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ABSTRACT

A generalized modular Preisach model able to adjust to different systems with hysteresis
is presented. The identification schema accompanving it is using data from a major
hysteresis curve and a least-squares fitting procedure for the parameters of the
characteristic density. In a hysteresis model following the Preisach formalism, the output
sequence, f(7), is obtained by integrating the characteristic probability density function,

,-:!{m ,3], of the elementary hysteresis operators, v, operating on the input sequence

u(z) over the Preisach plane. The operator can be chosen from a selection of scalar or
vector ones. Once the operator is chosen and the Preisach plane adjusted accordingly, the
parameters of characteristic density are determined through a least-squares procedure
minimizing the error between the experimental major curve and the calculated one.
Results using two different operators and a comparison with experimental hysteresis data
on two different magnetic samples and a shape memory alloy sample, involving both
major and minor curves, are presented.
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1. INTRODUCTION

Hysteresis is a phenomenon encountered in several natural, mechanical, engineering, and
socioeconomical systems. The causes differ from system to system: they depend on the
components and structure of the system and the laws governing their behavior and
interaction. The effect however is common in all of them: the output is delayed with
respect to the input. This common phenomenological behavior of hysteretical systems has
been the motivation behind this work that aims to developing a general model of
hysteresis capable to adjust and be identified for various systems.

The vehicle for this is the Preisach formalism [1], a scalar model of ferromagnetic
hysteresis (magnetization vs. field) that, lately, has been extended to applications in other
systems with hysteresis like shape memory alloys (strain vs. temperature) [2], in the
elastic behavior of rocks (strain vs. stress) [3], in economics (output vs. expansionary or
contractionary input shocks) [4]. The traditional scalar model can also be extended to a
vector formulation [5-7] appropriate for vector hysteresis processes. The model, in its
scalar and vector formulation, has found applications in magnetic recording material
modeling [8], in the calculation of losses in electrical steel laminations [9], in the control
of shape memory alloys (SMA) actuators [10] and as core model in finite element
calculations [11]. The identification of Preisach models is carried out either through
detailed measurements of the characteristic density [3, 10, 12, 18] or through determining
the parameters of the density based on a major loop measurement [8, 5-7, 22].

The Preisach formalism presents the advantage of being abstract enough to adjust itself to
various systems through the appropriate selection of hysteresis operator and
chartacteristic density. The phenomenon of hysteresis and the type of hysteresis modeled
by the proposed method is discussed in section 2. Section 3 deals with the modeling of
the process of hysteresis and the building blocks of the model: a selection of hysteresis
operators and their features, the classical formalism, the vector formulation and the
identification process. A systematic approach to an identification method using the major
loop characteristic and a least squares algorithm that optimizes the density parameters is
described. In order to test the new identification method and demonstrate the general and
modular nature of the model, results using two different operators are presented in section
4. The results are compared with experimental data for magnetic and SMA samples.

2. HYSTERESIS

Not any delay can be referred to as hysteresis. Visintin [13] defines hysteresis as the rate
independent memory effect. According to this definition, in a system with hysteresis the
current output is a function of the current input as well as previous inputs and/or the
initial state. In other words, the system can store information, it has memory. For every
input there may be more than one equilibrium states. The resulting state depends on the
history of the system, on the previous equilibrium states. When a system with hysteresis
1s bistable is characterized by a hysteresis loop like the one shown in Fig. 1. The curve is

traced along the path ABC (descending branch) or CDA (ascending branch). For uzu_,

(or u<u,), the output is increasing (or decreasing) monotonically with the input,



hysteresis vanishes, the processes are reversible and the resulting states are uniquely
defined and stable. For u_ <ult)<u,,, f(t) is a metastable state and a nonlinear

function of previous states [13]. If the loop ABCDA delimits the space of all possible
states for any given input, it is called a major loop. As it will be discussed later, a major
loop measurement provides a lot of information about the system. The loop in Fig. 1 is
symmetric around the origin, typical of ferromagnets but not necessarily of other systems.
A point inside the major loop can be attained through several trajectories called minor
loops.

The definition of hysteresis adopted in this work refers to it as rate independent. This
suggests a quasistatic treatment of the problem since, in actual systems, the rate of change
of the input does have an effect on the output. The assumption here is that the rate of
change is slow enough to allow for any transients to die out. The model can be applied to
such systems only.

