods based on parametric models, the
typical approach assumes that the corresponding class conditional models are
functionally independent in the sense that they do not have common parame-
ters [3]. In [8, 9] we considered the case where the class conditional densities
are modeled using mixtures with common components. Because of the func-

tional analogy of this model with the classical RBF network, we also referred



to this model as the Probabilistic RBF network (PRBF) [8]. Apparently, under
this model assumption, the class densities are functionally dependent since the
component parameters are common.

Consider a classification problem with K classes and a model with total
number of components M. Let ; denote the parameter vector of component j
and # the vector of all mixture component parameters # = (#y,...,8y). The

class conditional densities are given by

M
p(z|Chimr,0) = D minp(lis8;) k=1,...,K, (1)

i=l
where ;. is the mixture coefficient representing the prior probability of com-
ponent j conditioned on the class C;. Also we denote with 7 the vector of all
priors ;) associated with class Cj and with © the vector of all model param-
eters (both priors and component parameters). The priors cannot be negative

and for each k satisfy the constraint

M

Y mam=1 (2)

j=1

This model which will be called the common component model is in contrast
to the typical class conditional density approach, called the separate miztures
maodel, where each component j contributes to the density mixture model of only
one class Ci. The separate mixtures model can be derived as a special case of
the common component model by setting for each component j assigned to
class Cy, the constraint 7;; = 0 for [ # k. In [8, 9] an EM algorithm is presented
for training the common component model.

The basic argument concerning the usefulness of modeling with common
components is that it can be beneficial in cases of highly overlapped classes
since the components can represent simultaneously data of different classes [9].
However, in real world problems, we are not aware of the kind of overlapping
among the classes and by applying the above models we might arrive at unreli-
able data representations from the classification perspective. The main problem
is that, based on the maximum likelihood principle for training, it is possible
to obtain mixture component parameters that simultaneously represent differ-
ently labeled data, even in cases where there exists no significant local overlap
among classes. This may happen because the maximization of the likelihood
typically favors unsupervised solutions. On the other hand, if we had a sufficient



knowledge about a classification problem, we could choose an appropriate mix-
ture modeling scheme where some components would be shared among specific
classes, while some others would be assigned to a single class. In this paper, we
propose an extension of the common component model (1) with the aim to al-
low for the representation of cases where each component is used by a subset of
the class conditional models. We define the corresponding model formulation,
called the Z-model, where Z is an indicator matrix specifying the utilization
of the components from class densities. We provide examples where for fixed
total number of components the maximum likelihood solution exhibiting best
classification performance corresponds to a Z-model for an appropriate selec-
tion of matrix Z. In addition, we show that any Z-model can be considered as
being derived from the common component model (1) by confining the original
parameter space to a suitable subspace defined by constraining some priors to
be zero. In order to find an effective classifier (Z-model) for a predefined num-
ber of mixture components, a learning scheme is proposed that is based on the
maximization of a suitably defined objective function. This objective function
is very similar to log likelihood and an Expectation - Maximization (EM) al-
gorithm [2] has been developed to perform maximization. The proposed EM
algorithm iteratively updates both the component parameters and the priors
as well as the degree of sharing of each component among classes. The method
has been tested on several artificial and real classification data sets with very
promising results,

In Section 2 we present the advantages and drawbacks of modeling using
mixtures with common components from the classification point of view. Sec-
tion 3 describes the generalized mixture modeling formulation (Z-model) and
provides examples illustrating the usefulness of constrained component sharing.
In Section 4 a training algorithm is presented based on the EM procedure that
simultaneously adjusts constraints and parameter values. Experimental results
using several classification data sets are presented in Section 5. Finally Section

6 provides conclusions and directions for future research.

2 Comparison of common and separate mixture mod-
eling

In this section a comparative discussion is provided concerning the advantages

and drawbacks of separate and common mixture modeling. The following two



issues are considered:

s specification of the number of components needed for efficient data rep-

resentation

e specification of cases where component sharing is beneficial and of cases

where sharing leads to inferior classification performance.

In what concerns first issue, in the common component model only the total
number M of components needs to be specified. On the contrary, the applica-
tion of the separate mixtures model requires the specification of a partitioning
M, ..., Mg of the M components among the class mixtures. We consider this
issue as an advantage of common mixture modeling over separate mixtures,
since it is difficult to define an effective partitioning' and this significantly af-
fects the performance of the approach based on separate mixtures.

In what concerns the second of the above issues, it is obvious that in a
common component model some components may represent differently labeled
data, that is a component may contribute to the density estimation of more
than one classes. This is explicitly prohibited in the case of separate mixtures.
Consequently, one may draw the conclusion that the common mixture model
provides a way of reducing the required total number of components. Never-
theless, we have to examine if component sharing is also beneficial from the
classification perspective. It will be shown that there are cases where compo-
nent sharing can be meaningful, while in some others the resulting classifier
generalizes poorly.

To illustrate the two opposite cases, we describe two examples of classifi-
cation problems with two classes whose data are displayed in Fig. 1 and 2
respectively. In the first example (Fig. 1), the first class data form two clus-
ters, while the second class data form a cluster which significantly overlaps with
one of the first class clusters. In this case, the common component model with
two components can represent quite adequately both classes® (Fig. 1a). For the
same example, the separate mixtures model requires three components (two for
the first class model and one for the second) to provide a similar representation
and, obviously, the use of only two components (one for each class) leads to

poor representation (Fig. 1b).

