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Abstract

A theoretical analysis of the surface bone remodeling induced by the insertion of a cylindrical
implant into the medulla of a long hollow cylinder bone model is presented. The bone is
treated as a poroelastic material using Biot's formulation of the theory of consolidation. The
theory of small-strain adaptive elasticity proposed by Cowin er al. is employed to develop a
new theoretical approach for surface remodeling. Our results predict the movement of the
endosteal and periosteal surfaces with remodeling time for various values of porosity, initial

radii and thickness of the bone.
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1. Introduction

Under the general term bone remodeling, all the processes by which the adult shape, structure
and form of a bone is influenced by the mechanical circumstances to which it is subjected, are
included. Although these processes occur simultaneously and cannot be separated, the
distinction made by Frost [1] between surface and internal remodeling can be adopted to
distinguish between the changes in geometry and material properties of the bone tissue as a
result of the changes in its loading environment. Under this convention, surface or external
remodeling is the process which results in a change of external shape of the bone. This 1s due

to the resorption or deposition of bone material on the endosteal and periosteal surfaces.

The causal relationship between the shape changes of a long bone such as the femur and its
loading induced by the forced fit of an endoprosthesis into its medulla was early addressed by
Cowin and Van Buskirk [2]. Their approach was based on the small-strain approximation [3]
of the thermomechanical continuum theory of adaptive elasticity [4. 5]. Using a simplified
geometry of the bone-implant system and treating bone as a porous elastic solid, they
predicted the changes in the external shape of the bone model as a result of the insertion of
the implant. According to their hypothesis, the rate of the chemical reactions responsible for
bone deposition or resorption on the endosteum and periosteum is proportional to the strain in

these surfaces.

Theoretical predictions of the surface bone remodeling in the diaphysis of a long bone under a
constant superposed compressive load have been made by Cowin et al.[6]. They have shown
theoretically that, for different values of the superposed compressive stress and surface
remodeling rate coefficients, all types of surface movement are possible. This has been
verified by the experimental observations of Woo et al. [7]. Uthoft er al.. [8] and Jaworski er
al. [9] which indicate that there is a variety of possible movements for the endosteal and

periosteal surfaces. Different kinds of variations of the endosteal and periosteal surfaces have



also been illustrated by Cowin er al [10]. Misra J.C. er al. [11] have studied the effects of
cross sectional non-uniformity and the anisotropy of osseous tissues on the remodeling of

diaphyseal surfaces of a specimen of long tubular bone.

In this work a new approach of surface remodeling induced by a cylindrical implant is
presented. Our objective is to develop a new theoretical model of surface bone remodeling
where the role of the fluid part is evident and make predictions about the progress of the
surface bone remodeling process, expressed as the change of the endosteum and periosteum
radii with time. In the proposed model, a simple geometry of a hollow circular cylinder for
the bone and a solid circular cylinder for the endoprosthesis has been employed. Bone is
treated as a porous elastic deformable solid in the pores of which a viscous compressible fluid
flows, using Biot's formulation of the theory of consolidation [12, 13, 14]. The theory of
small-strain adaptive elasticity [3], is appropriately modified in order to incorporate the fluid
part according to the new material description. The basic equations of the new theory for
surface remodeling are formulated. To predict the movements of the endosteal and periosteal
surfaces due to the endoprosthesis force fitted into the medulla a situation is considered where
there is a constant axial force applied to the hollow circular cylinder in addition to the stress
on the interior surface due to the endoprosthesis. The material coefficients are considered
constants while the radii of the hollow cvlinder vary with time. The initial value problem of a
coupled system of first order differential equations is numerically solved to obtain the
evolution of the endosteum and periosteum radii with time. The movement of the endosteal
and periosteal surfaces with remodeling time is predicted for various values of porosity, initial

radii and bone thickness.



