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Abstract: We consider two problems pertaining to Pj-comparability graphs, namely,
the problem of recognizing whether a simple undirected graph is a Pj-comparability graph
and the problem of producing an acyclic Pj-transitive orientation of a Pj-comparability
graph. These problems have been considered by Hoang and Reed who described O(n?) and
O(n®)-time algorithms for their solution respectively, where n is the number of vertices of
the given graph. Faster algorithms have recently been presented by Raschle and Simon;
the time complexity of their algorithms for either problem is O(n + m?), where m is the
number of edges of the graph.

In this paper, we describe different O(n + m?)-time algorithms for the recognition and
the acyclic Py-transitive orientation problems on Pj-comparability graphs. Instrumental
in these algorithms are structural relationships of the Pj-components of a graph, which
we establish and which are interesting in their own right. Our algorithms are simple, use
simple data structures, and have the advantage over those of Raschle and Simon in that
they are non-recursive, require linear space and admit efficient parallelization. Additionally,
we describe an algorithm which computes a maximum clique of a Fj-comparability graph
in O(n + m) time, assuming that an acyclic Pi-transitive orientation of the graph is given;
in fact, the algorithm is applicable to all perfectly orderable graphs, a superclass of the
Pi-comparability graphs.

Keywords: Perfectly orderable graphs, comparability graphs, Pj-comparability graphs,
Fj-components, recognition, Pj-transitive orientation, maximum clique, coloring.

1. Introduction

Let G = (V, E) be a simple non-trivial undirected graph. An orientation of the graph G is
an antisymmetric directed graph obtained from G by assigning a direction to each edge of
G. An orientation (V. F) of G is called transitive if it satisfies the following condition: if
abe is a ihordiﬁs path on 3 vertices in G, then F contains the directed edges ab and be, or
ab and be, where by uv or vu we denote an edge directed from u to v [12]. An orientation
of a graph G is called P;-transitive if the orientation of every chordless path on 4 vertices
of G is transitive; an orientation of such a path abed is transitive if and only if the path’s
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Figure 1: (a) a comparability graph; (b) a Pj-comparability graph (which
is not comparability); (c) a graph which is not Py-comparability.

edges are oriented in one of the following two ways: ab. be and (?&, or ab, be and cd. The
term borrows from the fact that a chordless path on 4 vertices is denoted by Fj.

A graph which admits an acyclic transitive orientation is called a comparability graph
(10,11,12,13]; Figure 1(a) depicts a comparability graph. A graph is a P;-comparability
graph if it admits an acyclic Pj-transitive orientation [16,17]. In light of these defini-
tions, every comparability graph is a Fj-comparability graph. Moreover, there exist Pj-
comparability graphs which are not comparability; Figure 1(b) depicts such a graph, which
is often referred to as a pyramid. The graph shown in Figure 1(c) is not a Py-comparability
graph.

In the early 1980s, Chvatal introduced the class of perfectly orderable graphs [5]; see also
[16,22,25]. These are the graphs for which there exists a perfect order on the set of their
vertices. An order on the vertex set of a graph G is called perfect if for each subgraph H
of G, the greedy algorithm computes an optimal coloring of H by processing the vertices
of & in that order. A coloring (or proper coloring) of a graph is an assignment of colors
to its vertices so that no two adjacent vertices have the same color. The greedy algorithm,
sometimes called the firsi-fit algorithm, receives the vertices of a graph G in some order
v < vy < ... < v, and works by assigning the smallest available color to the vertex wv;
looking at the subgraph of G induced by the vertex set {vi,vs,....v}, 1 < i < n; that
is, it assigns the smallest color not yet assigned to any vertex adjacent to v; among the
previously colored vertices and does not change the assigned color afterwards.

An order on the vertex set of a graph implies an orientation on the graph’s edges: if
u < v, then the edge connecting u and v is directed from u to v, i.e., uv. Chvatal proved
that

(i) a graph is perfectly orderable if and Uil].};_ if there exists an acyclic orientation such
that no Py abed of the graph has ab and cd (called obstruction), and

(ii) all perfectly orderable graphs are perfect; a graph G is said to be perfect if for each
induced subgraph H of G, the chromatic number of H equals the clique number of H.

The class of perfectly orderable graphs is very important since a number of problems which
are NP-complete in general can be solved in polynomial time on its members [1, 11,12, 15);
unfortunately, it is NP-complete to decide whether a graph admits a perfect order or,
equivalently, an acyclic obstruction-free orientation [22]. Chvétal showed that the class of
perfectly orderable graphs contains the comparability and the triangulated graphs [5]; thus,
it also contains important subclasses of these graphs, such as the bipartite, permutation,
interval, split, Pj-reducible, cographs, quasi-threshold and threshold graphs [3,6, 9,12, 30].
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Hoang and Reed introduced the classes of the Pj-comparability, the Pj-indifference, the
Py-simplicial and the Raspail graphs, and proved that they are all perfectly orderable [17];
the fact that the Pj-comparability graphs are perfectly orderable easily follows from prop-
erty (i) above, as the Pj-comparability graphs admit acyclic orientations that do not contain
obstructions. Moreover, the class of perfectly orderable graphs also includes a number of
other classes of graphs which are characterized by important algorithmic and structural
properties; we mention the classes of 2-threshold, brittle, co-chordal, weak bipolarizable,
distance hereditary, Meyniel N co-Meyniel, Pj-sparse [12]. Finally, since every perfectly
orderable graph is strongly perfect [5], the class of perfectly orderable graphs is a subclass
of the well-known class of perfect graphs.

Algorithms for many different problems on all the above mentioned subclasses of per-
fectly orderable graphs are available in the literature; for example, recognition algorithms
[7,14,18,19, 27], coloring algorithms [11, 15, 24], algorithms for finding vertex and edge sets
with specific properties (such as, maximum cliques, maximum weighted cliques, maximum
independent sets, Pj-chains, and hamiltonian paths and cycles) (2,4,14, 23, 26, algorithms
for testing graph isomorphism [12], etc. The comparability graphs in particular have been
the focus of much research which culminated into efficient recognition and orientation al-
gorithms [12, 20, 21, 29]. On the other hand, the Py-comparability graphs have not received
as much attention, despite the fact that the definitions of the comparability and the Fy-
comparability graphs rely on the same principles [8, 16, 17, 28].

Our main objective is to study the recognition and acyclic Pj-transitive orientation
problems on the class of Pij-comparability graphs. These problems have been addressed by
Hoang and Reed who described polynomial time algorithms for their solution [16,17]. The
algorithms are based on detecting whether the input graph G contains a “homogeneous
set” or a “good partition” and recursively solve the same problem on the graph that results
from the input graph after contraction of one or two vertex sets into a single vertex each.
The recognition and the orientation algorithms require O(n') and O(n®) time respectively,
where n is the number of vertices of &. Recently, newer results on these problems were
provided by Raschle and Simon [28]. Their algorithms work along the same lines, but they
focus on the Pj-components of the graph. In particular, for a non-trivial Py-component C
of the input graph G, they compute the set R of vertices adjacent to some but not all the
vertices of C; depending on whether R is empty or not, they contract C into one or two
(non-adjacent) vertices and they recursively solve the problem on the resulting graph. The
time complexity of their algorithms for either problem is O(n+m?), where m is the number
of edges of G, as it is dominated by the time to compute the Py-components of G. Raschle
and Simon also described recognition and orientation algorithms for Py-indifference graphs
[28]; their algorithms run within the same time complexity, i.e., O(n +m?). We note that
Ho#ng and Reed [16, 17| also presented algorithms which solve the recognition problem for
Py-indifference graphs in O(n?) time.