3. MODELING OF HYSTERESIS

In ferromagnets, hysteresis occurs during the switch from positive to negative
magnetization. According to the Weiss theory, the material is made of a large number of
elementary magnets (domains). Under an applied magnetic field H(t), the state of each
elementary magnet depends on the external field as well as an internal interaction field
with the other domains which is a function of the magnetization state, M(t). Hence the

resulting magnetization state contains a positive feedback mechanism leading to
hysteresis: M(t)=M(H(t).M(t)).

Modeling of magnetic hysteresis falls under two broad categories: micromagnetic and
macroscopic modeling. The macroscopic approach features hysteresis operators and
Preisach-type modeling and is discussed in the following section. The micromagnetic
approach is based on the minimization of the free energy equation for a collection of
elementary magnets (domains, particles) [14,15]. The energy equation contains terms

such as the exchange energy A-[V-MJ, the applied field energy M-H,
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energy K, -(n-M)’ +K, (n-M)* +.--, the self magnetostatic energy —;M ‘H._ (M), etc.,

where A is the exchange constant referring to short range (spin-spin) interactions, H__is

int

the externally applied field, K ,K,.... are the anisotropy constants, n is a unit vector, and
H,, is the field corresponding to long range magnetostatic interactions and a function of

the magnetization as described above. This approach allows for a detailed description of
the microstructure and takes into account the underlying physics. But, in order to model
the behavior of a physical system a large number of interacting particles is needed and
this leads to cumbersome and long calculations which prohibit the use of this model in
simulations or control applications.

SMAs, on the other hand, undergo a phase transformation with temperature. At low
temperatures, the martensitic and austenitic phases coexist and behave plastically while at



higher temperatures the martensitic phase vanishes and the material behaves elastically
recovering its former shape. Hysteresis is evident in the transformation from the
austenitic to the martensitic phase (forward) and vice versa (reverse) and it is due to the
friction caused by the movement of the phase interfaces. Because of irreversible changes
(plastic deformations) in the microstructure, the two transformations are not identical to
each other. The phenomenology of this is evident in the asymmetrical and skewed
hysteresis loops (figs. 7-8). The cause of hysteresis in SMAs lies in [2].

Like in ferromagnets, the modeling approaches fall under two categories. One category
includes macroscopic models based on hysteresis operators with Preisach being the most
popular. The other approach is based on thermomechanics and the minimization of the
free energy equation. The latter can be a function of stress, temperature, the martensitic
volume fraction, thermal, plastic and trasnformation strains and back and drag strain.
This method offers the obvious advantage of internal state variables but poor results are
obtained when compared to experimental data. [2].

3.1 Hysteresis operators

A key feature in the class of macroscopic models, where the Preisach formalism belongs,
is the hysteresis operator, i.e. an operator that posseses the memory property and the rate
independence property. The play, stop, Preisach and KP operators are shown in Fig. 2.
The first two operators are common mainly in elastoplasticity (see Ref. 16 for a more
extensive discussion).

The classical Preisach operator (Fig. 2c) is:

[+1, u>a
=+ )
Vab (=L wsh

The shape of the operator is that of an elementary hysteresis loop with discontinuous
transitions at points a and b. The KP operator (Fig. 2d), named after Krasnoselskii-
Pokrovskii [17] who, among others, investigated the mathematical properties of
hysteresis operators describes a smooth transition between the two states:

[ 1 u>b+x
Y =J-1+2E{u~b} b<u<b+x , for the descending curve
X
=d u<b
] u<a=x

u :
Yo =31- 2—(1.1 - a) a—-x<u<a ,forthe ascending curve
X

| 1 u=>a
where X is the rise (or fall) distance.



The last operator (Fig. 2e) is a modification of the classical Preisach operator appropriate
for the modeling of mechanical hysteresis (stress/strain, SMAs) [2]. The hysteresis curves
observed in SMAs (Figs. 7-8) are traced in the opposite direction than the magnetic ones
and the output variable varies from 0 to 1:

N 0, u>a
R weh

3.2 The Preisach formalism

According to the Preisach formalism, hysteresis is the result of superposition of scalar
local hysteresis operatorsy, (Fig. 2c). The system being modeled is viewed as a

collection of subcomponents each of which has a hysteresis characteristic v with
different switching points (a.b). The displacement of the loop from the origin,

b i : 5 ;
, corresponds to the effective interactions experienced by a given component.

u, =

If the subcomponents are isolated or the sum of interactions one of them experiences is
zero the corresponding loop is centered at the origin and a = —b. The loop halfwidth, or

: - : =
half distance between the two critical values is u_ = EE—. When a=b a degenerate

loop of zero halfwidth, u, =0, is obtained.