Tn the absence of any prior information, the components are distributed equally among
the classes.

2In both examples the solutions illustrated in figures are maximum likelihood estimates
using Gaussian mixture components.



The second example (Fig. 2) is analogous to the previous one, with the
difference that the degree of overlap of the differently labeled clusters has been
significantly reduced (slight overlap). The commeon component model (with
two components) provides a solution with one of the components placed at
the decision boundary (Fig. 2a). Therefore, the corresponding classifier ex-
hibits increased classification error. On the other hand, the employment of the
separate mixtures model (with one component per class) provides a solution
which, although not so adequate from the density estimation perspective, it
approximates the true decision boundary quite sufficiently.

The possibility that a commeon mixture model may place one component at
the decision boundary can be explained if we elaborate on the conditions that
hold at the stationary points (local maxima) of the log likelihood with respect
to component parameters. Suppose that any available information about the
classification problem is expressed through a training set X of known data.
The original data set X can be partitioned into K disjoint subsets X, & =
1,..., K each one containing only the data of the corresponding class Cy. If we
assume that the points of each subset X} are independently drawn from density
plz|Cy; 7y, #), then the log likelihood of X is

¥ K
L(®)=logP(X|8) =) Y logp(z|Ci;mk,8) = 3 L(mi,8),  (3)
k=1zeX, k=1

where Ly, is the class log likelihood corresponding to subset X, At a stationary
point © of L, for each component parameters 8; holds

K
S P(jlz, Cr; 7, 8) Ve, log p(z]j; 8;) = 0, (4)

k=1zeX,
and for each prior m;
" 1 2 w
ik = -l-'}?_ Z P[}lI,Gk}ﬂk,Ej- {5}
Pre Xy

In the above equations P(j|z, Cy; 7k, #) denotes the posterior probability that a
data point z, belonging to class Cj,, has been generated from mixture component
j and is given from Bayes' theorem
: Tikp(|7; ;)
P(jla, C; Tk, 8) = =3 R (6)
YLy wap(li; 6;)

Based on equation (4) two types of solutions can be identified concerning the

parameters of component j. The first type, called type I solution, concerns



solutions E} which are stationary points for every class log likelihood Ly, ie.
they satisfy the following equation for each k:
Y. P(jlz,Ci: v, ) Vo, log p(xl5:6;) = 0. (7
X
This type of solution is obtained either in the case where the component is
located in a region with high overlap among classes or in the case where a
component is placed at a region containing data of a single class only. The
second type of solutions, called type 2, refers to those satisfying equation (4)
without satisfying equation (7) for each k.

The previous definitions described in the context of the common component
model are also valid in the case of any class density estimation method using
mixture models as described in the following definition.

Assume that each class density is modeled using a mixture p(z|Cj., 7. O1),
where &, denotes the parameters of the mixture components utilized in the
density model of class C.. A stationary point © of the log likelihood (defined
similarly to (3)) will be called type I solution, if for each k the parameter vector
8y is a stationary point of the class log likelihood L. Otherwise © will be called
type 2 solution.

Obviously, the separate mixtures model always provides type 1 solutions,
since in this case the maximization of the log likelihood can be decomposed into
K independent maximizations of the class log likelihoods.

Considering again the examples presented above, we observe that in the
first example the commeon component model (Fig. 1a) provides a solution that
is approximately type 1. In the second example (Fig. 2a) the solution is not
type 1 since the component on the right side of the figure is located at the
region with slight class overlap and therefore it does not satisfy the stationary
condition for each class log likelihood. In addition, in the first example where
both approaches give type 1 solutions, the best method which is the common
component model also corresponds to higher log likelihood value.

Based on the above observations and assuming fixed total number of com-

ponents the following two conclusions can be intuitively drawn:

o type 2 solutions do not correspond to effective component placement from

the classification point of view

e the solutions of type 1 which should be considered superior from the
classification perspective are those with higher likelihood wvalue.
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Figure 1: An example problem where the common component model leads to
better classification. The data of each class was drawn according to p(z|C}) =
0.5N([1 1]7,0.08) + 0.5N([2.9 1]7,0.08) and p(z|C3) = N([3 1]¥,0.08), while
the prior class probabilities were P{Cy) = 0.7 and P(C3) = 0.3. Note that
since the clusters are spherical Gaussians we use the notation N (u,o?), where
p is the mean vector and ¢? the common variance value. Two data sets were
generated one for training and one for testing. The common component model
(a) provided generalization error 27% and log likelihood value L = —238.62.
The corresponding generalization error and log likelihood value of the separate
mixtures model (b) were 32.2% and L = —465.97.

Finally if a problem contains regions with high class overlap and also re-
gions with slight class overlap the most efficient model is the one where some
components would be common and while some others will represent data of

only one class. This type of model is presented in the next section.