In this paper, we present different O(n + m?)-time recognition and acyclic Pj-transitive
orientation algorithms for Py-comparability graphs of n vertices and m edges. Our technique
relies on the computation of the Pj-components of the input graph and takes advantage
of structural relationships of these components. Note that our algorithms employ neither
contraction nor recursion. Our algorithms are simple, use simple data structures, and have
the advantage over those of Raschle and Simon in that they are non-recursive, require linear
space and admit efficient parallelization.



We are also interested in the coloring and the maximum clique problems on the Py-
comparability graphs. According to the definition, for a perfectly orderable graph G there
exists a perfect order on its vertex set V((); if a perfect order is given then the greedy
algorithm produces an optimal coloring of G in linear time. Chvétal [5] proved the following
result: Let [/ be a set of pairwise adjacent vertices of a graph G such that each w € U
has a neighbor p(w) € U and the vertices p(w) are pairwise non-adjacent; if there exists
a perfect order < such that p(w) < w for all w € U then some p(w) is adjacent to all
the vertices in /. Based on this, he also observed that, for a perfectly orderable graph
with chromatic number k, if H is a clique consisting of vertices with colors e, e+ 1, ..., k
then there exists a vertex with color ¢ — 1 which is adjacent to all the vertices of H. This
observation directly leads into an algorithm, which, given a graph G and a perfect order
on V(G), finds a maximum clique of G. As mentioned in [17], it is easy to see that this
algorithm can be made to run in O(n?) time. Here, we show how Chvétal’s observation
can be used to yield an O(n + m)-time algorithin for the maximum clique problem on a
perfectly orderable graph G if a perfect order on the vertices of G is given.

The paper is structured as follows. In Section 2 we review the terminology that we will
be using throughout the paper and we establish the theoretical framework on which our
algorithms are based. We describe and analyze the recognition and orientation algorithms
in Sections 3 and 4 respectively. In Section 5 we present the maximum clique algorithm.
We conclude with Section 6 which summarizes our results and addresses extensions and
open problems.

2. Theoretical Framework

Let G = (V,E) be a simple non-trivial connected graph on n vertices and m edges. A
path in G is a sequence of vertices (vg,vy,...,v;) such that v,_u;, € Efori = 1,2,...,k;
we say that this is a path from vy to vy and that its length is k. A path is undirected or
directed depending on whether 7 is an undirected or a directed graph. A path is called
simple if none of its vertices occurs more than once; it is called frivial if its length is equal
to 0. A path (simple path) (vp,vy....,v;) is called a cycle (simple cycle) of length k + 1
if wovx € E. A simple path (cycle) (vo,v1,...,vx) is chordless if v;u; € E for any two
non-consecutive vertices v;, v; in the path (cycle). Throughout the paper, the chordless
path (chordless cycle, respectively) on n vertices is denoted by F, (C,, respectively). In
particular, a chordless path on 4 vertices is denoted by F;.

Let abed be a Py of a graph G. The vertices b and ¢ are called midpoints and the vertices
a and d endpoints of the Py abed. The edge connecting the midpoints of a P, is called the rib;
the other two edges (which are incident to the endpoints) are called the wings. For example,
the edge bc is the rib and the edges ab and ed are the wings of the Fy abed. Two Fys are
called adjacent if they have an edge in common. The transitive closure of the adjacency
relation is an equivalence relation on the set of Pys of a graph G; the subgraphs of G spanned
by the edges of the Fys in the equivalence classes are the P;-components of G. With slight
abuse of terminology, we consider that an edge which does not belong to any P, belongs to
a Py-component by itself; such a component is called trivial. A Py-component which is not
trivial is called non-trivial; clearly a non-trivial Py-component contains at least one Py. If
the set of midpoints and the set of endpoints of the Pys of a non-trivial P;-component C

define a partition of the vertex set V(C), then the Pj-component C is called separable. One
can show that:



Lemma 2.1. Let G = (V,E) be a graph and let C be a non-trivial Py-component of G.
Then,

(i) If p and p’ are two Pys which both belong to C, then there erists a sequence p, py, ...
Pk, ¢ of adjacent Pys in C;

(ii) C is connected;

(iit) If C is separable and if Vi and V5 are the sets of the midpoints and of the endpoints
of the Pys in C, then for every verter v € Vi there exists a vertex v’ € Vo such that
v’ & E, and for every verter u € Vo there exists a vertez u' € V] such that uu' ¢ E.

Proof: (i) True, because the P;-components of G are defined in terms of the equivalence
classes of the transitive closure of the adjacency relation on the Pys of G. (ii) Follows
directly from (i). (iii) Since v € V], there exists a Py p in C with v as one of its midpoints.
Then, v’ is the endpoint of p which is not adjacent to v. Similarly, if u € V5, there exists a
P; ¢ in C with u as one of its endpoints; then, u’ is the midpoint of ¢/ which is not adjacent
to u. 1

The definition of a Pj-comparability graph requires that such a graph admit an acyclic
Pjy-transitive orientation. However, Hoang and Reed [17] showed that in order to determine
whether a graph is a Pj-comparability graph one can restrict one’s attention to the FPi-
components of the graph. In particular, what they proved ([17], Theorem 3.1) can be
paraphrased in terms of the Pij-components as follows:

Lemma 2.2. ([17]) Let G be a graph such that each of its P;-components admits an
acyclic Pyj-transitive orientation. Then G is a Py-comparability graph.

Although determining that each of the Pj-components of a graph admits an acyclic Py-
transitive orientation suffices to establish that the graph is Pj-comparability, the directed
graph produced by placing the oriented Fy-components together may contain cycles. How-
ever, an acyclic Psy-transitive orientation of the entire graph can be obtained by inversion
of the orientation of some of the Py-components. Therefore, if one wishes to compute an
acyclic Pj-transitive orientation of a Pj-comparability graph, one needs to detect directed
cycles (if they exist) formed by edges belonging to more than one Fy-component and ap-
propriately invert the orientation of one or more of these Pj-components. Fortunately, one
does not need to consider arbitrarily long cycles as shown in the following lemma [17)].

Lemma 2.3. ([17], Lemma 3.5) If a proper orientation of an interesting graph is cyclic,
then it contains a directed triangle.!

Given a non-trivial Py-component C of a graph G = (V, E), the set of vertices V — V(C)
can be partitioned into three sets:

(i) R contains the vertices of V' — V(C) which are adjacent to some (but not all) of the
vertices in V(C),

! An orientation is proper if the orientation of every P is transitive. A graph is interesting if the

orientation of every Py-component is acyclic,



Figure 2: Partition of the vertex set with respect to a separable Pj-component C.

(ii) P contains the vertices of V' — V/(C) which are adjacent to all the vertices in V(C),
and

(iii) @ contains the vertices of V' — V/(C) which are not adjacent to any of the vertices in
V(C).

The adjacency relation is considered in terms of the given graph G.

