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Abstract

We present the global k-means algorithm which is an incremental approach to clustering
that dynamically adds one cluster center at a time through a deterministic global search
procedure consisting of N (with N being the size of the data set) executions of the k-means
algorithm from suitable initial positions. We also propese modifications of the method to
reduce the computational load without significantly affecting solution quality, The proposed
clustering methods are tested on well-known data sets and they compare favorably to the

k-means algorithm with random restarts.

1 Introduction

A fundamental problem that frequently arises in a great variety of fields such as pattern recognition,
image processing, machine learning and statistics is the clustering problem [1]. In its basic form
the clustering problem is defined as the problem of finding groups of data peints in a given data
set. Each of these groups is called a cluster and can he defined as a region in which the density of
objects is loeally higher than in other regions.

The simplest form of clustering is partitional clustering which aims at partitioning a given
data set into disjoint subsets (clusters) so that specific clustering criteria are optimized. The most
widely used criterion is the clustering error criterion which for each point computes its squared
distance from the corresponding cluster center and then takes the sum of these distances for all
points in the data set. A popular clustering method that minimizes the clustering error is the
k-means algorithm. However, the k-means algorithm is a local search procedure and it is well-
known that it suffers from the serious drawback that its performance heavily depends on the initial

starting conditions [2]. To treat this problem several other techniques have been developed that



are based on stochastic global optimization methods (eg. simulated annealing, genetic algorithms).
However, it must be noted that these techniques have not gained wide acceptance and in many
practical applications the clustering method that is used is the k-means algorithm with multiple
restarts [l]

In thi=s work we propose the global k-means clustering algorithm, which constitutes a determin-
istic effective global clustering algorithm for the minimization of the clustering error that employs
the k-means algorithm as a local search procedure. The algorithm proceeds in an incremental
way: to solve a clustering problem with M clusters, all intermediate problems with 1.2, ... M —1
clusters are sequentially solved. The basic idea underlying the proposed method is that an optimal
solution for a clustering problem with M elusters can be obtained using a series of local searches
{using the k-means algorithm). At each local search the M — 1 cluster centers are always initially
placed at their optimal positions corresponding to the elustering problem with M — 1 clusters.
The remaining M-th cluster center iz initially placed at several positions within the data space.
Since for M = 1 the optimal solution is known, we can iteratively apply the ahove procedure to
find optimal solutions for all &-clustering problems & = 1,.... M. In addition to effectiveness, the
method is deterministic and does not depend on any initial conditions or empirically adjustable
parameters. These are significant advantages over all clustering approaches mentioned above,

In the following section starts with a formal definition of the clustering error and a brief
description of the k-means algorithm and then desecribes the proposed global k-means algorithm.
Section 3 describes modifications of the basic method that require less computation at the expense
of being slightly less effective. Section 4 provides experimental results and comparisons with the
k-means algorithm with multiple restarts. Finally Section 5 provides conclusions and deseribes

directions for future research.

2 The global k-means algorithm

Suppose we are given a data set X = {z1,..., 75}, 7. € B?. The M-clustering problem aims
at partitioning this data set into M disjoint subsets (clusters) C,...,Cyy, such that a clustering
criterion is optimized. The most widelv used clustering criterion is the sum of the squared Eu-
clidean distances between each data point z; and the centroid my (cluster center) of the subset
% which contains x;. This criterion is called clustering error and depends on the cluster centers
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E(ma,...omar) =YY " I(zi € G|z — ma|? (1)
i=1 k=1
where I{X) = 1if X is true and 0 otherwise,

The k-means algorithm finds locally optimal solutions with respect to the clustering error. It

is a fast iterative algorithm that has been used in many clustering applications. It is a point-based



clustering method that starts with the cluster centers initially placed at arbitrary positions and
proceeds by moving at each step the cluster centers in order to minimize the clustering error. The
main disadvantage of the method lies in its sensitivity to initial positions of the cluster centers.
Therefore, in order to obtain near optimal solutions using the k-means algorithm several runs must
be scheduled differing in the initial positions of the cluster centers.