2. Theoretical Background

The basic set of equations in the theory of surface bone remodeling as described by Cowin
and Van Buskirk [2], consists of the constitutive equations, the kinematic relations, the stress
equations of equilibrium and the constitutive equation for the speed of the remodeling
surface. Assuming that the bone is a porous isotropic solid that contains a viscous
compressible fluid, the above mentioned set of equations is reformulated by using the theory
of consolidation introduced by Biot [12, 13], in cylindrical coordinates. We describe this

procedure below,

The stress tensor in a porous material is

F=T +61T, (1

where & , is the Kronecker’s symbol and I represents the total normal force applied to the

fluid part of the faces of a cube of unit size of the bulk material.

If pis the hydrostatic pressure of the fluid in the pores we may write

r=-jp. (2)

where f is the porosity defined as
f=vV,v,. 3)

where V, is the volume of the pores contained in a sample of bulk volume V,. Thus, f

represents the fraction of the volume of the porous material occupied by the pores.

This system of solid and fluid is a general system which has conservation properties. The
solid part is considered to have compressibility and shearing rigidity and the fluid is

compressible. The deformation of a unit cube is assumed to be completely reversible, By



deformation is meant here the one determined by the strain tensors in the solid and in the fluid

[15].
The kinematic relations for the solid part are
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where u,, Uy, u, are the average displacement components and £, 1, j =r,0,z, are the

strain components of the solid.

Similar relations hold for the fluid part with U,, U,, U, and E,. 0, j= r,0,z . denoting the

average displacement components and the strains of the fluid. respectively.
The stress-strain equations for an isotropic poroelastic material are given as

T, =2NE, +AE+Q¢,
T,, =2NE,, + AE +O¢ ,

T_=2NE_+AE+Qe¢,

T, = NE,.

T, = NE.,, (5)
T,=NE,,

T=QE+Re,

where A, N, R, Q are the elastic constants of the material, in accordance with Biot's

formulation [12-15] and £ and £ are the dilatations of the solid and fluid, that is,



E=E _+Eg +E.., (6)
and

E=E, +Ey+E_, (7
respectively.

We note that Eq. (7) does not provide the actual strain in the fluid but the divergence of the
fluid-displacement field which is derived from the average volume flow through the pores

[15].

Inversely, the isotropic strain-stress relations are

E, = L{{qum T,+T, )——(3q+1)r} (8)

and

E=E_ +E,+E. =—2—lﬁ{(3q+1)i‘"” +(3g+1)T, +(3g +1)T., —3—5—{3q+1)r}. )

e=—0s(T, +T, +T.) {—+-— 7. (10)



where
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The total stress field of the bulk material, in the absence of body forces, satisfies the

equilibrium equations
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Darcy’s law governing the flow of a fluid in a porous isotropic material, for non-existing

body forces. is given as
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where C is a constant that depends on the permeability K, the porosity f of the medium and

the viscosity 1 of the fluid [16, 17]. that is

(14)

Eq. (5) can be written in matrix form as
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s0 that the following relationship is satisfied,
2N +A4+Q), +(4+Q)x, +(4+Q)x, =0+R
(A+Q), +(2N+A+Q)x, +(A+0), =Q+R } = x, =x, =x, =%. (16)
(A+0 +(A+0), +(2N+ A+Q)x, =Q+R
Thus, the stress-strain relations for the isotropic poroelastic bone can be written as
(r,+8,7)= C,_..m(E,m -3, —;Q-Lt"] ; (17)
| IN+34+30

In analogy to Cowin and Van Buskirk's theory of surface remodeling [2] and using Eq. (17)

the constitutive equation for the speed of the remodeling surface can be written as

U—E,},(n,P{Ey(P) 9, 2N+3.4+BQE[P} E;(P)-9, 2N+3A+3QE( ). a®



where EJ(P)-38 O +A

J. —EG(P] is a reference value of strain where no remodeling
"2N+34+30

occurs and C, (n, P) are surface remodeling rate coefficients which, in general, depend on

the point P and the normal nto the surface at P.