In [28], Raschle and Simon showed that, given a non-trivial Pj-component C and a vertex
v & V(C), if v is adjacent to the midpoints of a P; of C and is not adjacent to its endpoints,
then v does so with respect to every Py in C (that is, v 1s adjacent to the midpoints and not
adjacent to the endpoints of every Py in C). This implies that any vertex of G, which does
not belong to C and is adjacent to at least one but not all the vertices in V(C), is adjacent
to the midpoints of all the Pys in C. Based on that, Raschle and Simon showed that:

Lemma 2.4. ([28], Corollary 3.3) Let C be a non-trivial Pi-component and R # (.
Then, C is separable and every vertez in R is Vi-universal and Va-null®. Moreover, no edge
between R and @) exists,

The set V] is the set of the midpoints of all the Pys in C, whereas the set V5 is the set of
endpoints. Figure 2 shows the partition of the vertices of a graph with respect to a separable
Py-component C; the dashed segments between R and P and P and @ indicate that there
may be edges between pairs of vertices in the corresponding sets. Then, a Py with at least
one but not all its vertices in V(C) must be a Py of one of the following types:

type (1)  vpqige where v€V(C), pEP, q1,02€Q

type (2) pLUpag where pe P, ve V(C), p2€ P, g€ Q
type (3) pivapar where py € P, o€V, pp€P, r€R
type (4) vaprITY where e € Va, pe P, ri,;2 e R

type (5) TP where re R, eV, pe P, ge@

2 For a set A of vertices, we say that a vertex v is A-universal if v is adjacent to every element of A; a

vertex v is A-null if v is adjacent to no element of A.



type (6)  ruipws where r€R, vy €V), pEP, weWs
type (7) | Uz‘u’z where r € B, vy € Vi, o, 1.’2 eV
type (3) VTV where re R, v;,v €V, 2 € W5

Raschle and Simon proved that neither a P; abe with a € V; and b, ¢ € Vs nor a P abe
with a, b € V; and ¢ € V; exists ([28], Lemma 3.4), which implies that:

Lemma 2.5. Let C be a non-trivial P;-component of a graph G = (V, E). Then, no Pys
of type (7) or (8) with respect to C exist.

Additionally, Raschle and Simon proved the following interesting result regarding the
Py-components.

Lemma 2.6. ([28], Theorem 3.6) Tuwo different Pi-components have different vertexr
sefs.

Moreover, we can show the following:

Lemma 2.7. Let A and B be two non-trivial Pj-components of the graph G. If the
component A contains an edge € both endpoints of which belong to the verter set V(B) of
B, then V(A) C V(B).

Proof: Suppose for contradiction that there exists a vertex v of A which does not belong
to V(B). Let us consider the Py p of A which contains the edge e. If p has a vertex which
does not belong to V(B), then it has at least one but not all its vertices in V(B), and it
thus is a P, of type (1)-(6) with respect to B (according to Lemma 2.5, no P;s of type (7)
or (8) exist); this is impossible, however, since no P of type (1)-(6) with respect to B has
an edge both endpoints of which belong to V(B). Therefore, all the vertices of p belong
to V(B). Next, we consider P;s adjacent to p, and, for as long as these Fys have all their
vertices in V(B), we keep considering adjacent FPys. Since A contains the vertex v which
does not belong to V(B), eventually we will find a Py of A with a vertex not in V(B). Let
us consider the first such P; that we find. By definition, this Py has a vertex not in V' (B);
moreover, since it is the first such Py, it is adjacent to a Py all of whose vertices belong to
V(B), and it thus contains an edge both endpoints of which belong to V(B). This, however,
leads to a contradiction, since this Py should be of type (1)-(6) with respect to B, and yet
no such Py has an edge both endpoints of which belong to V(B). g

Let us consider a non-trivial Py-component C of the graph G such that V(C) C V, and
let S¢ be the set of non-trivial Py-components of G which have a vertex in V(C) and a
vertex in V' — V(C). Then, each component in Sg contains a Py of type (1)-(8), and thus,
by taking Lemma 2.5 into account, we can partition the elements of 5- into two sets as
follows:

o Fi-components of type A: the Py components, each of which contains at least one Py
of type (1)-(5) with respect to C;

e P;-components of type B: the Pj-components which contain only Pjs of type (6) with
respect to C.

=]



The following lemmata establish properties of Py-components of type A and of type B.

Lemma 2.8. Let C be a non-trivial Py-component of a Py-comparability graph G = (V, E)
and suppose that the vertices in V — V(C) have been partitioned into sets R, P, and Q as
deseribed earlier in this section. Then, if there erisis an edge rv {where x € RU P and
v € V(C)) that belongs to a Py-component A of type A, then all the edges, which connect the
verter = to a vertex in V(C), belong to A. Moreover, these edges are all oriented towards =
or they are all oriented away from r.

Proof: Let ru be an edge of G connecting the vertex r to the vertex u in V(). Since
u € V(C), there exists a vertex w in V(C) such that u and w are not adjacent and they do
not both belong to ¥V} or V5 (Lemma 2.1, statement (iii)). We show below that zu belongs
to A and has the same orientation as ru.

(a) z € RB: Then, u € V;, w € V2 and the edge zv participates in a P; of type (5) or
(6). If it participates in a Py of type (5), say, in zvpg (p € P, g € Q), then the path
rupqg is also a Py and therefore the edge xu belongs to .4 as well and has the same
orientation as rv. Suppose now that zv participates in a Py of type (6), say, in zvpv’,
where p € P and v' £ V; (Fig-
ure 3). Then, since zv belongs to

the Pj-component A, which is of e D@
type A and therefore contains a F) Y
of type (1)-(5), there exists a se- My

quence S of adjacent Fys from the
P; zvpt' to a Py of type (1)-(5)
(Lemma 2.1, statement (i)). With-
out loss of generality, we may as-
sume that all the Pis in the se-
quence & except for the last one are
Pys of type (6); otherwise, we con-
gider the prefix of the sequence up
to the first Py of type (1)-(5). Let Figure 3
the sequence S be

zupy’ = rivipv], Tavapath, ..., TRURDKVL, 9

where r; € R, v; € Vi, p; € P, v; € V3, and p is a Py of type (1)-(5) adjacent to
TeURprvL. Clearly, all these Pys belong to the component A. Because each Py rivip;v]
has one vertex from each one of four disjoint sets, the Pys ryvip;v; and vy vi i vl 1
which are adjacent, share an edge which is either a rib or a wing to both of them. So,
the adjacency of ryvip;v; and ri41vis1pi41v;,, implies that r; = ryy; and v; = vi4,
or v; = vi+1 and P = Pis1, OF P; = piy1 and v} = vj,;. Let us now consider the
sequence S’ of paths

TUpWw = Mupw, TaUpew, ..., TRUPRW.
It is not difficult to see that each of these paths is a Py: rju€ E, pju € E, pjw € E,

uw & E, r;w € E, and, from the sequence S, rjp; € E. Moreover, any two consecutive
paths in S are adjacent; note that the adjacency of ryvpiv; and rip1vipipisiviy,; in
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S implies that r; = r;4; or p; = pis1 or both, which in turn implies that the Pys
riup;w and rjoqupigw are adjacent. Finally, the fact that every element of P is
(V1 U V3 )-universal and that every element of R is Vi-universal and Vi-null implies
that the path o/, which results from p if we replace v by u and v} by w, is a Py as
well. Moreover, o' is adjacent to rrpupgw (since p is adjacent to rrvgpivy,), and p and
¢ are Pjs of the same type and thus they have three vertices in common, as it follows
from the general form of the Fys of type (1)-(5). Therefore, p and p' are adjacent, they
belong to the same Py-component 4 and they have corresponding orientations; then,
the edges riu; and riu of their adjacent Pys rpupprvy and rpuprw are oriented either
both towards ry or both away from it. In turn, the sequences 5 and 5’ of P;s imply
that the edges rv and zu belong to the same Pj-component and they are oriented
either both towards x or both away from it, as desired.