In this paper, the global k-means clustering algorithm is proposed, which constitutes a deter-
ministic global optimization method that does not depend on any initial parameter values and
employs the k-means algorithm as a local search procedure. Instead of randomly selecting initial
values for all cluster centers as is the case with most global elustering algorithms, the proposed
technique proceeds in an incremental way attempting to optimally add one new cluster center at
each stage.

Mare specifically, to solve a clustering problem with M clusters the method proceeds as follows,
We start with one cluster (k = 1) and find its optimal position which corresponds to the centroid
of the data set X. In order to solve the problem with two clusters (k = 2) we perform N
executions of the k-means algorithm from the following initial positions of the cluster centers: the
first cluster center is always placed at the optimal position for the problem with k& = 1, while
the second center at execution n is placed at the position of the data point =, (n = 1,...,N).
The best solution obtained after the N executions of the k-means algorithm is considered as
the solution for the clustering problem with k = 2. In general, let (mj(k),..., m}(k)) denote
the final solution for k-clustering problem. Once we have found the solution for the (k — 1)-
clustering problem, we try to find the solution of the k-clustering problem as follows: we perform
N runs of the k-means algorithm with k clusters where each run n starts from the initial state
(mi(k—1),....mf_,,(k—1),25). The best solution obtained from the N runs is considered as the
solution (mi(k).....mi(k)) of the k-clustering problem. By proceeding in the above fashion we
finally obtain a solution with M clusters having also found solutions for all k-clustering problems
with & < M.

The latter characteristic can be advantageous in many applications where the aim is also to
discover the ‘correct’ number of clusters. To achieve this, one has to solve the k-clustering problem
for various numbers of clusters and then employ appropriate criteria for selecting the most suitable
value of k [3]. In this case the proposed method directly provides clustering solutions for all
intermediate values of &, thus requiring no additional computational effort.

In what concerns computational complexity, the method requires N executions of the k-means
algorithm for each value of & (k=1...., M). Depending on the available resources and the values
of N and M, the algorithm may be an attractive approach, since, as experimental results indicate,
the performance of the method is excellent. Moreover, as we will show later there are several

modifications that can be applied in order to reduce the computational load.



The rationale behind the proposed method is based on the following assumption: an optimal
clustering solution with & clusters can be obtained through local search [using k-means) starting

from an initial state with
¢ the k — 1 centers placed at the optimal positions for the (k — 1)-clustering problem and
e the remaining k-th center placed at an appropriate position to he discovered,

This assumption seems very natural: we expect that the solution of the k-clustering problem
to be reachable (through local search) from the solution of (k — 1)-clustering problem, once the
additional center is placed at an appropriate position within the data set. It is also reasonahble
to restrict the set of possible initial positions of the k-th center to the set X of available data
points. It must be noted that this is a rather computational heavy assumption and several other
options (examining fewer initial positions) may also be considered. The above assumptions are
also verified experimentally, since in all experiments (and for all values of &) the solution obtained
by the proposed method was at least as good as that obtained using numerous random restarts
of the k-means algorithm. In this spirit, we can cautiously state that the proposed method is

erperimentally optimal (although it is difficult to prove theoretically).

3 Speeding-up execution

Based on the general idea of the global k-means algorithm, several heuristics can be devised to
reduce the computational load without significantly affecting the quality of the sclution. In the
following subsections two modifications are proposed, each one referring to a different aspect of

the method.

3.1 The fast global k-means algorithm

The fast global k-means algorithm constitutes a straightforward method to accelerate the global
k-means algorithm. The difference lies in the way a solution for the k-clustering problem is
obtained, given the solution of the (& — 1)-clustering problem. For each of the N initial states
{milk-1),... ,m[',___uﬁk — 1}, &) we do not execute the k-means algorithm until convergence to
obtain the final clustering error E,,. Instead we compute an upper bound E, < E — b, on the
resulting error E, for all possible allocation positions x,,, where E is the error in the (k — 1)-
clustering problem. We then initialize the position of the new cluster center at the point z; that
minimizes E,, or equivalently that maximizes b, and execute the k-means algorithm to obtain

the solution with & clusters. Formally we have

N
b = 3 max(dl_, — ||z, — ;] 0), (2)
i=1



t = s.rgmf.?,xbﬁ (3)

where d}_, is the squared distance between x; and the closest center among the k — 1 cluster
centers obtained so far (ie., center of the cluster where x; belongs). The quantity b, measures the
guaranteed reduction in the error measure obtained by inserting a new cluster center at position
b g