3 Class mixture densities with constrained compo-
nent sharing

The class conditional density model (1) can be extended by allowing only a
subset of the total mixture components M to be used by each class conditional

model. In order to formulate this model, we introduce an M x K matrix Z of
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Figure 2. An example problem where the separate mixtures model leads to
better classification. The data of each class was drawn according to p(z|Cy) =
0.5N([1 1]7,0.08) + 0.5N([3 1]7,0.08) and p(z|C;) = N([3.8 1]T,0.08), while
the prior class probabilities were P(C1) = 0.7 and P(C3) = 0.3. Two data sets
were generated one for training and one for testing. The common mixture model
(a) provided generalization error 26.1% and log likelihood value L = —326.23.
The corresponding generalization error and log likelihood value of the separate
mixtures model (b) were 7% and L = —489.18.



indicator variables z;; defined as follows:

(8)

1 if component j contributes to the density model of class C}
ik = { 0 otherwise
In order to avoid situations where some mixture components are not used by any
class density model or a class density contains no components, we assume that
everv line and column of a valid Z matrix contains at least one unit element.
A way to introduce the constraints zj; to model (1) is by imposing prior-
constraints, ie. by setting the prior m; constantly equal to zero in the case
where z;; = 0. In such a case, the conditional density of a class Cj can still
be considered that it is described by (1), but with the original parameter space
confined to a subspace specified by the prior-constraints indicated by the Z

matrix, that is

M
p(2|Cr; 2k, 7k, 8) = Y mrp(2lfs 6;) = Y minp(xls; 6;), (9)
j=1 Fize=1
where z;, denotes the k** column of Z and {j : z;; = 1} denotes the set of values
of j for which z; = 1. Equation (2) for the priors 7;; remains valid, however
what actually holds for each k is
> mE=1 (10)
Jizge=1
It is obvious that the common component model is a special Z-model with
z;; = 1 for all j, k, while the separate mixtures model is a special Z-model with
exactly one unit element in each row of the Z matrix.
Consider now a training set X as defined in Section 2. If we assume that the
data of each subset X are independently drawn according to p(z|Cx; 2k, Tk, 9),
the likelihood of the data set X can be defined as

K
P(X|©) =] II p(«|Cx;zx.m,6), (11)
k=1reX,

It must also be noted that in this formulation the matrix Z is specified in
advance and remains fixed, ie. the elements z;; do not constitute adjustable
parameters. According to the maximum likelihood principle we wish to find
the parameter values which maximize the above function or equivalently its
logarithm:

K
BB 5 T i il (R0 (12)
k=1xel,



Training a Z-model can be performed using the EM algorithm in a manner
analogous to case of the common component model [9]. Details and update
equations are provided in Appendix A.

In a manner analogous to the previous section, it can be shown that the
necessary condition for the component parameters #; at stationary points of
the log likelihood is

Y 3 Plile, Cr; 2k, k. 6) Ve, log p(z|j; 6;) = 0 (13)
kizj=1 € X}
and for the priors my; is
g = ﬁ S Pjle, Chi 2t 7k, ), (14)
TeXy
where (13) holds for every j, while (14) for every j and & such that z;, = 1.
Also the posterior P(j|z, Ck; zx, 7k, f) is given similarly to (6) by
mp(alji0)
iz, =1 TikP(z|4; 8;)
For the stationary points of a Z-model the following proposition holds.

P(jlz, Ck; 2k, i, 8) =

(15)

Proposition 1. FEvery stationary point e of the log likelihood (12) of a Z-
model (for arbitrary Z ) is also a stationary peint of the log likelihood (3) of the

commaon component model with the same total number of components.

Proof: A parameter vector value is stationary point of the common component
log likelihood (3), if condition (4) holds for j = 1,..., M and condition (5) holds
foreach =1,.... Mand k=1,... . K.

Since © is stationary point of a Z-model, equation (13) holds for every j.
For all k : zjz = 1 and = € X} holds P(j|z,Cy; 2, 7. 8) = P(j|z, Ci: 7%, 8)
according to (6), (9) and (15), so (13) can be written as

> X Pljle. Cyi i, 6)Ve, logp(zlj; 65) = 0. (16)
k:zjp=1z€Xp
Moreover, since for all k such that z;; = 0 it holds that 7;; = 0, any associated
posterior probability P(j|z, Cy: . 8) will also be zero due to (6)). Therefore
it holds that 3., —o sex, Plilz, Ck; #ie, 8) Vo, log p(z]5;6;) = 0, so (16) can
be written
> Y Pile, Ciifx, 6)V, logp(als; b;) + (17)
krzie=11EX;

> Y P(jlz, Cyi iy, 6)Vs, log p(z|j; ;) = 0,
kizpe=0zEX;

10
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K

> 3 P(jla, Cki#e, 6) Vg, log p(z]j; 6) = 0, (18)

k=1zcX,
which is essentially the condition (4) and holds for any j. In what concerns the
priors, condition (5) holds for all #;; with zjz = 1. Obviously, condition (5)
also holds for any prior with z;; = 0 since in such a case both sides are equal
to zero (as shown previously all associated posteriors P(j|x, Ci; Tk, §) are equal
to zero). 11

According to the discussion of Section 2 the Z-models which could provide
with efficient classifiers are those that can approximately provide type 1 solu-
tions with high log likelihood value. Finally, in order to demonstrate that an
appropriate Z-model can provide with better classification performance com-
pared to common components and separate mixtures we present an illustrative
artificial example (Fig. 3).

This example problem is actually a combination of the problems presented
in Section 2. The first class data form three clusters, while the second class
data form two clusters. The problem is constructed in such a way that there
exists a pair of differently labeled clusters with significant overlap and a pair
with slight overlap. We assume that the total number of components is three.