(b) = € P and v, u both belong to V] or both belong to Va: Then, rv participates in a Py
of type (1)-(6). If it participates in a Py, say, p, of type (1)-(5), then the path which
results from p after replacing v by u is a Py, is of the same type as p, and is adjacent
to p. Therefore, the edges rv and ru belong to the same component .4 and have the
same orientation. Suppose now that zv participates in a P; of type (6). We consider
first the case where v,u € V7. Since v € V}, there exists a vertex v’ such that v’ € V5
and vv' € F (Lemma 2.1, statement (iii)). Then, the path rvzv’ is a Py and belongs
to A (edge zrv). Case (a) applies for the edges rv and ru, implying that they belong
to A and they are oriented either both towards their common endpoint or both away
from it. Then, so do the edges zv and zu because of the Pys rurv’ and ruzw. We
work similarly in the second case, where v.u € V5; this time we consider the Pys rv'zv
and rwzru.

(c) € P,ve V]and u € V5: Then, xv participates in a Py, say, p, of type (1), (2), (5) or
(6). If pis of type (1) or (2), then we work as in the first subcase of Case (b): replacing
v by u in p yvields a Py, which together with p ensures that the edges zv and zu belong
to the same Fy-component A and have the same orientation. If p is of type (5) or (6),
i.e., of the form rvzg or rvzv’ respectively (r € R, ¢ € Q, v' € V3), then we consider
the path rwru which is a Py; note that w € V] since u € Vo. The lemma follows if
we show that the edges rv and rw belong to the same Pj-component 4 and have the
same orientation; this is established in Case (a) above.

(d) z € P, v € Vz and u € Vj: Then, zv participates in a Py, say, p, of type (1)-(4) or (6).
If p is of type (1) or (2), then we work as in the first subcase of Case (b): we replace
v by u in p and we get a Py o' adjacent to p; then, the edge rw belongs to ¢’ and has
the same orientation as zv. Suppose now that p is of type (3), (4), or (6), i.e., zvpr
or pvzr, verr’, rv'zv respectively (r,r’ € R, p€ P, v' € V3). In each of these cases,
the path ruzw is a Py; note that w € V; since u € V;. Therefore, the edges zu and
rw are oriented either both towards x or both away from it. The lemma follows by
noting that Case (b) implies that the edges zv and zw belong to A and are oriented
either both towards r or both away from it.

Lemma 2.9. Let B and C be two non-trivial Py-components of the graph G such that B is
of type B with respect to C. Then,



(i) both B and C are separable;
(it) every edge of B has exactly one endpoint in V(C);

(i) if an edge of B is oriented towards its endpoint that belongs to V(C), then so do all
the edges of B;

(iv) the edges of B incident upon the same verter v are all oriented either towards v or
away from it

Proof: (i) Since B is of type B with respect to C, then R # 0; thus, C is separable in
accordance with Lemma 2.4. Additionally, since all the Pijs of B are of type (6) with
respect to C, then the midpoints of all these Pys are either midpoints of C or belong to P,
whereas the endpoints are either endpoints of C or belong to R; thus, B is separable as well.

(ii) Clearly true, because of the general form of the P;s of type (6).

(iii) Let e be the edge of B which is oriented towards its endpoint that belongs to V(C).
Clearly, all the edges of the P; to which e belongs are oriented towards their endpoint
which belongs to V(C) as well. The truth of the statement follows from the fact that a Py
of type (6) has one vertex from each one of four disjoint sets and therefore two adjacent Pys
share an edge that is a rib or a wing to both of them.

(iv) Follows easily from statement (iii): if v € V/(C), then all the edges of B incident upon
v are oriented towards v; otherwise, they are oriented away from v. g

Lemma 2.10. Let B and C be two non-trivial P;-components of the graph G such that
\V(B)| = [V(C)| and let 8 = ¥ cv () dB(v), where dg(v) denotes the number of edges of B
which are incident upon v. Then, B is of type B with respect to C if and only if 3 = |E(B)|.

Proof: Clearly, if B is of type B with respect to C, then 8 = |E(B)|; note that each edge
of a Py of type (6) with respect to C has exactly one of its endpoints in V(C) (Lemma 2.9,
statement(ii)). Suppose now that 3 = |E(B)|; we will show that B is of type B with respect
to C. Since 3 = |E(B)|, the Pj-component B contains at least one vertex not in V(C);
otherwise, V(B) = V(C) and 3 would be equal to 2|E(B)|. Then, B may contain Pys of
type (1)-(6) (recall that Lemma 2.5 excludes Pys of type (7) and (8)) and P;s none of whose
vertices is a vertex in V(C). The edges of the latter set of Pys contribute nothing to the
quantity 5. On the other hand, the general form of the Pys of type (1)-(6) indicates that
the edges of such P;s have at most one of their endpoints in V(C), and thus contribute at
most 1 to 3 each. Therefore, each edge of B contributes at most 1 to 3. In order that
3 = |E(B)|, it is required that each edge contributes exactly 1. This is possible only if the
edges participate in Pys of type (6) with respect to C; note that each Py of type (1)-(5)
with respect to C contains at least one edge which is not incident upon any vertex of C.
Therefore, B has to be of type B with respect to C. g

Lemma 2.11. LetC be a non-trivial Py-component of a Py-comparability graph G = (V, E)
and let the edge uv be a rib of a Py in C. Moreover, suppose that the vertices in V — V(()
have been partitioned into sets R, P, and () as described earlier in this section, and let
r € R. If the edges ru and rv belong to the non-trivial Py-components A and B respectively,
such that A # B and both A and B are of type B with respect to C, then:
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(i) For every edge yz, which is the rib of a Py of C, eitherry€ A andrz € B, orry€ B
and rz € A.

(ii) The set V1(C) of midpoints of the Pys in C can be partitioned into sets My and Mg
such that M4 (Mg respectively) is a nonempty subset of the set of midpoints of the
Pys in A (B respectively). Similarly, the set Va(C) of endpoints of the Pys in C can be
partitioned info sets N4 and Ng such that Ny (Ng respectively) is a nonempty subset
of the set of endpoints of the Pys in A (B respectively).

(iit) Let abed be a Py of C. If b € Ma, then d € Ny and a,c ¢ V(A); if a € N4, then
c€ M4 and b,d & V[A). Similarly, for B.

(iv) C is of type B with respect to A and with respect to B.

(v) A is of type B with respect to B and vice versa.

FProof: (Note that since the Pj-components 4 and B are of type B with respect to C,
Lemma 2.9 (statement (i)) implies that all three P;-components 4, B, and C are separable,
and therefore their sets of midpoints and endpoints are well defined.) Below, the sets V1(K)
and V5(K) pertain to the partition of the vertices of a separable Py-component K into a set
of midpoints and a set of endpoints of the Pys of K. and the sets R(K) and P(K) to the
partition of the vertices of V' — V(K). The edge uv is the rib of a Pj of C; let that Fy be
suvt, where s,¢ € V5(C). Furthermore, since the edge ru belongs to the Ps-component A4
and .4 is of type B with respect to C, then ru belongs to a Py of type (6) with respect to C;
let that Py be rupg, where p € P(C) and g € V5(C). Then, rupt is also a Py and belongs to
A

(i) Clearly, the proposition holds for the rib uv. We will show that if it holds for the rib be
of a Py abed of C, then it also holds for the rib of any Py a'b'¢/d’ adjacent to abed. Because C
is separable. the two Pys abed and a't'c’d’ share an edge which is a rib or a wing to both of
them; hence, without loss of generality, a =ad' and b=V, orb=b andc=¢,ore=¢ and
d = d'. We will show that the edge rb’ belongs to the same Pj-component as the edge rb,
and that the edge r¢’ belongs to the same Pj-component as the edge re. We distinguish the
following cases:

> a' =a and b = b: Trivially, rb’ and rb belong to the same P;-component. We consider
the paths repa and rc'pa’; these are Pys and because a’ = a they share the edge pa.
Therefore, the edges re and r¢ belong to the same component.