Suppose the solution of the (k — 1)-clustering problem is (mj(k—1),..., mfk—l_‘.{k —1)) and a
new cluster center is added at location z,,. Then the new center will allocate all points z; whose
squared distance from =, is smaller than the distance di_l from their previously closest center.
Therefore, for each such data point z; the clustering error will decrease by d}_; — |z — x;]*.
The summation over all such data points z; provides the quantity b, for a specific insertion
location r,. Since the k-means algorithm is guaranteed to decrease the clustering error at each
step, E — b, upper bounds the error measure that will be obtained if we run the algorithm until
convergence after inserting the new center at x, (this is the error measure used in the global
k-means algorithm).

Experimental results {see next section) suggest that using the data point that minimizes this
bound leads to results almost as good as those provided by the global k-means algorithm. More-
over, the cluster insertion procedure can be efficiently implemented by storing in a matrix all
pairwise squared distances between points when the algorithm stares, and using this matrix for di-
rectly computing the upper bounds above. A similar “trick’ has been used in the related problems
of greedy mixture density estimation using the EM algorithm [4] and principal curve fitting [5].

Finally, we may still apply this method as well as the global k-means algorithm when we do
not consider every data point =, (n = 1,..., N) as possible insertion position for the new center,
but use only a smaller set of appropriately selected insertion positions. A fast and sensible choice

for selecting such a set of positions based on k-d trees is discussed next.

3.2 Initialization with k-d trees

A k-d tree [6, 7] is a multi-dimensional generalization of the standard one-dimensional hinary
search tree, that facilitates storage and search over k-dimensional data sets. A k-d tree defines a
recursive partitioning of the data space into digjoint subspaces. Each node of the tree defines a
subspace of the original data space and, consequently, a subset containing the data points residing
in this subspace. Each nonterminal node has two successors, each of them associated with one of
the two subspaces obtained from the partitioning of the parent space using a cutting hyperplane.
The k-d tree structure was originally used for speeding up distance-based search operations like
nearest neighbors queries, range queries, ete.

In our case we use a variation of the original k-d tree proposed in [7]. There, the cutting
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Figure 1: Performance results for data drawn from Gaussian mixture, results are averaged over

10 runs.

hyperplane is defined as the plane that is perpendicular to the direction of the principal component
of the data points corresponding to each node, therefore the algorithm can be regarded as a
method for nested (recursive) principal component analysis of the data set. The recursion usually
terminates if a terminal node (called bucket) is created containing less than a prespecified number
of points b (called bucket size) or if a prespecified number of buckets have been created. It turns
out that, even if the algorithmn is not used for nearest neighhor queries, merely the construction of
the tree provides a very good preliminary elustering of the data set. The idea is to use the bucket
centers (which are fewer than the data points) as possible insertion locations for the algorithms
presented previously.

In Fig. 1 average performance results are shown on 10 data sets each one consisting of 300
data points drawn from the same mixture of 15 Gaussian components, The components of the
Gaussian mixture are well separated and exhibit limited eccentricity.

We compare the results of three methods to the clustering problem with k& = 15 centers: (i)
The dashed line depicts the results when using the fast global k-means algorithm with all data
points constituting potential insertion locations. The average clustering error over the 10 data sets
is 15.7 with standard deviation 1.2. (ii) The solid line depicts results when the standard k-means
algorithm is used: one run for each data set was condueted. At each run the 15 cluster centers
were initially positioned to the centroids of the buckets obtained from the application of the k-d
tree algorithm until 15 buckets were created. The average clustering error over the 10 data sets

is 24.4 with standard deviation 9.8. (iii) The solid line (with error bars) shows the results when



using the fast global k-means algorithm with the potential insertion locations constrained by the
centroids of the buckets of a k-d tree. On the horizontal axis we vary the number of buckets for
the k-d tree of the last method.