The system is modeled as a distribution of upper and lower switching
points (a, b)obtained from the characteristic density of the system p(a,b) defined over the
Preisach plane (Fig. 2a) [18]. The plane is bounded by u_ =0 (otherwise the lower
switching point b is greater than the upper switching field a which violates the second
law of thermodynamics), u=u,_and u=u, where u_and u,_are the input values

leading to positive and negative saturation respectively: Ya,b a<u_.bzu_.

The response of the system, f(t), to an input, u(t), is the integral of the output states of
each elementary loop weighed by the probability density function p(a,b):

f(t)= Hp(a,bmbu{t}dadb

azh

Because of the integration of a probability density function, the formalism allows for
continuous hysteresis to be described even though a discontinuous hysteresis operator is
used. Since the model is quasistatic, time is discretized and an input sequence
Ug,U,.....u_ is assumed instead of a continuous input time function. When an input
u, <u,_ is applied, the system "saturates” in the negative state where all the operators
are in the —1-state. Increasing the input to u, > u_ all operators with u,_ <a<u, will
switch to +1. A horizontal boundary separating the regions of +1- and -1- states is
established at a < u, and the change in output, Af =f, —f,, is obtained by integrating the

density over the triangle ABC. Decreasing the input to u,_ <u, <u,, all operators with



b >u,will revert to -1 and a perpendicular boundary segment appears (Fig. 3a). The
change in output is then given by the integral over the triangle CDE. This way, at the end
of an input sequence a staircase boundary is established between areas of positive and
negative state. The horizontal and vertical segments, a direct consequence of the
discontinuity of the operator at the switching points, clearly indicate the past input
extrema. Therefore, the boundary serves as memory keeping track of the history of the
system. The integrals of the density over the triangular area of change are called Everetr
Junctions [12] and can be used for the identification and the inverse model [20].

Mayergoyz has proven that in order for a system to be modeled according to the Preisach
formalism the necessary and sufficient condition is that it posseses the wipe-out and
congruency properties [18]. This is a limitation towards the waiving of which a lot of
effort has been invested because real systems do not comply with the requirement.
Another bothersome characteristic of the traditional Preisach model is the ability to
model irreversible changes only. This is a direct consequence of the hysteresis operator
acting as a switch.

3.3 The vector formulation

The model described so far is an inherently scalar model useful for applications where the
1D treatment is adequate. A vector model following the Preisach formalism can be
obtained by substituting the scalar operator by a vector (2D) one. Two vector operators
are shown in Fig. 4. The SW astroid [19] (Fig. 4a) is widely used in micromagnetic
modeling. It is the locus of the equation u’” +u;” =1, where u. and uy are the

components of the input u(t) along the easy and hard axis respectively. The solution is the
tangent to the astroid passing from the tip of the input vector. Switching occurs when the
output vector crosses the astroid from the inside out. Otherwise the output vector rotates
reversibly. Note that the astroid equation results from the minimization of the free
(Gibbs) energy equation for an ellipsoidal magnetic particle with uniaxial anisotropy
under the influence of an applied field. It is not an abstract mathematical structure like its
scalar counterpart.

The second vector operator (Fig. 4b) is the first order approximation of the SW astroid:
u, +u, =land is computationally more efficient but without physical attributes.
The vector formulation is:

F®©= [[p(a,b)ypu(t)dadb.

azh

For a given time t and a point (a,b) on the Preisach plane, the vector hysteresis
operatory ,, acts on the vector input #(t). The result is weighed by the probabilty density

function p(a,b) and the output f(t) is obtained by integrating over the Preisach plane.

The vector properties of this model are very good and in agreement with experiments [5-
8]. The vector formulation does not possess the congruency property since it allows for
reversible processes (rotation of the output vector without switching from + to -). The



lack of the congruency property makes it appropriate for modeling systems that do not
have this property but it is not a Preisach model anymore in the classical sense [18].