In eylindrical coordinates, this expression can be written as
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In terms of stress, the constitutive equation for the speed of the remodeling surface can be

written as
U=B.T. +B . +B.T +B . T ,+B. T +B.T. +8BT— (21)

where

B .= L,(I+q)+LQS C,+ 1 g+ S Os (Co +C..),
2N 2N+34+30 2N~ 2N +34+30 -

1 O+R 1 O+R
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We assume that the term BT must equivalently contribute to the terms B T . B, T, and

B_T._ . so that the constitutive equation for the speed of the remodeling surface can be

written in terms of stress as follows
U=B(T,+T)+B,(T,+T)+B_(T.+T)+B,T,+B.T_+B.T, -C". (23)
It holds

+1 +3L
2N 2N +34+30

QS}(C,, +Cp+Cy). @
Equation (23) is satisfied only if
B=B +By+B,, 23

which, using Eq. (22), is equivalent to the constraint

R(34+4N)=30". (26)
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3 Formulation of the implant problem

In this section we apply the theoretical results obtained in the previous section to predict the
movements of the endosteal and periosteal surfaces in the diaphyseal region of a long bone
due to a cylindrical implant force-fitted into the medulla. We assume that the diaphyseal

region of a long bone is a hollow circular cylinder of isotropic poroelastic material (bone) of
initial endosteal and periosteal radii @, and b, . respectively (Fig. 1). The cylindrical implant

is assumed to be an isotropic linear elastic material with Lamé’s constants A and y and
initial radius a, :—% . The internal and external radii of the hollow cylinder as functions of

time { are denoted by a(r}and b(f)_. respectively. They correspond to the radii of the

endosteal and periosteal surfaces at time 1.

We consider the situation where there is a constant axial force P applied to the hollow
cylinder in addition to the stress on the interior surface due to the implant (Fig. 2). The
solution to this problem has been given by Papathanasopoulou et al. [18]. The displacement
of the hollow cylinder in the circumferential or hoop direction is zero. The components of the
displacement vector for the solid and fluid part in the radial and axial directions are given [18]
a5

1
=m"f

U, = (Q T R}(Bﬁf| (mr)+ B.K, (”Ir)}”zeT - 4, {r}r N Al(r)%’

(27)
U, = ‘_(EN +A+ QXBﬁI:I (mr}"i' B.K, (mr)}mle% — 4, (f )r— A (I }l =
"
and
u_ ==D (I):
(28)
U.=-D,(1)z
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where A, (1), A,().D,(t)D, {a‘)arf: given in Appendix I, B;, B, are constants, r is the radial

distance from the long axis of the cylinder and m is a parameter that must satisfy the

equation [ 18],

1,(ma)K, (mb)~I,(mb)K, (ma)=0. (29)

where 1, (ma), 1, (mb) and K, (ma). K, (mb) are modified Bessel functions of the first and

second kind, respectively, of order one.
The parameter & is given [18] as

C(2N +20+R+ 4)
Q* —2NR - AR

(30)
where C is the constant in Darcy's law.

In the case under discussion the material coefficients are constant while the radii of the

hollow cylinder vary with time.

The surface remodeling equation (23) will determine the changes in @ and b with time. For
the endosteal surface, Eq. (23) can be written in the following form

U,=B, (T, +T)+B_ (T, +T)-C", (31)
while for the periosteal surface we can write that

U,=B_(T,+T)+ B T.+T)-C). (32)

&

The speeds normal to the endosteal and periosteal surfaces can be written as time derivatives

of a(t)and bl(t). respectively,

12



U =-—, U,=—. 69

When Eqgs (4). (5), (27), (28) and (33) are substituted into Eqs (31) and (32) two ordinary

differential equations for a( )and b(t) are obtained,

—mt i
~2N(Q+R)n’e * (Bﬁ-l—fl(ma)+3.,lﬂj(ma]}-
L a i}
da 1
—?=B,, —2N(N+A+20+R)A 1)+ 2NA, (1) —-
iy b a
-(A+20+R)D,(t)-(Q+R)O
(34)
-B_P
- ——x—=R-T
b —a” G
and
( G g 1
_2N(Q+R)me : {a@;] (nb)+ B, K (mb)]—
db 1
= =B, —2N(N+A+2Q+R]LA,[:}+2NA2(r}b—2—
-(A+20+R)D,1)-(0+R)®
“ (35)
~-B_P
Y. T—; 5 P
nlp® -a*)
where the stress in the axial direction of the hollow cylinder is given by [18]
T i A (36)
nlp® -a’