The solution found by the common component model (Fig. 3a) represents
sufficiently the region with high class overlap and insufficiently the region with
slight class overlap (places a component at the decision boundary). In what
concerns the separate mixtures models two possibilities exist: i) using two com-
ponents for the first class density and one for the second class (Fig. 3b) and ii)
using one component for the first class density and two for the second class(Fig.
3c). The best classification model is provided by a Z-model with one compo-
nent common to both classes and the remaining two components allocated one

component per class (Fig. 3d).

4 A method that selects a Z-model

From the above discussion it is clear that the problem we have to overcome
is related with the identification of the modeling case (Z matrix) which for
fixed number of components provides good generalization performance. One
approach is to exhaustively explore the binary space of z;. variables: for each

specification of Z, construct the appropriate classification model using the EM

11



(a) Common component model (b) Separate mixtures: case 1
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(d) Cne component comman and two separate

Figure 3: An example problem where an appropriate Z-model model leads to
better classification. The data of each class was drawn according to p(z|C}) =
0.33N([2.3 1)7,0.08) 4+ 0.33N([4 1]7,0.08) + 0.33N([7 1]7,0.08) and p(z|Cs) =
0.5N([1.5 1]7,0.08) +0.5N([7 1]7,0.08), while the prior class probabilities were
P(C;) = P(C3) = 0.5. Two data sets were generated one for training and
one for testing and for each model we found the maximum likelihood estimate.
The generalization error e and the final log likelihood value L computed for
the four models are: a) Common components: e = 33.33% and L = —1754.51
b) Separate mixtures (two components for C; and one for Ch): e = 24.33%
L = —2683.25, ¢) Separate mixtures (one component for € and two for Cy):
e = 34% and L = —3748.42 and d) One component common and the other two
separate (one per class): e = 21.67% and L = —1822.53.

12



algorithm, and rank each model (using for example, cross-validation) to select
the best one.

However, it is computationally intractable to investigate all possible Z-
models in the case of large values of M and K. In addition, this search approach
also suffers from a practical drawback concerning component parameter initial-
ization: if a mixture component is chosen to be common for some models,
then it is reasonable that, at the start point of the EM training algorithm, this
component should be placed at the region where class overlap occurs. This is
not trivial since in general we are not aware of the type of overlapping among
classes.

To deal with these problems, we have developed a computationally effi-
cient training method that simultaneously adjusts both the model specification
(model constraints) and the model parameters. To achieve this we relied on the
consideration that the z;; values actually constrain the parameter vector © to
lie on a corresponding subspace of the broader parameter space corresponding
to zjz = 1 for all j, k. Therefore, we can develop a training method that ini-
tially assumes that the class conditional densities follow the broad model (1)
and iteratively adjusts the constraints in the course of training to progressively
define a subspace containing efficient solutions from the classification perspec-
tive. As noted in the previous sections, the basic guideline to obtain a good
classification model is that a mixture component must not represent data from
different classes unless it is placed at a region with significant class overlap. Our
method attempts to make the training competitive between the class density
models concerning component allocation. This can solve the problem related
to common component in cases of slight overlap.

In order to define a training method that automatically adjusts the con-
straints during training, we define the constraint parameters rj, where 0 <
it < 1 and for each j satisfy:

[>]

r=1. (19)
k=1

The role of each parameter ry; is analogous to zj: they specify the degree
at which the kernel j is allowed to be used for modeling class Cj, that is to
represent data of this class.

The rj; parameters are used to define the following functions which are

13



analogous to class conditional density models®.

M
@(x; Ck, Tk, T, 8) = er,,-wjkptzu;eﬂ k=1,...,K. (20)
j=
Equation (20) is an extension of (1) with special constraint parameters rjj
incorporated in the linear sum. As it will become clear later, the parameters
T;1 express the competition between classes concerning the allocation of each
mixture component j.
The values of the priors ;; satisfy by definition
M
S mik=1 andif rj =0 then 7 =0, (21)
j=1
for each k. Therefore for every class C}. there must be at least one r;;, > 0. Thus,
we exclude the case where a function ¢ and, consequently, the corresponding
class conditional density is zero.

The functions ¢ in general do not constitute densities with respect to x
due to the fact that [ ¢(z; Ck, Tk, 7k, #)dz < 1, unless the constraints ry; are
assigned zero-one values? in which case they coincide with z;; constraints. How-
ever, it generally holds that ¢(z; Ci, 7%, 71, #) = 0 and [ ¢(z; Ck, 1, 7k, 0)dz >
0 which is due to (21).

In order to exploit the ¢ functions for learning the model parameters (&,r)
(where r is the vector of all r;;) it is necessary to treat them as if they were
class conditional probability densities. In this spirit, we introduce an objective
function analogous to the log likelihood function as follows:

¥

L©,r) =Y > loge(z; Cy,ri, Tk, 6), (22)
k=1zeX;

Through the maximization of the above function we adjust the values of the
r; variables (actually the degree of component sharing) and this automatically
influences the solution for the class density models parameter vector ©.

The EM algorithm [2] can be used for maximizing the objective function
(22). Although the EM algorithm is employed for log likelihood or log posterior

maximization, the fact that our objective function in its general form does

*These functions do not represent the class density models to be constructed, but are used
in order to find suitable parameters for the actual class density models (which are given by
(1)).

In this special case each function (z; Ck, Tk, 7, 0) is identical to the corresponding
ple|Cr; me. 8).