> b =band ¢ = & Trivially true.

t ¢ =cand d = d: Similar to the case where a’ = a and ¥ = b.

Since for every Py p of C, there exists a sequence of adjacent Pys from the Py with rib uv
to p (Lemma 2.1, statement (i), the lemma follows.

(ii) The proposition for the midpoints of the Pys of C follows directly from statement (i)
given that .4 # B. In order to prove the proposition for the endpoints of the Fys of C, we
consider a Fy abed of C. The paths rbpd and repa are Pys, and thus the endpoints a and d
of the Py belong to the components containing the edges re and rb respectively. Therefore,
in light of statement (i), every endpoint of C belongs to either A or B. No endpoint may
belong to both components, for otherwise the edge connecting p to that endpoint would
belong to both A and B, in contradiction to the fact that A4 &£ B.
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(ili) Recall that the edge ru belongs to a Py rupg of A. If b € M4, then, according to
statement (i), the edge rb belongs to the Pj-component A, Then, the path rbpd, which is
a P;, belongs to A, and thus d € N 4. Statement (i) of the lemma also implies that re € B,
which in turn implies that ¢ € Mg because of the Py repa; the same Py implies that a € Ng.
The general form of the Pys of type (6) implies that if a midpoint (endpoint, respectively)
of C belongs to a component which is of type B with respect to C, then it is a midpoint
(endpoint, respectively) of that component. Therefore, ¢ € V(.A); otherwise, ¢ would be
a midpoint of A and would thus belong to M 4, in contradiction to the fact that ¢ € Mp.
Similarly, a € V(.A); otherwise, a would belong to N 4: a contradiction, since a € Np.

A similar approach establishes that c € M4 and b,d € V(A) if a € N4.

(iv) Let abed be a Py of C. According to statements (i) and (ii), one of the midpoints
b, ¢ belongs to M 4; let us suppose without loss of generality that b € M 4. Then, the
general form of the Pys of type (6) implies that b is a midpoint of A, ie., b € Vi(A).
Moreover, according to statement (iii), b € M 4 implies that d € N4 and a,c € V(A); that
is, d € Va(.A). Since a ¢ V(.A4) and a is adjacent to the vertex b and not adjacent to the
vertex d of A, then a € R(A). On the other hand, since ¢ € V(.A) and c is adjacent to both
the midpoint b and the endpoint d of A, then ¢ € P(.A). Therefore, the Py abed is of type (6)
with respect to the Py-component A. Since this holds for any Py of C, the Py-component C
is of type B with respect to .A. Proving that C is of type B with respect to B is done in a
similar way.

(v) Let ryzw be a Py of A and suppose without loss of generality that y is a midpoint
of C; thus, x € R(C), y € Vi(C), z € P(C), and w € V5(C). More specifically, y € M4.
Then, statements (i) and (ii) imply that z € Mg, which in turn implies that y, w & V(B)
according to statement (iii). On the other hand, since y is a midpoint of C, there exists a
P; of C with y as a midpoint; let it be ayed; that is, ¢ € V1(C) and a,d € V5(C). Then, the
path reza is a Py and belongs to B, which implies that z € V5(B) and z € Vi(B). Since
y &€ V(B), and y is adjacent to both the endpoint z and the midpoint 2 of B, then y € P(B).
Moreover, since w € V(B), and w is adjacent to z and not adjacent to x, then w € R(B).
Therefore, the Py zyzw is of type (6) with respect to the Pj-component B, which implies
that the Pj-component A is of type B with respect to B. Proving that B is of type B with
respect to 4 is done in a similar way. g

Note that statement (i) of Lemma 2.11 implies that, for a Pj-component C meeting the
conditions of the lemma, the subgraph spanned by the ribs of the Pys in C is bipartite.

Lemma 2.12. Let A, B, and C be three distinct non-trivial Py-components of a graph G
such that A is of type B with respect to B, B is of type B with respect to C. and |V(A)| =
[V(C)|. Then, if there exists a vertex which is a midpoint of all three components A, B, and
C, the Py-component A is of type B with respect to C.

Proof: The conditions in the lemma and Lemma 2.9 (statement(i)) imply that all three Pj-
components A, B, and C are separable and therefore their sets of midpoints and endpoints
are well defined. Below, for a separable Pj-component K, the sets V1(K) and V53(K) denote
the sets of midpoints and endpoints of the Pis of K, and the sets R(X) and P(K) the
partition sets of the vertices of V — V/(K), as described earlier.

Let b be the vertex which is a midpoint of all three components. Since b is a midpoint
of A, there exists a P; of A with b as a midpoint; let that P; be abed. Since b belongs
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to the set Vi(B) and A is of type B with respect to B, the Py abed is of type (6) with
respect to B; that is, a € R(B), b € Vi(B), ¢ € P(B), and d € V3(B), where the sets 11(X)
and V2(K) pertain to the partition of the vertices of a separable Pj-component K into a
set of midpoints and a set of endpoints of the Pys of X, and the sets R(K) and P(K) to
the partition of the vertices of V' — V(K). Since d € V5(B) and given that B is of type B
with respect to C, then either d € R(C) or d € V2(C). The former case is not possible, since
b e Vi(C) and b and d are not adjacent in G (recall that the path abed is a P;). Therefore,
d € V3(C). On the other hand, a € V(C). Otherwise, A would contain the edge ab, whose
both endpoints would belong to V(C); then, according to Lemma 2.7, V(A) C V(C). Since
|V (A)| = |V(C)|, we have that V(A) = V(C), and then Lemma 2.6 would imply that A =C,
a contradiction since the three Pj-components are distinct. Since a € V(C) and given that
@ is adjacent to the midpoint b of 4 and not adjacent to the endpoint d, we conclude that
a € R(C). Finally, ¢ € V(C) in a fashion similar to the one that we used for a. Since ¢
is adjacent to both the midpoint b and the endpoint d of A, we conclude that ¢ € P(C).
Therefore, the Py abed of A is of type (6) with respect to C.

What we need to show is that all the Pys of A are of type (6) with respect to C. This
will follow if we show that if p is a P; of A such that p is of type (6) with respect to C
and one of p's midpoints is a midpoint of all three components .4, B, and C, then any Fy
adjacent to p also satisfies these conditions, that is, it is of type (6) with respect to C and
it has a midpoint which is a midpoint of all three components .4, B, and C.