To solve the above differential system the values of the known parameters must be substituted
into Egs (34) and (35). This can be done by inserting A4, (a‘}, A, (r),Dl (t) given in Appendix I

into Egs (34) and (35) and taking [18]

13



_34+2N+60+3R
Q+R

&)

K,
. B, =1and B, =_3.,f_-{;’i*i} (37)
1

(ma)

The internal pressure p(r} is given as

¢
1 g— \P()-A, ] (38)

where A, A, and A, are given in Appendix II and P[r)is the axial force.

14



4. Numerical Solution and Results

In what follows the expressions of 4, N,(Q, R given by Biot and Willis [15] are employed,

that is
jﬂ-f—é] ﬂ 1+_f-’+(l—2f{l-g]
oL " k] L 1, x k) 2,
-2 L] ~g ? 3 = =
;-*.—:ﬁ—a— y+5—£}— }*+5—6— .
K K K
(39)
and N=u,

where [is the porosity, K the coefficient of jacketed compressibility, 8 the coefficient of

unjacketed compressibility, ¥ the coefficient of fluid content and i, the shear modulus of

bone.

Taking f = 0.02 and assuming that p, =5.5GPa, k =5.5(GPa)", 8 =0.02(GPa)", and

¥ =4.68(GPa)”" we obtain a numerical expression for N, 4,0 and R.

The material properties of the implant are taken as A, =120GPa and u » =80GPa [16].
The internal radius of the bone at 7=0is taken as a, =10mm and the external one as

by =15mm. The ratio of p to a,is assumed to be 0.005. The axial force is taken as a

constant and equal to P = 1631N . The internal pressure p can be calculated from Eq. (38).

Using Eq. (29) and the expressions for B, and B, , Eqs. (34) and (35) can be simplified to

&
da _ . .‘(—2N(N+A+zQ+R)AE{;)+zN_42(f}Lj— -B. P
L0 T

a5 w-a)
i b -a’ 8
(12204 RD0)-(0+R |

and



. :
1

= INI(N 4 i -B. P

db_ 2N(N+A+20+ R)A,(r]+2NA:(r]bz L =" BT, @

dt | _(4+20+R)D,(0)-(0+R)O J b’ ~a)

respectively.

The remodeling coefficients 5, ,B,, ,B.. ,B:__P are calculated from Eq. (22) by using the

values of the remodeling coefficients CJ}- and Cir} , where i, f=r.0,z, given by Misra er al.

[8], as

B, =-5.78697%10" ms"'GPa ',
B =2.60312x10ms"'GPa™", (42)

B, =-5.78697x10"ms™'GPa™,
and

B =-578697x10"ms"'GPa™" .

The values of the coefficients C., {:2 are calculated from the relations
(43)

where T is the initial reference value of stress before remodeling starts which is assumed to

be T, = —0.5MPa [10].

The system of Egs. (41) and (42) with initial conditions a(a‘=ﬂ'}:aﬂ = 0.01m and

bt =0)=b, = 0.015m is then numerically solved by using the Runge-Kutta method.

16



Figs. 3 and 4 show the variation of the endosteal and periosteal radius with time, respectively,
for constant initial endosteum radius and gradually increasing initial periosteum radius, for a

constant value of porosity f =0.02. It can be seen that as the time of remodeling evolves

both the endosteum and periosteum radius increases.

Figs. 5 and 6 show the variation of the endosteal and periosteal radius with time, respectively,
for constant initial bone thickness and gradually increasing initial periosteum and periosteum

radius, for a constant value of porosity f =0.02. The bone thickness increases with time but

the rate of increase is slower when the initial radii are larger as is shown in Fig. 7. Increase of

the porosity f causes no considerable change of the endosteum and periosteum radii in the

physiological (for bone) porosity range 0.02 to 0.03.