Replacing the classical operator by a vector one has an important effect on the shape of
the boundary. It no longer consists of horizontal and vertical segments neatly indicating
past input extrema. This is expected since the vector operator is not discontinuous at
points a and b. Note that the same effect is observed when the scalar hysteresis operator
of Fig. 2a is used. Therefore, identification and inversion techniques used with the
traditional operator can no longer apply.

The above formulation assumes a perfectly oriented system, i.e. all the elementary
subcomponents are oriented in the same direction. Where needed, dispersion of
orientations can be added by superimposing the responses of angularly distributed
perfectly oriented models:

w2
F= [ p@)dd [fp(a,byygpu(t)dadb.

-n2 azb

where p(p) is a probability density function of angles.

Another vector formulation using a vector "play" operator (Fig. 2a) and its relationship to
the classical model is described in [21]. It has interesting vector properties and it
regresses to the scalar Preisach model for a specific choice of parameters, but only
irreversible processes are predicted. The reversible component has to be added on.

3.4 Identification

The identification of Preisach-type modeling consists of determining the characteristic
density p(a,b). In the case of the classical model where the Everett functions are defined,

the distribution can be measured in detail. The density can then be constructed from the
measurements. This has produced good results in applications [3, 5,10] where the density
is measurable and the assumptions of the traditional scalar model can apply.

The alternative approach, which is the one discussed in this work, is to fit the parameters
of a known density to some points on a major hysteresis curve. This method is more
appropriate for use with a general application model because it is not restricted by the
type of material or system, the 1D or 2D treatment of the problem and the ability to
measure the Everett functions. The only measurement needed is that of a major hysteresis
curve. The issues that need to be addressed when using this method are the choice of the
probability density function and the parameter fitting procedure.

The bivariate probability density function of upper and lower switching points can be

a-b

equivalently expressed in terms of the transformation u] = and

3]

"
, _a+b

uj = :pla,b)=p(u’,u}) (Fig. 3).




There are systems that can support the assumption that the variables u’ and u), are
independent and therefore pla.b)=p(u’,u’,)=p(u’ }p(u}). The density can then be

constructed as the product of two single-variable different densities instead of one
bivariate density [5-7, 11]. The expectations (mean values), p_, pu, and p_,u,, and the

variances, ¢_, ;, and ¢, o, of the probability density function of the four variables
are related (for simplicity, we use u. =cand v} =d):

Statement 1. If the random variables ¢ and d are independent then

Elp(a,b)]= Elp(c.a)l= k. -1, =52 -13)

Proof
It 15 known that

E[p(a,b)] = E[p(c.d)] = E[p(c)] E[p(d)] = p. -1y

T=E{c)= B[22 )= )
and

a+b

5 =E(d}=5[3]=§{ua i)

therefore, u_-u, = %(’J: —yé)_

Statement 2. If the random variables ¢ and d are independent thenc. =0} = 2- (crf +6; ]
Proof

Since ¢ and d are independent Cov{c,d)=E|c-d]-E[c]-E[d]=0.

but

Efc-d]= E[(a—b]é(a+b)} :E|:a3 ;h1j| =%(E[az]—E[b1]},

and
E[c]- E[d] =SU, Uy = %(p,a - I'l'b) (from statement 1),

therefore,

Elatl—Elh:jzpf - @E[azl—p.: =Elb2]—p§ ool =al



Using the inverse variable transformation a=~"5{c+d)and E}=1.E(d—c],

G, —E[a ] d]}

but

Efa?]= E[{ﬁ{c + d]ﬂ = 2(Efe? ]+ Ela*]+ 2-E(c-a)).

and

Ef)? = EN2( + ) = 2]+ Ed]? = 2(u + 2 +2-E(c-a)),

therefore,
o =2(Blc* |+ Eld? |- pZ —u})=2(o? + 7).