Let us consider a Py ryzw of 4 which is of type (6) with respect to C and suppose that
its midpoint y is a midpoint of all three components A, B, and C. Let z'y'z'u’ be a Fy
adjacent to xyzw; then, ' =z andy' =y, or ¢y =yand 2’ =z, 0r 2 = z and v’ = w. We
consider these three cases separately:

(i) ' = z and 3 = y: Because ryzw is a Py of type (6) with respect to C, and y is a
midpoint of C, then x € R(C) and y € Vi(C), or equivalently, ' € R(C) and 3’ € V;(C)
since ¥’ = r and y' = y. Moreover, since the Pj-component A is of type B with respect
to B, the Py z'y'z'w’ of A is of type (6) with respect to B; then, w' € V2(B) due to the
form of a P, of type (6) and the fact that ' (which coincides with y) is a midpoint of B.
Additionally, the fact that the Py-component B is of type B with respect to C implies
that the endpoint v’ is an endpoint of a P; of type (6) with respect to C and thus
belongs either to R(C) or to V2(C). The former is not possible, since ' is a midpoint
of C and v’ is not adjacent to it; recall the Py z'y'z'vw’. Therefore, w' € V2(C). On
the other hand, 2’ € V(C). Otherwise, both endpoints of the edge 'z’ (which belongs
to .4) would belong to C, and then according to Lemma 2.7, V(A) C V(C); since
[V(A)| = |V(C)|, we would have that V(.A) = V(C), which leads to a contradiction
since Lemma 2.6 would imply that 4 = C. Because 2’ ¢ V(C), and 2’ is adjacent to
both the midpoint ¢’ and the endpoint v’ of C, we conclude that 2’ € P(C).

(ii) ¥ = y and 2/ = z: We work in a fashion similar to the one used in the previous case.
Clearly, ¥’ € Vi(C) and 2’ € P(C). As in the previous case, w’ € V3(C). On the other
hand, '  V(C), which implies that ' € R(C), since =’ is adjacent to the midpoint 3/
and not adjacent to the endpoint w' of C.

(iii) 2’ = zand w’' = w: From 2’ = z and w' = w, and from the fact that the P; zyzw of A
is of type (6) with respect to C, where y is a midpoint of C, we conclude that 2’ € P(C)
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and v’ € V5(C). Moreover, A is of type B with respect to B; then, since the Py zyzw
belongs to A, where y is a midpoint of B, w € V2(B). The P; z'y/2'vw’ is a Py of A
too, and thus is of type (6) with respect to B; then, ¥’ € V1(B) because of the form
of a P, of type (6) and of the fact that w’ (which coincides with w) belongs to Va(B).
In turn, because the Pj-component B is of type B with respect to C. the midpoint y'
is a midpoint of a P; of type (6) with respect to C and thus belongs either to V;(C)
or to P(C). The latter is not possible, since i’ is not adjacent to the endpoint w’ of
C. Therefore, y' € V}(C). Finally, as in the previous case, ' € R(C).

In all three cases, we conclude that the Py z'y/z'w’ is of type (6) with respect to C, and
that its midpoint ¢’ is a midpoint of all three components A, B, and C. The lemma follows
from this result, the fact that the Py abed satisfies these conditions and that for any pair p
and p’ of Pys of the same Pj-component there exists a sequence of adjacent Pys from p to
¢ (Lemma 2.1, statement (i)). g

We close this section by showing that the assignment of compatible directions in all the
Pys of a Py-component does not imply that the component is necessarily acyelic. We first
give an example of a graph that has a Pj-component with a directed cycle of length 3, and
then we generalize it to Pyj-components with directed cycles of arbitrary length. Consider the
graph of Figure 4(a); each vertex is adjacent to all but two other vertices so that the paths
ToYol120. T141Y221, and Tayaypzs are all Pys. Additionally, the paths gy 202120 and 2129z
are Pys, are adjacent since they share the edge ;x5 and belong to the same Py-component as
TpYoy1zo and r1y1y221 because they form the following sequence of adjacent Pys: zoyoy:zo,
Y12021%p, 21T0T1Y1, T1y1yzz1. Moreover, assuming (without loss of generality) that the
edge yoy; is oriented towards y,, this sequence of Pys implies that the edge yyy2 is oriented
towards ys. In a similar fashion, the Py raysyoze belongs to the same Fj-component and
the edge youp is oriented towards . Thus, a directed cycle of length 3 is formed. In fact,
this is not the only directed cycle of length 3 in the Py-component; two more are formed by
the directed edges in xpx1T2 and in zgzp 2.

The previous example can be easily generalized to yvield a graph with a Py-component
exhibiting an arbitrarily long directed cycle. Let k be an integer at least equal to 3, and
let Xj = {z;|0<i<k},Yi={yi|0<i<k}, and Z; = {2z |0 < i < k} be three sets of
distinct vertices. We consider the graph G = (Vi, Ey) where

Vi = G UY: U2
and Ep = Vix Vi~ ({migar1|0<i <k} U {miz|0<i<k} U {nz|0<i<k}).

The addition in the subscripts is assumed to be done mod k. Figures 4(a) and 4(b) depict
(3 and G, respectively. Then, the following lemma holds.

Lemma 2.13. The graph G has the following properties:

(i) The only Pys of Gy are the paths riyyiv12i, Yis1%ziaTi, end YiTi1Tizig for
D=i<k.

(ii) The graph G has a single non-trivial Py-component.

(#ii) The directed edges yiyi+1 (0 < i < k) form a directed cycle of length k in the non-trivial
Py-component of Gg.

(iv) No directed cycle of length less than k exists in the non-trivial Py-component of Gy.
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(b)

Figure 4: Graphs that have Pj,-components with cveclic Py-transitive orientation.

FProof: (i) Let abed be a Py of the graph Gy. First, suppose that the vertex a is y;41 (for
somei=0,...,k—1). Then the vertices ¢ and d can only be x; and z;;1, since these are the
only vertices of Gy not adjacent to y;+1: if d = x;, then b = z;, and the Py is yi+1 22576
if d = 244, then b = £;4,, and the Py is yj+1%i+1%i2i+1- These are the last two Fys in the
statement of the lemma. Now. suppose that a € ¥i; we may also assume without loss of
generality that d € Y}. thus avoiding to get the Pjs of the previous case again (traversed
from back to front). But then a,d € X; U Z;; since a and d are not adjacent. they can only
be z; and z; for some i = 0....,k — 1. Moreover, the remaining two vertices b and ¢, which
are not adjacent to d and a respectively, can only be y; and y;41. Therefore the Fis in this
case are the paths z;y;y 2.

(ii) This property follows from the fact that the Pys xjuiyiv15, Vit122i-1Ti, ZiTi
Tit1Vis1, and T Y01 Yivrozie are adjacent and therefore belong to the same Pij-component
for all i such that 0 <i < k.

(iii) The sequence of Pys in the proof of property (ii) implies that if the edge yyi+ is
criented towards y;+1 then the edge y;+1y:42 will be oriented towards y;4+2. The property
follows,

(iv) From the F;s of the graph G} (see property (i)), we note that all their edges connect
vertices whose subscripts differ by at most 1. Let us assume without loss of generality that
the edges y;y;.; are oriented towards y;y;. Then, from the Py z;yivic12. the edge x;u;
is oriented towards x; and the edge y;112; towards y;.;. Since the edge y;412; is oriented
towards y;+1, the edges z;z;41 and z;.17; of the Py y4122+1%; are both oriented towards
zj+1. Finally, since the edge x;z;+1 is oriented towards z;41, the edges yi+17i41 and z413;
of the Py ¥ 12012211 are both oriented towards x;.,. In other words. all the edges of the
form a;b;.; are oriented from a; to b;.;, whereas the only edges connecting vertices with
the same subscript are the edges x;y; which are oriented towards z;; this implies that the
length of a directed cycle of the Pi-component cannot be less than k. g

3. Recognition of Pj-comparability Graphs

The main idea of the algorithm is to build the Pj-components of the given graph G by
considering all the Fys of G; this is achieved by unioning in a single Pj-component the
Pj-components of the edges of each such path. while it is made sure that the edges are
compatibly oriented. It is important to note that the orientation of two edges in the same
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Py-component is not free to change relative to each other; either the orientation of all the
edges in the component stays the same or it is inverted for all the edges. If no compatible
orientation can be found or if the resulting Pj-components contain directed cycles, then the
graph is not a Pj-comparability graph. The P;s are produced by means of BFS-traversals
of the graph G starting from each of G’s vertices.