17



5. Discussion

A theoretical analysis of surface remodeling induced by the forced fit of a medullary pin in a
hollow cylindrical poroelastic bone model has been presented. A common situation when this
occurs is when an endoprosthesis is fitted into the medulla of a femoral bone. In the proposed
model, the bone is modelled as a hollow poroelastic isotropic cylinder, consisting of a solid
elastic bone matrix and interstitial fluid flowing through the interconnected pores inside the
matrix. The prosthesis is modelled as a solid elastic isotropic cylindrical rod which is forced
into the cylindrical cavity of the bone. The formulation of the problem is based on the three-
dimensional theory of consolidation for poroelastic media introduced by Biot [12, 13, 14]. A
constitutive relation for the poroelastic bone, which incorporates the surface bone remodeling
process is proposed. The contribution of the fluid term to the remodeling process is clearly
indicated. Using Biot and Willis [15] expression for the elastic constants of a poroelastic
medium and the Cowin et al. [2, 6] expression for the speed of the remodeling surfaces, a new

surface remodeling rate equation is proposed.

The values of the surface remodeling coefficients B, which have been employed have been

derived by making use of the values of the coefficients C y 8iven in Misra ef al. [11]. The

surface remodeling of the endosteal and periosteal surfaces is expressed as a temporal

variation of the radii of the corresponding cylindrical surfaces.

According to our results, both the periosteal and endosteal radii increase as the remodeling
evolves, which corresponds to bone deposited on the periosteum and absorbed from the
endosteum, as a result of the applied interior radial pressure from the medullary pin. This is
also predicted by other models presented [6, 11] and experimental studies [7, 8, 9, 10]. This
means that the insertion of the medullary pin will gradually cause bone loosening and finally
failure of the implant. Bone deposition on the periosteum is stronger than bone resorption on

the endosteum, which leads to net increase of bone thickness with remodeling.

18



Increasing the initial thickness of the bone matrix material lying between the endosteumn and
periosteumn surfaces for a constant periosteum radius results in more prominent remodeling on
the endosteum and periosteum. In this case, the percentage increase of the bone thickness is
larger. Keeping a constant initial thickness of the bone and gradually increasing the
periosteum and endosteum radius results in less prominent remodeling on the endosteum and
periosteum and the net bone thickness totally decreases. Finally, a variation of porosity in the
range 0.020 to 0.030 (normal for bone) causes no observable change in the depiction of

surface remodeling.

To owr knowledge, the present work constitutes the first attempt to introduce the
poroelasticity theory in the formulation of the problem of surface remodeling induced by a
medullary pin. The use of Biot’s formulation for the material description of bone offers a
direct visualisation of the contribution of the fluid term. The employment of values for the
surface remodeling rate coefficients derived using our model assumptions from corresponding
experimental values given in the literature, yields results whose order of magnitude lies
within the predicted experimental range for the endosteum and periosteum radius rate of
change. This is a clear indication that the suggested solution in our model allows a realistic

estimate of the relative rate of surface remodeling in a bone model.

The work presented here could be extended in the future to include a more realistic symmetry
for bone such as transverse isotropy or orthotropy [19]. In addition, the cavity of the hollow
poroelastic cylinder could be assumed to be filled with fluid which is free to flow in and out

of the pores of the bone matrix.



Appendix I
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(a) ib)

Figure 1: (a) a hollow isotropic poroelastic cylinder of initial internal radius @, and initial

external radius b, subjected to an internal radial pressure pfr).

(b) an elastic isotropic solid cylinder of radius a, +§ subjected to an external

radial pressure p(1).
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Figure 2: The poroelastic hollow cylinder is subjected to an axial load Pt} and a radial internal
pressure pit).
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Figure 3: Variation of the endosteum radius with time for constant initial periosteum radius and
gradually increasing bone thickness.
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Figure 4: WVariation of the periosteum radius with time for constant initial periosteum radius

and gradually increasing bone thickness.
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Variation of the endosteum radius with time for constant initial bone thickness and
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Variation of bone thickness with time for constant initial bone thickness and
gradually increasing endosteum and periosteum radius.
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