Lets take a look into the physical meaning of the above statements. The assumption that
the uland ufare independent variables is valid in the hysteresis modeling of
ferromagnets, for example. In the case of ferromagnets, the hysteresis loops are
symmetrical and centered at the origin: f(u(t))],.,=—f(=u(t))l,., . e.g the coercive field
(the input value at which the output is zero) is of the same magnitude in both the

ascending and descending branch but of opposite sign (Figs. 5-6). From a modeling point
of view, this is a consequence of statement 2. In order to obtain symmetrical hysteresis

loops like the ones in Figs. 5-6, o) =o; must hold. In magnets, the transformation
variables u_ and ujcorrespond to the coercivity and interaction fields of an elementary

hysteresis loop (operator). The elementary loop can be considered to represent the
hysteresis characteristic of a magnetic domain or particle in the material with coercivity
u! and under the influence of an interaction field u);. The coercivity of a particle or
domain is a function of temperature, size and shape. The interaction field, on the other
hand, is an effective field acting on the particle or domain and containing contributions of
short range (spin-spin) and long range (dipole-dipole) interactions. There is no reason to
assume there is a correlation between the two quantities.

Statement 1 implies that the expected value of the Preisach density is zero for p, =p, .
This is the case for loops centered at the origin, like the ones observed in ferromagnets.
Then, at least one of the two terms of the product p, -pu, must be zero. The expected
value of coercivities, W, , cannot be zero because in that case half of the density would lie

outside the Preisach plane, where b >a. But, the assumption that the mean value of
interactions is zero is valid from a physics point of view.



4 RESULTS AND DISCUSSION

The most commonly used pdf in Preisach modeling is the normal one [6, 7, 22] but
lorentzians [5, 11] or the arctan function [21] has been used as well. In [6] the Preisach
density is built as a product of a gaussian (for the coercivities) and a lorentzian (for the
interactions). In the remaining of this work we will concentrate on single-variable and
bivariate normal distributions.

In [6, 7] a vector Preisach model was identified for two samples of ferromagnets: the
homogeneous SmiFe;4GasC: (single phase) and the inhomogeneous Sm>Fe;sGasCs/a-Fe
(two-phase). The experimental data was found in the literature [23]. The microstructure
of the two magnets is quite different, with exchange coupling between the hard
(Sm2Fe4GasCa) and the soft (a-Fe) phase playing an important role in the second one.
The identification procedure used in [6, 7] is outlined next. It will be referred to as "old"
in order to distinguish it from the one that will be introduced afterwards and will be
referred to as "new". The results labeled "old" in Figs. 5-6 were obtained using the
vector model with dispersion and the "old" identification method. The Preisach density is
built as a product of two gaussians, p(u_) and p(u, ), of the form:

e #EKF{_ (1_;1—}} and plu,)=——— eKP!_V— @1

1}2'11:(53 A 227G | 2o |

The role of each one of the four parameters p., o, H,, G, on the shape of the

=

€

hysteresis curve is different and related to physical parameters:

* u_controls the coercivity of the loop, i.e. the point at which the curve intersects the
input (field) axis. Because the vector model with dispersion is used, the empirical rule
for finding the value of p_ is H_ =3u_ where H_ is the measured coercivity of the
loop.

= u,is fixed to 0 as explained above.

* o_and o, affect the shape of the loop and are related to the S* loop parameter. 5 is

s dM ,
the slope of the loop around the coercivity, S*=E]H_. In ferromagnets, S* is
related to interactions, i.e. a higher S* suggests strong exchange interactions.
Interestingly enough, from a modeling point of view, it is o, that primarily affects S*.
Finding appropriate values for o_and o,is the most difficult part in this process
being more of an art rather than a science.

It has already been mentioned that in Figs. 5-6, the simulated loops labeled "old model”
were obtained using a vector model with dispersion. Therefore, a pdf of angles is also
involved; it is a gaussian centered at 0 with its standard deviation being the sole
parameter controlling the squareness S of the loop, and therefore easy to determine. S is
the ratio of the output at zero input over the maximum output value; in the case of

- 10



ferromagnets this corresponds to the ratio of remanent to saturation magnetization:
Q= f |l.|={'l 1 M

r

f M

TSy &at

The "old" method uses a Preisach density built as product of two densities and four
parameters (S, S*, H, and M) of the major loop. It is a simple method but not systematic.
It yields good results but the symmetry of the magnetic hysteresis loops has been a strong
ally. Can it be used to systems without symmetric loops, e.g. SMA loops? The answer is
negative.

The need to come up with a more systematic identification method applicable to as many
classes of systems as possible pointed to the direction of using a bivariate probabilty
density function as a basis for the Preisach distribution and apply a least-squares curve -
fitting procedure.