The algorithm is described in more detail below. Initially, each edge of G belongs to a

Py-component by itself.

Recognition Algorithm.

1. For each vertex v of the graph, we construct the BFS-tree T, rooted at v and we update
the level level(x)® and the parent p, of each vertex z in T,; before the construction of

each of the BFS-trees, level(z) = —1 for each vertex z of the graph. Then, we process
the edges of the graph as follows:

(i)

(iii)

for each edge e = uw where level(u) = 1 and level(w) = 2, we check whether
there exist edges from w to a vertex in the 3rd level of T,,. If not, then we do
nothing. Otherwise, we orient the edges vu, uw, vpy, and pyw in a compatible
fashion; for example, we orient vu and vp,, away from v, and ww and p,w away
from w (note that if u = p,,. we end up processing the edges vu and uw only). If
any two of these edges belong to the same Pyj-component and have incompatible
orientations, then we conclude that the graph & is not a Py-comparability graph.
If any two of these edges belong to different Pj-components, then we union
these components into a single component; if the edges do not have compatible
orientations, then we invert (during the unioning) the orientation of all the edges
of one of the unioned Pj-components.

for each edge e = uw where level(u) = i and level(w) = 1+ 1 for i > 2, we
consider the edges p,u and uw. As in the previous case, if the two edges belong
to the same Pj-component and they are not both oriented towards u or away
from u, then there is no compatible orientation assignment and the graph is not
a Pj-comparability graph. If the two edges belong to different Pj-components,
we union the corresponding Fj-components in a single component, while making
sure that the edges are oriented in a compatible fashion.

for each edge e = uw where level(u) = level(w) = 2, we go through all the
vertices of the 1st level of T,,. For each such vertex x, we check whether z is
adjacent to u or w. If x is adjacent to u but not to w, then the edges vz, zu,
and ww form a Py we therefore union the corresponding Pj-components while
orienting their edges compatibly. We work similarly for the case where z is
adjacent to w but not to u, since the edges vr. rw, and wu form a Fy.

After all the vertices have been processed, we check whether the resulting non-trivial
Pj-components contain directed cycles. This is done by applying topological sorting
independently in each of the Pjcomponents: if the topological sorting succeeds then
the corresponding component is acyclic, otherwise there is a directed cycle. If any of
the Pj-components contains a cycle, then the graph is not a FPy-comparability graph.

3

The level of the root of a tree is equal to (.
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Figure 5: The different positions of a Py abed in the BFS tree T,.

For each Pj-component, we maintain a linked list of the records of the edges in the com-
ponent, and the total number of these edges. Each edge record contains a pointer to the
header record of the component to which the edge belongs: in this way, we can determine in
constant time the component to which an edge belongs and the component’s size. Unioning
two Pj-components is done by updating the edge records of the smallest component and
by linking them to the edge list of the largest one, which implies that the union operation
takes time linear in the size of the smallest component. As mentioned above, in the process
of unioning, we may have to invert the orientation in the edge records that we link, if the
current orientations are not compatible.

The correctness of the algorithm follows from the fact that all the Pys of the given graph
are taken into account (see Lemma 3.1 below), from the correct orientation assignment on
the edges of these paths, and from Lemma 2.2 in conjunction with Step 2 of the algorithm.

Lemma 3.1. The algorithm takes into account all the Pys of the given graph G.

Proof: Let abed be a Py of the graph G. Since the algorithm works with the BFS-trees of
all the vertices of G, it will work with the BFS-tree T, of the vertex a. Let us investigate the
different positions that this path may assume in T,. Clearly, the vertices a, b, and ¢ have
to belong to the Oth, 1st, and 2nd level respectively: the vertex d may belong to the 2nd or
3rd level, but not to the 1st level since d is not adjacent to a. All the possible positions of
the path are shown in Figure 5; the solid lines, the slanting dashed lines, and the horizontal
lines represent tree edges, cross edges, and level edges respectively. The first four cases of
Figure 5 are covered by the combination of Steps 1(i) and 1(ii) of the algorithmn: no matter
which of the four cases is the case for abed, the edges ab and be are placed in the same
Pj-component with the edge p.c in Step 1(i) and they are oriented compatibly; the edge ed
is placed in the same component with the other two in Step 1(ii) when it is unioned and
oriented compatibly with the edge p.c as well. The final two cases of Figure 5 are covered
by the Step 1(iii) of the algorithm.

Time and Space Complexity. Computing the BFS-tree T, of the vertex v of G
takes O(1 + m(v)) = O(1 + m) time, where m(v) is the number of edges in the connected
component of G to which v belongs. Processing the tree T, includes processing the edges
and checking for compatible orientation, and unioning Pj-components. If we ignore Fy-
component unioning, then, each of the Steps 1(i) and 1(ii) takes constant time per processed
edge; the parent of a vertex in the tree can be determined in constant time with the use
of an auxiliary array, and the Pj-component of an edge is determined in constant time by
means of the pointer to the component head record (these pointers are updated during

17



unioning). The Step 1(iii) of the algorithm takes time O(deg(v)) for each edge in the 2nd
level of the tree, where by deg(v) we denote the degree of the vertex v; this implies a total
of O(mdeg(v)) time for the Step 1(iii) for the tree T,. Now, the time required for all the
Py-component union operations during the processing of all the BFS-trees is O(mlogm);
there cannot be more than m — 1 such operations (we start with m P,-components and
we may end up with only one), and each one of them takes time linear in the size of
the smallest of the two components that are unioned. Finally, checking whether a non-
trivial Pj-component is acvclic takes O(1 + m;), where m; is the number of edges of the
component. Thus, the total time taken by Step 2 is O(3;(1 4+ m;)) = O(m), since there
are at most m Pj-components and Y ;m; = m. Thus, the overall time complexity is
O(,(1+m + mdeg(v)) +mlogm +m) = O(n +m?), since T, deg(v) = 2m.

The space complexity is linear in the size of the graph G; the information stored in
order to help processing each BF5S-tree is constant per vertex, and the handling of the Fj-

components requires one record per edge and one record per component. Thus, the space
required is O(n + m).

Therefore, we have proved the following result:

Theorem 3.1. [t can be decided whether a simple graph on n vertices and m edges is a
P;-comparability graph in O(n + m?) time and O(n + m) space.

Remark. It must be noted that there are simpler ways of producing the Fys of a graph
in O(n + m?) time. However, such approaches require ©(n?) space. For example, Raschle
and Simon note that a P; is uniquely determined by its wings [28]; this implies that the
P;s can be determined by considering all ©(m?) pairs of edges and by checking if the edges
in each such pair are the wings of a P;. In order not to exceed the O(m?) time complexity,
the information on whether two vertices are adjacent should be available in constant time,
something that necessitates a ©(n?®)-space adjacency matrix.