We also computed the ‘theoretical’ clustering error for each data set, ie., the error computed
by using the true cluster centers. The average error value over the 10 data sets was 14.9 with
standard deviation 1.3. These results were too close to the results of the standard fast global
k-means to include them in the figure,

We can conclude from this experiment that (a) the fast global k-means approach gives rise to
performance significantly better than when starting with all centers at the same time initialized
using the k-d tree method, and (b) restricting the insertion locations for the fast global k-means
to those given by the k-d tree (instead of using all data points) does not significantly degrade
performance if we consider a sufficiently large number of buckets in the k-d tree (in general larger
than the number clusters).

Ohbviously, it is also possible to employ the above presented k-d tree approach with the global

k-means algorithm.

4 Experimental results

We have tested the proposed clustering algorithms on several well-known data sets, namely the
iris data set [8], the synthetic data set [9] and the image segmentation data set [8]. In all data
sets we conducted experiments for the clustering problems obtained by considering only feature
vectors and ignoring class labels. The iris data set contains 150 four-dimensional data points, the
synthetic data set 250 two-dimensional data points and the for the image segmentation data set
we consider 210 six-dimensional data points ohtained through PCA on the original 18-dimensional
data points. The quality of the obtained solutions was evaluated in terms of the values of the final
clustering error.

For each data set we conducted the following experiments:
s one run of the global k-means algorithm for M = 15.
o one run of the fast global k-means algorithm for M = 15,

o the k-means algorithm for k£ = 1,...,15. For each value of &, the k-means algorithm was
executed N times (where N is the number of data points) starting from random initial
positions for the & centers and we computed the minimum and average clustering error as

well as its standard deviation.

For each of the three data sets the experimental results are displayed in Figures 2, 3 and

4 respectively. Each figure plot displayvs the clustering error value as a function of the number
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Figure 2: Performance results for the Iris data set.
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Figure 3: Performance results for the Synthetic data set.
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Figure 4: Performance results for the Image segmentation data set.

of clusters. It is clear that the global k-means algorithm is very effective providing in all cases
selutions of equal or better quality with respect to the k-means algorithm. In what concerns
the fast version of the algorithm, it is very encouraging that, although executing significantly
faster, it provides solutions of excellent quality, comparable to those obtained by the original
method. Therefore, it constitutes a very efficient algorithm, both in terms of solution quality and
computational complexity and can run even faster if k-d trees are employed as explained in the
previous section.

Matlab implementations of the fast global k-means and the k-d tree building algorithms can

be downloaded from http://wew.science.uva.nl/research/ias.

5 Discussion and conclusions

We have presented the global k-means clustering algorithm, which constitutes a deterministie
clustering method providing excellent results in terms of the clustering error criterion. The method
is independent of any starting conditions and compares favorably to the k-means algorithm with
multiple random restarts, The deterministic nature of the method is particularly important in
cases where the clustering method is used either to specify initial parameter values for other
methods (for example RBF training) or constitutes a module in a more complex system. In such
a case we can be almost certain that the employment of the global k-means (or any of the fast
variants} will always provide sensible clustering solutions. Therefore, one can evaluate the complex

system and adjust critical system parameters without having to worry for dependence of system



performance on the clustering method emploved.

Another advantage of the proposed technique is that in order to solve the M-clustering problem,
all intermediate k-clustering problems are also solved for & =1,.... M. This may prove useful in
many applications where we seek for the actual number of clusters and the k-clustering problem
is solved for several values of k. We have also developed the fast global k-means algorithm, which
significantly reduces the required computational effort, while at the same time providing solutions
of almost the same quality,

We have also proposed two modification of the method that reduce the computational load
without significantly affecting solution quality. These methods can be employed to find solutions
to clustering problems with thousands of high-dimensional points and one of our primary aims is
to test the techniques on large scale data mining problems.

Another direction of future work is related with the use of parallel processing for accelerating
the proposed methods since, for every k&, the N executions of the k-means algorithm are inde-
pendent and can be performed in parallel. Another research direction concerns the application
of the proposed method to other tvpes of clustering {for example fuzzy clustering). as well as
to topographic methods like SOM. Moreover, an important issue that deserves further study is
related with the possible development of theoretical foundations for the assumptions behind the
method. Finallyv, it is also possible to employ the global k-means algorithm as a method for
providing effective initial parameter values for RBF networks and data modeling problems us-
ing Gaussian mixture models and compare the effectiveness of the obtained solutions with other

training techniques for Gaussian mixture models [10, 11].
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