The obvious bivariate pdf to start with is the normal one. The Preisach density is of the
form:

AP - B - 2
plab)= l —exp| - L [d HnJ —Ef[d Ha](b Ph}{b FLb)
zﬂﬁuﬁh I 2{]‘_1"} T, T, Oy J T,

There are five parameters to be determined: u ,u,,o,,c,.r where r is the correlation

parameter between a and b. For r=0, p(a,b)=p(a)p(b).

The correlation parameter r has a slight effect on the shape of the loop; high positive

values yield slightly higher squareness. So r is generally taken to be 0.

*  When u, >p, the hysteresis loop shifts to the left while when p, < u, it shifts to the
right.

* When o, >o, the hysteresis loop is asymmetric and skewed with the bottom part
wider (Fig. 7).

* When o, <o, the hysteresis loop is again asymmetric and skewed with the upper
part wider.

The values of the parameters are obtained through a least-squares curve-fitting procedure.
Instead of using four parameters of the major loop and relate their values to the density
parameters, an array of i points of the experimental loop is fed to the least squares
algorithm along with an array of initial estimates of the parameters and the algorithm
iterates on the parameter values until Z(fmmi —fmr <€, where € is a small positive

number. The value of € used in the following results is 107 .

The results presented in the following sections have all been obtained with the scalar
model adjusted appropriately for each material. The algorithms used follow:
= The algorithm for the model

1. The KxK Preisach plane is initialized

2. The input sequence u(t), t=1:T, is initialized



3. The Preisach plane pp(a,b) is defined
3.1 if the classical operator is used thena>Db
3.2 else if the SMA operator is used thenb<a
4. The Preisach density p(a.b) is constructed and distributed over the plane
For t=1:T
5.1 call hysteresis operator (classical or SMA)
5.2 pp(a,b)=y(a,by*u(t)
5.3 fit,a,b)=p(a,by*ppla,b)

5.4 compute output f(t) = ZZf(t,a,b}
a b
The algorithm for the classical Preisach hysteresis operator
.if ut)-u(t-1)<0 and u(t)<b then pp(a.b)=-1
celse if u(t)—u(t—1)>0and u(t)>a then pp{a,b) =1
.else pp(a,b)=ppla,b)

Ch

W N = n

The algorithm for the SMA hysteresis operator
.if u(t)=u(t-1)<0 and u(t)<b then pp(a,b)=1
.elseif u(t)—u(t—1)>0and ult)>a then ppla,b)=0
.else ppla,b)=pp(a,b)

) b = W

Simulation of magnetic hysteresis

In the modeling of magnetic hysteresis, the input variable is the applied field and the
output variable is the magnetization. The output is normalized with respect to the
maximum value attained experimentally, or saturation magnetization, and ranges from -1
to +1. The scalar Preisach model used for ferromagnets is the classical one with the
operator shown in Fig. 2¢ and the Preisach plane shown in Fig. 3a. The Preisach plane is
coded as a KxKarray. K depends on the desired degree of discretization and the
maximum experimental input values observed. Each element of the array holds a
hysteresis operator and the height (weight) of the density at the given point. The input is
operated on by v, at each element, its output state is decided and then multiplied by the

weight. Summing over the weighed outputs of each element yields the aggregate output
for a given input.

The initial parameter estimates fed to the least-squares algorithm are obtained as follows:

5n

3‘2—],whareHc

; ; " . o
Since the loops are symmetrical, i, =i, =—+H_ and 0, =¢, =
5 c

is the measured coercivity of the magnet.

The results for the two magnetic samples are shown in Figs. 5-6. The homogeneous
magnet hysteresis curve obtained with the "new"” method is better than the "old" one
especially at the lower (upper) part of the descending (ascending) curve (Fig. 5). This is
due to the ability to establish an appropriate value for the standard deviations where the
"old" method was very vague. The fit is worse in the upper (lower) part of the descending
(ascending) curve. This is where most of the processes taking place are reversible. In
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ferromagnets, the reversible processes are due to reversible bending of the domain walls
and reversible rotation of the magnetization vectors of misaligned grains or particles.
This effect is captured better by the vector model used in the "old" results. Fig. 6 shows a
comparison between the "old" and "new" results against a measured major loop. Here the
fit is definitely better with the "new" method.

Table 1 shows the parameter values obtained for each magnet.

