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1. SUMMARY

We propose a theoretical approach to study the dynamic characteristics of a human long bone
during callus formation. The shifting of the eigenfrequency spectrum proves to be a major
indicator in the monitoring and diagnosis of the healing process. The bone diaphysis is
assumed to be a finite length hollow piezoelectric cylinder of crystal class 6 while the callus
area consists of isotropic, elastic material.

2. INTRODUCTION

The monitoring of the bone fracture healing using non-invasive techniques (e.g. wave
propagation) has proven of great importance compared to widely used methods such as
manual sensing or x-rays. Several researchers have studied wave propagation in long bones,
considered it as an infinite piezoelectric cylinder of crystal class 6 with circular or arbitrary
cross section [1-3]. A limited number of papers [6-7] address the vibration of bone of finite
length. In Ref. [8] the evolution of the dynamic characteristics of isotropic elastic bone during
the healing process is studied.

In a previous work [5] we considered wave propagation in a piezoelectric bone of arbitrary
cross section. In this work we extend this approach to study the dynamic characteristics of
bone during callus formation. The bone diaphysis is modeled as a finite length hollow
piezoelectric cylinder of crystal class 6 while the callus area, which approximately follows
the same geometry, is made of isotropic elastic material. The analysis can be proven very
efficient for the understanding of the relation between the stage of fracture healing and the
changes in the eigenfrequency spectrum of the system under consideration.

The description of the problem is based on the three-dimensional theory of elasticity and
piezoelectricity (in quasi-static approximation). The solution of the wave equations for the
piezoelectric cylinder is derived analytically as it is described in [2]. The solution of the



problem for the isotropic callus is presented in terms of the Navier vector eigenfunctions for
cylindrical coordinates [7].

The boundary conditions on the plane ends of the cylinder are responsible for the selection of
the specific solution (odd or even in z-coordinate) from the general representation. They
correspond to those imposed by the external fixator used in the treatment of long bone
fracture. The lateral surfaces of the isotropic and piezoelectric parts are assumed to be free of
fields (stress and electric potential), while on the contact surfaces of the layers conditions of
continuity of the fields are considered. The satisfaction of the boundary conditions on the
lateral surfaces leads to discretization of the initially continuous range of the wave numbers
for the isotropic and piezoelectric part. The remaining boundary conditions are satisfied by an
orthogonalization procedure, which finally leads to the frequency equation.

3. GOVERNING EQUATIONS
The geometry of the system under consideration is shown in the figure below.
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Region 1 corresponds to the callus and it is assumed to be filled with isotropic elastic
material. Regions 2 and 2’ correspond to the cortical bone and they are assumed to be filled
with piezoelectric material having crystal class 6 properties, while regions 3 and 3° are
assumed to be empty (bone marrow is not included in our model). The cylindrical
coordinates are used in the sequel with the z-axis along the axis of the cylinder.

The equation of motion for the isotropic material after suppressing the time-harmonic
dependence is

c?‘?zu{”(r)'—. (cf - )V(? -um{r}}+ ﬂzum{r) =0, (1)

where ul = (,.29,u.) is the elastic displacement vector field, r= (x,6,z) is the
dimensionless position vector, ¢,,c¢; are the dimensionless velocities of the transverse and the
longitudinal waves, respectively, and € is the dimensionless frequency.

The elastic displacement vector field u' can be represented using Navier eigenfunctions [7].
In order to separate the odd and the even eigenstates of the system under consideration (due
to the specific geometric symmetry), we introduce the parameter s (s =1, for odd solutions

and s =2, for even solutions). The components of the displacement field can be represented
as
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where 2L is the length of the cylinder and [,x] is the integer part of x, and

Z;i(z,4)= j=12

J™ (ax) = { 7™ (ax), I=1 (Bessel function of st kind } 2.l

Y™ (ax), 1=2 (Bessel function of 2nd kind }
We note that for a* <0 the Bessel functions are replaced by the modified ones. Also e
denotes the derivative of J™' with respect to its argument.

The stress tensor for an isotropic elastic material is given by the constitutive relation:
0 2 ;v 00, G

where V u denotes the symmetric gradient of u and the components of the stiffness tensor

1) .
¢ are given as

c:jkf = ié'ﬁﬁ“ + ,{J({SJ;‘{S” + 5jf§fk } (4;|
Using relations (2)-(4) we can calculate the components of the stress tensor Tm.

The equations describing the behavior of a piezoelectric material are the equation of motion

and the Gauss equation given as

divT"? -pl : V-D=0, (5)
Cf

where u'?) is the displacement field for the piezoelectric material, p, is the mass density,
TmI and D are the stress tensor and the electric displacement field, respectively, given by
the constitutive relations:

T =@ v u@ie.vv, D=e:vu®_cvv. 6)

In the above relations, V denotes the electrostatic potential, ¢ the stiffness tensor, e the

piezoelectric stress tensor and & the dielectric tensor (for a piezoelectric material of crystal
class 6 are given in Ref. [2]).