14



not correspond to any of the above cases does not constitute a problem. In
Appendix C it is shown that the basic EM property concerning the guaranteed
monotone increase of the objective function still holds for the objective function
L{®,r).

The @ function evaluated at the E-step of the t + 1 EM iteration is:

K M

Q(0,r;09 r®) =3 3 3" &(z; Ci, v, 7, 09) log{rimxp(zli: 65)},
k=1zeX; j=1
(23)
where :
TPl By
®,(: G i w1, ) = et 050) 29

M ramap(zli; 6;)
The algorithm at the M-step maximizes the above function with respect the
parameter vector (©,r). In Appendix B we present how the Q function (23) is
derived and also the EM update equations for the case of Gaussian components.
At this point it would be useful to write the update equations (provided
in Appendix B) for the priors 7 and the constraints rj; in order to provide
insight on the way the algorithm operates:

) = Z &;(z; Cr,,r) 2 6, (25)

TEXJ;

for each prior parameter m;; and

LD _ 2zex; i@ Cr, rit) 78 g0)
Jk Elh;l EIEXI_ @J{m; C-” I‘::t}, Wl;ﬂfﬂ{!‘}},

for each constraint ;5. Using the equation (25), equation (26) can be written

(26)

a5
{l+l:||X |

t+1
Ty Xl
The above equation illustrates how the rj; variables are adjusted at each EM

(t+1) _
Tjk

(27)

iteration with respect to the newly estimated prior values mj;. If we assume
that the classes have nearly the same number of available training points, then
during training each class Cj, is constrained to use a component j to a degree
specified by the ratio of the corresponding prior value 7 over the sum of the
rest of the priors associated with the same component j. In this way, the more
a component j contributes to density of class C ie., the higher the value of 7,
the greater the new value of r;;, which causes in the next iteration the value of
;& to become even higher (due to (25) and (24)) and so on. This explains how

15



the competition among classes for component allocation is realized through the
adjustment of the constraints rj. According to this competition it is less likely
for a component to be placed at some decision boundary since in such a case
the class with more data in this region will attract the component towards its
side. On the other hand, the method does not seem to significantly influence
the advantage of the common component model in highly overlapped regions
This can be explained from equation (24). In a region with high class overlap
represented by a component j, the density p(z|j;8;) will essentially provide
high values for data of all involved classes. Therefore, despite the fact that the
constraint parameters might be higher for some classes, the ®; value (24) will
still be high for data of all involved classes.

The EM algorithm performs iterations until convergence to some locally
optimal parameter point (8% 7). Then we use the r}, values for Z-model
selection, ie., to specify the 20 values. A sensible choice is the following

dim] § et )
The above specification of matrix Z* is based on the argument that if T =4
the component j contributes to modeling of class C) (since 7 > 0) and,
consequently, j must be incorporated in the mixture model representing Cy,
the opposite holding when i = 0. Once the Z*-model has been specified the
EM algorithm is run until convergence starting from parameter vector ©* to
provide a finer tuning of the model parameters and provide the final parameter
vector O that will be used for estimating the class densities using equation (1).

The above method was applied to the problem described in Section 3 (Fig.
3). The obtained solution ©; was exactly the one presented in Fig. 3d, where
an appropriate selection for the Z-model was made. Remarkably, we found
that |©; — ©*| = 0.03 with the only difference being in the values of the prior

parameters of the component representing the highly overlapped region®.

4.1 Models with fixed » constraints

A special case of the algorithm presented above is obtained when the constraints

T;i are appropriately specified at the beginning and then remain fixed, ie. they

*We observed that in many problems By is very close to 87, which means that maximizing
(22} we provide a solution that is approximately a local maximum of (3). The essential
condition for @y = 8" is that the parameters r}, should have zero-one values. In such a case
the obtained model corresponds to a separate mixtures model where the components have
been dynamically partitioned among classes using the proposed training algorithm.

16



are not updated at each EM iteration. Such a model, called r-model can be
considered analogous to the Z-model, where the Z matrix remains fixed dur-
ing training. The distinction lies in the different assumptions imposed for the
z;x and rj, constraints. For example any separate mixtures model with M
total number of components can be described as special case of an r-model by
properly defining the constraints r;,, which in this case will obtain zero-one
values.

Another model that results as a interesting special case of an r-model is the
APRBF model presented in [9]. Assume that the M available components are
partitioned into K disjoint sets (groups) Ty, k =1, ..., K, with each group T}
corresponding to class Cj and |Ty|+ ...+ |Tx| = M. The degree of component
sharing is regulated by a parameter A € [0, 1] in the following sense: we consider
that the conditional density of class Cj utilizes fully the components of the
group T}, while the rest of the components are used at some degree A. It must
be noted that the parameter ) is specified in advance and remains fixed during
EM training.

The APRBF model can be considered as a special r-model obtained by

specifying the constraints r as follows:
1 .
= JET;
A = I)\R‘ n J (29)
e J €Tk

where with the expression j € T} we consider all components of the set Ui Do

Under this assumption the objective function (22) takes the form

K
LO;2) =" 3 logp(z;Ci, A, 7k, 8) — | X|log{1 + A(K - 1)}, (30)
k=1zeX,
where
P(|Cry A i, 8) = D mp(xlii 65) + X Y mikplals; 65)- (31)

JeT: 7T
Since A is fixed, the maximization of (30) concerns only the first term of the
sum. The above equations describe the APRBF model (31) and the objective
function (30) maximized using an EM procedure [9].
It must be also noted that if A = 0, (22) is a log likelihood corresponding to
a separate mixtures model (the mixture density of class Cj, uses the components
of group Tj). If A =1, (22) corresponds to (3), that is to the log likelihood of

the common mixture model.
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The APRBF model and training method is described in detail in [9] where
an EM algorithm was derived for adjusting the model parameters 8. In order
to overcome the problem of appropriately specifying the value A, an averaging
approach was proposed over models obtained for different A. It is obvious
that method for Z*-model selection presented in this work is more general
and overcomes the problem of constraint specification through the update of

constraints r;; at each EM iteration.