The initial estimate of the mean, u, is close to the final value obtained by the least-
squares algorithm. This is not true for the o-value. Notice also the differences in the K-
values between the two magnets. In the homogeneous case, K ~5-H_, while in the
inhomogeneous case K ~10-H, . This is because the loop squareness, S, of the second is
smaller, i.e. a wider distribution with respect to the plane size is needed.



Table 1: Initial Estimates and Final values of the density parameters used

in the identification of two different magnetic samples

! Homogeneous magnet | Inhomogeneous magnet
(K=71, Hc=15) (K=31, Hc=3)
Initial | Final Initial Final
0 50.5 49.859 18.5 19.651
o 6.8 5.7121 4.2 2.915

Simulation of hysteresis in SMAs

The experimental hysteresis loops in SMAs have significant differences from the ones
discussed already. The input variable is temperature and the output variable is
deformation (strain). The output is normalized to the maximum % strain observed and
ranges from 0 to 1. The loop is skewed and shifted to the right of the output axis. SMA
loops are traced in the opposite direction compared to magnetic loops. The ascending
branch comes first and is the one to the right. A hysteresis operator appropriate for this
type of behavior is the one in Fig. 2e. Since a < b, the Preisach plane has to be adjusted
appropriately (Fig. 3b).

Because of the asymmetry in the loops the "old" identification procedure could not be
applied here. Four distinct parameters, u,,l,,0,,0,, must be determined. Let T, be the

temperature at which the normalized % strain has reached 0.5 on the ascending branch
and T, the temperature at which the normalized % strain has reached 0.5 on the
descending branch. Because T_>T,, p, >u,. Also, the loops are wider at the top
which suggests that o, >o,. For the initial estimates the following rules were
constructed along the lines of the rules used in the modeling of magnetic hysteresis:

K K
TN i 5 _i
F] _2 m’p‘h 2 a? a 3 -] a 3

Table 2 summarizes the parameter optimization results for the SMA curves.

Table 2: Initial Estimates and Final values of the density parameters used in
the identification of the SMA sample.

K=81, T,=0, T,=20
Initial Final

™ 20.5 20.401
G, 6.7 7.726

e 40.5 40.339

o 13.3 11.377

The "new" method reproduced the qualitative hysteresis behavior of the material in the
major (Fig. 7) and minor loops (Fig. 8). The discrepancies are attributed to the choice of
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hysteresis operator. The hysteresis process in SMAs should be able to be modeled by a
scalar operator, so using a vector one doesn't solve the problem. Better results could be
obtained when using the KP operator [10].

5 CONCLUDING REMARKS

Preisach-type models have been used to reproduce the hysteretical response in two
different types of materials. The materials, magnetic and shape memory alloys, are not
only very different in their microstructure but also present very different hysteresis
characteristics. The models are based on the Preisach formalism but are adjusted to each
material through the choice of an appropriate hysteresis operator. Then the model is
identified for the specific materials with the help of a major loop measurement and a
least-squares fitting procedure. The results demonstrate the ability of a modularly
contructed abstract model to tune into a system through the choice of a hysteresis
operator combined with a systematic identification method.

Work in progress involves the testing and development of more operators, scalar and
vector, and the refinement of the identification procedure. Other bivariate densities as
well as products of single-variable densities are also being tested.
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Figure 1: A typical hysteresis loop traced along the path ABCDA.
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Figure 2: Hysteresis operators: (a) play, (b) stop, (c) Preisach, (d) KP and (e) modified
Preisach.
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AHard Axis AHard Axis
f
u
u f
Ir a b
Easy Axis
. by
|
(a) (b)

Figure 4: Vector operators: (a) the S-W astroid and (b) the diamond.
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Figure 5: Homogeneous magnet. Experimental and simulated loops produced with the
“old™ and the “new” identification method.
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Figure 6: Inhomogeneous magnet. Experimental and simulated loops produced with the
“old” and the “new” identification method.
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Figure 7: SMA. Experimental and simulated major loop.

- 24




95 Strain (normalized)

1.0+ Illll{:.-.'.....-‘ Experiment
unmmung.a'g! EEIEDDDDH‘EQ‘
0.8 1 000000000g,
' "
0.6 ﬁ;
0,24
bl |
0,0+ Model T-Opooooo EE
T T T T T . - . .
-40 -20 0 20 40

Figure 8: SMA. Experimental and simulated major and minor loops.
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