Using the methodology proposed in Ref.[2], we can find a wave-type solution in the form
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where the coefficients ciff_.kl-_j (i,j.p.g=1234) depend on 1,02 and the material
constants. Substituting Eqs. (7) into the constitutive relations (6) we can calculate the
components of the stress tensor T1) and the electric displacement vector D.

4. BOUNDARY CONDITIONS
The unknown coefficients entering the solution of the field equations are determined by the
boundary conditions. We assume that the lateral surfaces S,. S5 and S, are stress-free and

that §, and S; are coated with electrodes which are shorted. Also it is assumed that

continuity conditions apply on §;, while the plane surface S;’ is stress free. Finally, for the
surfaces §5 and S5’ we can impose two sets of boundary conditions:

(i) {2}'_”;3}_ {2}_
iy r1@=18 —uﬂ 0.



It can be proved that the (i) set of boundary conditions implies that the parameter i =1,2 in
the expressions of the solution (7) (odd solution), while the set of boundary conditions (ii)

implies 7 = 3.4 (even solution).
On the surface S, the following conditions are hold:
1 1 1)
=1l =70 =0, ®)
Introducing the solution (7) in the above conditions, we are leading for every pair m,i to a
system of algebraic equations
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In order that the system (9) to have non-trivial solutions the following equation must be
satisfied

det{D?’ (€2, 2)} =0 (10)

This equation discretizes the continuous range of A in the expressions (2) to be transformed
to sums over the possihle values of 4's which form the sequence
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On the lateral surfaces S,, S5 the following boundary conditions are hold:
Tif}=T§fj=Tf§}'=ﬂ=V (11)

When the appropriate solution for the stresses and electrostatic potential are substituted into
these boundary conditions we obtain for each pair m.{ the system

T (2)=0 (12)

where
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In order that the system (12) to have non-trivial solutions the following equation must be
satisfied

det{l} (Q.2) } (13)

This Equation Bives rise to a sequence
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of the posmbif: values of A for every value of Q.
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Since the boundary conditions examined until now, have discretized the parameter A, the
cowespondinﬂ coefficients in the expressions (2) and (7) depend on n giving
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The remaining boundary conditions are the following:
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These boundary conditions are satisfied by making the solution orthogonal to a complete set
of functions J,(&,x), where &,k =12,... stand for the roots of equation Jo(ZR)=0 [8,

9]. After projecting equations (14) onto the basis Jg(&,x) we obtain, for each m, an infinite
system of algebraic equations

D™ (™ =0, (15)
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Truncating suitably the system (15) we obtain a sequence of linear algebraic homogeneous
systems of increasing dimension N:

D (@) =0. kel
which lead to the equations
det}D? (Q)}=0, N=123,... (17)

The truncated system (17) is solved numerically to provide with the shown frequency Q [&].

Acknowledgements: This work is partially supported by the European Commission (IST -
2000 - 26350: USBone A Remotely Monitored Wearable Ultrasound Device for the
Monitoring and Acceleration of Bone Healing).

6. REFERENCES

[1] Ambardar, A. and Ferris C. D. Wave Propagation in a Piezoelectric Two-Layered
Cylindrical Shell with Hexagonal Symmetry: Some Implications for Long Bone, .
Acoust, Soc. Am. 63(3), T81-792 (1978).

[2] Fotiadis, D. I, Foutsitzi, G. and Massalas, C. V. Wave Propagation Modelling in
Human Long Bone, Acta Mechanica 137, 65-81 (1999).

[3] Paul, H. S. and Venkatensan, M. Wave Propagation in a Piezoelectric Bone with a
Cylindrical Cavity of Arbitrary Shape, Int. J. of Engng. Sci. 29, 1601-1607 (1991).

[4] Paul, H. S. and Venkatensan, M. Wave Propagation in a Piezoelectric Human Bone of
Arbitrary Cross Section with a Circular Cylindrical Cavity, J. Acoust. Soc. Am. &9,
196-199 (1991).

[5] Fotadis, D. L, Foutsitzi, G. and Massalas, C. V. Wave Propagation in a Piezoelectric
Bone of Arbitrary Cross Section, Int. J. Engng. Sci. 38, 1553-1391 (2000).

[6] Paul, H. S. and Natarajan, K. J. Axisymmetric Free Vibrations of Piezoelectric Finite
Cylindrical Bone, J. Acoust. Soc Am. 96(1), 213-220 (1994).

[7] Charalambopoulos, A., Fotiadis, D. . and Massalas, C.V. Wave Propagation in
Human Long Bones, Acta Mechanica XXX, 1-17 (1999).

[8] Charalambopoulos, A., Fotiadis, D. I. and Massalas, C.V. The Evolution of Dynamic
Characteristics during the Bone Healing Process (submitted).

[9] Hutchinson, J. R. Axisymmetric Vibrations of a Free Finite-Length Rod, J Acoust.
Soc. Am. 51, 233-240 (1972).