5 Experimental results

To assess the performance of the proposed method for Z-model selection, we
have conducted a series of experiment using Gaussian components and compare
the common component model, the separate mixtures model and the Z*-model.
We tested several well-known classification data sets and also varied the total
number of components. Some of the examined data sets (for example the Clouds
data set) exhibit regions with significant class overlap, some other data sets con-
tain regions with small class overlap, while the rest of them contain regions of
both types. Following the discussion in sections 2 and 3, if the number of com-
ponents is sufficient for data representation, then in the first type of problems
the common component model is expected to provide better classification re-
sults, in the second type the separate mixtures model, while in the last case the
Z*-model is expected to behave better. In addition, due to its capability for
adaptation to particular problem characteristics, the Z*-model is expected to
provide very good performance (either best or close to the best) for all types of
problems.

We considered five well-known data sets namely the Clouds, Satimage and
Phoneme from the ELENA database [4] and the Pima Indians and Ionosphere
from the UCI repository [11]. For each dataset, number of components and
model type, we employed the 5-fold cross-validation method in order to obtain
an estimate of the generalization error. In the case of separate mixtures we
considered an equal number of components used for the density model of each
class. Also each Z"-model was created starting from the same value for all
constraints rjz = 1/K. The use of EM procedures for the construction of all
models resulted in training algorithms that are very fast and easy to implement.

Tables 1-5 display performance results (average generalization error and

its standard deviation using 5-fold cross-validation) for the five data sets and
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| 4 components | 6 components | 8 components | 10 components
error std error | std error std €rror std
Z*-model 18.82 | 494 | 124 | 093 | 1142 | 0.51 | 1082 | 0.85
Common components | 13.06 | 0.8 |11.12 | 084 |11.32 | 0.89 | 10.42 | 0.89
Separate mixtures 2424 | 2.03 | 2044 | 445 | 11.86 | 085 | 11.36 | 0.98

Table 1: Generalization error for the Clouds data set

12 components | 18 components | 24 components
error std erTor std | error std
Z*-model 12.33 0.5 11.4 0.74 | 11.1 0.75
Common Components | 13.23 | 0.56 12.28 | 0.79 | 1152 | 0.75
Separate mixtures 12.05 | 053 |11.21 | 0.75 | 10,98 | 071

Table 2: Generalization error for the Satimage data set

10 components | 12 components | 14 components
error std error std error std
Z*-model 17.96 1.14 17.07 1.01 15.85 1.19
Common components | 2062 | 0.75 | 20.03 | 0.75 | 2098 | 1.04
Separate mixtures 17.85 1.4 17.37 | 0.75 16.88 | 1.15

Table 3: Generalization error for the Phoneme data set

10 components | 12 components | 14 components
error std erTor std error std
Z*-model 27.08 2.6 26.92 3.26 25.94 227
Common components | 2095 | 3.06 | 2812 | 221 28.25 1.87
Separate mixtures | 26.69 | 3.58 | 26.43 | 1.34 | 27.08 | 2.22

Table 4: Generalization error for the Pima Indians data set.

§ components | 10 components | 12 components
error | std | error std Error std
| Z*-model 11.11 | 23 | 8.55 2.4 9,13 3.92
Common component | 1511 | 3.85 | 9.41 3.35 9.27 3.21
| Separate mixtures | 11.82 | 1.89 | 1224 | 3.77 0.39 3

Table 5: Generalization error for the Ionosphere data set
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several choices on the total number of components. The experimental results

clearly indicate that:

e Depending on the geometry of the data set and the number of available
components either the common component model or the separate mix-

tures model may outperform one another.

e In all data sets the Z*-model] either outperforms the other models or
exhibits performance that is very close to the performance of the best
model. It must be noted that there were no case with the performance
of the Z*-model being inferior to both other models. This illustrates the
capability of the proposed model and training algorithm to adapt to the
geometry of each problem and efficiently utilize the available components

to provide efficient classification systems.

It must also be noted that in all cases the solutions corresponding to the Z*-
mode] were approximately type 1 solutions of high likelihood. This fact con-
stitutes an experimental validation of arguments presented in sections 2 and 3

concerning the quality of a solution from the classification perspective.

6 Conclusions and Future Research

We have generalized the idea of modeling class conditional densities by mixtures
with common components [8, 9] relaxing the assumption that each component
is used by all class density models. We focus on the objective of constructing
effective classifiers through class density modeling An analysis was presented in
Section 2 illustrating the comparative advantages and drawbacks of the com-
mon component and separate mixtures models and general criteria were speci-
fied concerning the preferable type of solutions from the classification point of
view. In this spirit, the Z-model model formalism was introduced to express
constraints on component sharing and an EM algorithm was presented to train
a Z-model.

We also described a training method to create an efficient Z-model called
Z*-model. This is achieved through the introduction and adjustment of the
constraint variables rj; expressing the degree to which a component j is al-
lowed to contribute to the model of class Ci. An EM algorithm was developed
to simultaneously adjust both the constraint values and the component param-

eters. Experimental results using several well-known data sets indicate that the
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proposed method for Z*-model construction provides efficient solutions and is
able to adjust component utilization among classes according to the geometry
of the data set.

In what concerns future research, one direction is the development of alter-
native methods for Z-model specification using global optimization techniques
tailored to the specific problem. Another research direction is the use of the
Bayesian approach for model selection and training. This can be achieved
through the introduction of a model prior P(®) expressing the preference to-
wards a model solution based on the specifications discussed in Section 2. Fi-
nally it is also possible to examine techniques based on the combination (for
example averaging) of multiple Z-models obtained for appropriately selected

values of Z,
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APPENDICES
Appendix A: EM algorithm for a Z-model. We first derive the update
equations of the EM algorithm for a Z-model where the Z matrix is considered
fixed.

To define the set of latent variables, we observe that for each class Cl. the set
of components used by the corresponding class density model is Sy = {j : zjp =
1}. Hence, for each data point z of class C) we define the |S;|-dimensional
latent vector w(z) which indicates the component that generated = (w;{x) =1
if component j generated x and w;(z) = 0, i # j)). The complete data log
likelihood is

K

Le(@) =) > 3 wj(z)log{mup(zls:6;)}. (32)

k=11cX; j.'zJ-k=1

The EM algorithm at the ¢ + 1 iteration uses the expectation of Lo(©) which

is given by

K
QO:0M) =33 > P(jle,Ci;ze,my, 69) log{mup(ilz:6;)}, (33)
k=1zeX) j:zjp=1
where we have replace w;(z) by its expected value P(j|z, Ck; 2k, i’l’EJ , 8% (from

equation (15)). The @ function can be written as
Q(0;0Y) = Qy(m;8l1) + Q.(8;01), (34)

where 7 denotes all priors parameters and

K
QmeM) =33 3 P(jle,Crize, 7y, 0 logm,  (35)

k=1lxeXy jizip=1

K
Q8,0 =" 3" 3 P(jlz, Chszr.my”, 69) log p(zl5:6;).  (36)

k=1zeX; jir=1

The two terms above can be maximized separately since they do not contain
common parameters. If we assume that the mixture components are Gaussians

of the general form

. 1 1 e
plxliipg, X5) = W&'{P {—E(fﬂ — ) E = - .“rj)} , (37)
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then the maximization of Q;(#;©™) (taking the derivatives and setting them

equal to zero) leads to the following update equations

D) _ Thinpem1 acx, PUlz, Chi 2wy, 60z
) Zk:zj:;=1 Z:::El'k Plilz, Gi; Ek,ﬁit},ﬁ](ﬂ]

; (38)

3 f
wlt+1) _ Zk;zikzl Lzex, Plile, Ck; Zkﬁ-'it}rﬁ'ml'w = #;LH]}{-T = #;H]}T
’ Dkirip=1 2ze Xy L2 Gk:zk:-’ri-ﬂ?‘e[t}j

3

(39)
forj=1,..., M.
In order to maximize Q3(m; ©'Y) we must take into account the constraints
(10), thus we introduce K Lagrange multipliers Ay and the quantity to be
maximized takes the form

K
Qo(m;0W) = Qo(m O =Y N | Y mp—1]. (40)
ke=] Jizje=1
Now, taking derivatives and setting them to zero we finally obtain
wiD = 2= ¥ Ple, G zinf?, 60), (41)
| kl TEX,

for all j and k such that z;; = 1.

Appendix B: EM algorithm for Z*-model selection. First the @ function
computed at the E-step of the EM algorithm is derived. The objective function
to be maximized is

K M
L(©,r) =log P(X;0,r) =log [] I 3 rixmiup(zls; 6;) (42)

k=1z€X} j=1
As noted in Section 4, since P(X;©,r) does not correspond to probability
density (with respect to X), the objective function can be considered as the
'incomplete data log likelihood’ in a broad sense. For each data point x € X
we consider the latent variable y(z) € {1,..., M} which indicates the mixture
component which generated x. The whole vector of latent variables is denoted
by Y = (y(z'),...,y(z")). Using the latent variable information, the ‘complete
data log likelihood® function is defined as follows

K
Le(©,r) = log P{X 1% E‘J'_.T} = log H H {fry(:c]kﬂy{x}kp(:rly{mj; Ey{z':l}} (43}

k=1zeX,
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It can be shown that for the functions P(X;©,r) and P(X,Y;©,r) the follow-
ing relation holds
PiX:Bri=3 PIXY a7 (44)

where the sum is over all possible values of the vector V. In addition, we define

the function
P(X,Y:0,r)

PX;6.r) '
which is the probability density of the latent variables Y conditioned on observed
data X and the parameters © (since ¥y P(Y; X,.0,r) = 1 due to (44)). Now,
using (42), (43) and (24) P(Y; X,©,r) can also be written as

P(Y;X,8,r) = (45)

K

K
Pyiz)k T {z}lkp{xly{z};gyl:r]}
PlY:X.60,r)= ylzdk "y - e ®., oy (x; Cky Tk, Tk, B).
Ergk ¥t rixmiep(alf; 6;) ;};Ilrg,, v

(46)
Assume now that the algorithm is at iteration ¢+ 1 and the current parameter
vector is (@), r{1), Then we define the function @ that is the expectation of
log P(X,Y;©,r) with respect to the probability density P(Y; X, @ 1)

Q(e,r;0W,rly = Y log{P(X,Y;0,r)} P(Y; X,00 r®) (47)
¥
and using (46)

Q(8.7:6,r) = 3 log(P(X. Y;0:7) DL T @y Cor®, 9,60,

k=1xeX,
(48)
Substituting for log P(X,Y;©,r) according to (43) we find
Q(e,r; 0, r'*) = (49)
K
Z{Z 3 log{rya Ty kP (ly(z), byiz)) }H TT ®y00)(x: G, r®, 22, 69
Y \k=lzed, i=1zcX;
and using the Kronecker delta symbol
Q(e,r; e, s = (50)
K M 9
Z Z Z Z jylz) lﬂg{rjk"l'}kp{i‘lj 5' }} H ]___[ ‘I,y{z}(:r G, T I: Hlt}J
Y Lk=1zeX;i=1 =lzeX;

Using the fact that Z;;'il ®;(x; Ck, v, i, 8) = 1 equation (50) takes the final
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form®

K M
Q0,700 r®) =5 5 3" &;(z; Cp, v, 7, 69) log {rjumsnp(zli; 6;)}-
k=1zeX; i=1
(51)

In Appendix C it is shown that an EM procedure which at the E-step of each
iteration computes function ) and at the M-step maximizes () with respect to
© and r, guarantees the monotone increase of the objective function L(9,r).
Next, we derive analytical solutions for the maximization step of the algorithm.

The function @ (51) can be written as the sum of three terms
Q0,70 r1) = Qi(r;0) + @2(m;0Y) + Qs(6;0),  (52)

where, in analogy with Appendix A, the only adjustable parameters in Q; (r; ©*))
are the constraints r, in Q(m; ©)) the priors parameters and in Qs(#; @) the
mixture component parameters. Obviously each term can be maximized inde-
pendently. Assuming Gaussian components the terms Q;(¢; ©¥)) and Qq(m; ©11)
can be maximized in a way similar to that described in Appendix A and we

finally obtain for each component j

(t+1) _ B 2zex, Pilz; Ch, r[t}_ -'~I]1 6z

= ; (33)
T DK Seex B G, 10, 00))
El:.H_l:, _ Ef:l zzexk -(x‘C';;, (3}1 (t) E{t}]{z - “:EE-'-I:IJEI _ ﬁngljjT [54}
) ZL IZIEXI; & {.‘I.‘ Cy,r -.t}‘. E]13{t}}
(1) ¢ ) T 5
i IX | Z (s Ck,?"}:},rk O k=1,...,K. (55)

Xy
To maximize the term Q3(r;©®) we introduce M Lagrange multipliers A; (in
order to ensure that the condition (19) is satisfied) and the quantity to be

maximized is
) M K
Qalr: eft}j = Qs(r; e(ﬂ] _ Z by (Z ik — 1) ; (56)
i=l1 k=1

Taking the derivatives equal to zero and after performing some algebra we

finally find the following update equation

{:+1j EI,:XE @ ;(x; Ck,?"l::t}?'ﬁi::l!,g{t}}
‘?k Zz*—-l E:EX, ($;C£1T£L}.W§L},E(:}:|1

 An analogous derivation for mixtures models is described in [1], pp. 68-72.

(57)
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where j=1,...,. Mand k=1,....K.

Appendix C: Proof that the EM algorithm described in Section 4
increases monotically the objective function. We give a simple proof
that the EM algorithm described in Section 4 guarantees the increase of the
objective function (22) at each iteration until a local maximum is reached. If
we multiply and divide the argument of the logarithm in equation (47) with
P(X;0,r), the ¢ computed at the E-step is written as

P(X,Y;8,r)P(X;0,r)
P(X;0,r)

Q(O.r: 8(!)1 r(!:'j = Z]Dg { } P{Y‘1 X B(aj_. ?,.l::‘]}_
¥

(58)
By splitting the logarithm and using (45) we have
Q(8,r;01,r) = Y 10g{P(X;0,r)}P(Y; X, 0,7+ log{P(Y; X,0,r)}P(Y; X,0 rt)),
Y Y
(59)
Subsequently, using (42) and the fact that 3" P(Y; X, ©,r) = 1 we obtain

Q(®,70W rM) = L(0,r) + ¥ log{P(Y; X,0,7)}P(Y; X,00 +1). (60)
¥

Suppose now that at the M-step of the algorithm we find a parameter vec-
tor (e{!+1]1 .r{t+1]} such that QI{E}":H]':', j,.[t+1}; e[t}.~ r.{t]) > Q(e(£j1 T(tj; @it} : ]..{t}L
(this assumption concerns the most general case of GEM [6]). Then we can write
that

L{Eﬂ“*’lj', rlt+_ Lo T(!I':H_Z log

{ PI:Y; X e,{Hlj_. ,I,,.I:Hlj}
Y

- (t) L[t
P(Y; X, 00 rt) }P{RX?B ,rEY >0

(61)
The sum in the above equation cannot be positive according to the well-known
Jensen's inequality (see [1], page 66). Thus, we find that L{@U+1 rlt+1)) >
L(et i),
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