4. Acyclic Pi-transitive Orientation

Although each of the Py-components of the given graph ¢ which is produced by the recog-
nition algorithm is acyclic, directed cycles may arise when all the Pj-components are placed
together; obwviously, these cyeles will include edges from more than one Py-component. Ap-
propriate inversion of the orientation of some of the components will yield the desired acyclic
Py-transitive orientation.

QOur algorithm to compute the acyclic Py-transitive orientation of a FPj-comparability
graph relies on the processing of the Pj-components of the given graph & and focuses on
edges incident upon the vertices of the non-trivial Py-component which is currently being
processed. It assigns orientations in a greedy fashion, and avoids both the contraction step
and the recursive call of the orientation algorithms of Hoang and Reed [17], and Raschle
and Simon [28]. More specifically, the algorithm works as follows:

Orientation Algorithm.

1. We apply the recognition algorithm of the previous section on the given graph &,
which produces the Pyj-components of G and an acyclic Py-transitive orientation of
each component.
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2. We sort the non-trivial Py-components of G by non-decreasing number of vertices; let
C1,Cs,....Ch be the resulting ordered sequence. We associate with each C; a mark and

a counter field which are initialized to 0.

3. For each Py-component C; (1 <i < h) in order, we do:

By going through the vertices in V(C;). we collect the edges which are incident upon
a vertex in V(C;) and belong to a Pj-component C; where j > i. Then, for each
such edge e, we increment the counter field associated with the Pj-component to
which e belongs. Next, we go through the collected edges once more. This time,
for such an edge e, we check whether the Fj-component to which e belongs has its
mark field equal to 0 and its counter field equal to the total number of edges of the
component; if ves, then we set the mark field of the component to 1, and. in case
e is not oriented towards its endpoint in V(C;), we flip the component’s orientation
(by updating a corresponding boolean variable). After that, we set the counter field
of the component to which e belongs to 0; in this way, the counter fields of all the
non-trivial Fy-components are equal to 0 everv time a Pj-component starts getting
processed in Step 3.

4. We orient the edges which belong to the trivial Pj-components: this can be easily
done by topologically sorting the vertices of G using only the oriented edges of the
non-trivial components, and orienting the remaining edges in accordance with the
topological order of their incident vertices.

Note that in Step 3 we process all the non-trivial P;-components of the given graph G
except for the largest one. This implies that the vertex set V(C;) of each Py-component C;
(1 £ ¢ < h) that we process is a proper subset of the vertex set V of G; if V((;) = V,
then V(C) = V as well, which implies that C; = C (Lemma 2.6), a contradiction. Thus,
the discussion in Section 2 regarding the Pj-components of type A and tvpe B applies to
each such C;. Moreover, according to Lemma 2.10, the Pj-components whose mark field
is set to 1 in Step 3 are components which are of type B with respect to the currently
processed component C;. Each edge of these components has exactly one endpoint in V(C;)
(see Lemma 2.9, statement (ii)), so that it is valid to try to orient such an edge towards
that endpoint. Furthermore, Lemma 2.9 (statement (iii)) implies that if such an edge gets
oriented towards its endpoint which belongs to V(C;), then so do all the edges of the same
Pj-component. In the case that the set R in the partition of the vertices in V — V(C;) (as
described in Section 2) is empty, there are no Fy-components of type B with respect to
C;. While processing C;, our algorithm updates the counter fields of the components that
contain an edge incident upon a vertex in V((;), finds that none of these components ends
up having its counter field equal to the number of its edges, and thus does nothing further.

The orientation algorithm does not compute the sets R, P, and ¢} with respect to the
currently processed Py-component C;. These sets can be computed in O(n) time for each C;
as follows. We use an array with one entry per vertex of the graph G; we initialize the array
entries corresponding to vertices in V(C;) to 0 and all the remaining ones to -1. Let v; and
vz be an arbitrary midpoint and an arbitrary endpoint of a Py in ;. We go through the
vertices adjacent to vy and if the vertex does not belong to V(C;), we set the corresponding
entry to 1. Next, we go through the vertices adjacent to vg; this time, if the vertex does
not belong to V(C;). we increment the corresponding entry. Then, the vertices in C;, R, and
@ are the vertices whose corresponding array entries are equal to 0, 1, and -1 respectively,
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while the remaining vertices belong to P and their corresponding entries are larger than 1;
recall that every vertex in V — V(C;) which is adjacent to an endpoint of a P; of C; is also
adjacent to any midpoint.

Correctness of the Algorithm. The acyclicity of the directed graph produced by our
orientation algorithm relies on the following two lemmata.

Lemma 4.1. Let Cy, Ca, ..., Cy be the sequence of the non-trivial Py-components of the
given graph G ordered by non-decreasing verter number. Consider the set S; = {C; | j < i
and C; is of type B with respect to C;} and suppose that S; # 0. Ifi = min{j | C; € Si},
then our algorithm orients the edges of the component C; towards their endpoint which
belongs to V(C;).

Proof: The Pj-component C; receives an arbitrary Fjy-transitive orientation in Step 1 of
the orientation algorithm. Since i = min{j | C; € S;}. then the Pj-component C; is not of
tyvpe B with respect to any of the components Cq, Cs, ..., C;_1; thus, its mark field retains
its 0 value in the first i — 1 iterations of the for-loop in Step 3, since the value of the
counter field of C; will not be equal to the number of its edges for any of &y, Ca, ..., C;_;
(Lemma 2.10). Then, in the i-th iteration (during which the component C; is processed),
the mark field of C; is set to 1 and C; is oriented so that one of its edges points towards
its endpoint which belongs to V(C;). According to Lemma 2.9 (statement (iii)), the latter
implies that all the edges of C; are oriented towards their endpoint which belongs to V(C;).
This orientation will not change in subsequent iterations of the for-loop of Step 3, since
the mark field of C; has been set to 1; nor will it change in Step 4. 3

Lemma 4.2. Let Cy, Ca, ..., Cy be the non-trivial Pyj-components of a graph G ordered
by non-decreasing verter number and suppose that each component has received an acyelic
P;-transitive orientation. Consider the set §; = {C; | j < 1 and C; is of type B with respect
toC;}, fori=1,2,... h. If the edges of each Py-component C; such that S; # 0 get oriented
towards their endpoint which belongs to V(C;), where i = min{j|C; € 5;}, then the resulting
directed subgraph of G spanned by the edges of the C;s (1 < i < h) does not contain a directed
cyele.

Proof: Clearly, if the graph G has only one non-trivial Pj-component, then there cannot
exist a directed cycle, since each Fj-component is acyclic. Let us now consider the case
in which the graph has at least two non-trivial Pj-components, and let us suppose for
contradiction that the orientation algorithm produces a directed graph that has a directed
cycle. Then, in light of Lemma 2.3, there will exist an oriented triangle which forms a
directed cycle; let the triangle have vertices v, u, and w. The edges of the triangle belong to
non-trivial Pj-components. Let these components be C;, Cy, and Cy, containing the edges uw,
vw, and uv respectively, and let us assume without loss of generality that £ = min{j, k, £}.
Then, the vertex w does not belong to V(C;). If w € V(C¢), then the edge uw which
belongs to C; would have both endpoints in V'(C;). This would imply that V(C;) € V(Cy),
according to Lemma 2.7. Moreover, since £ < j, we have that |V(Cy)| < [V(C;)|- Therefore,
V(C;) = V(Cs), which implies that C; = C; (Lemma 2.6). Similarly, Cx = C;. But then, all
three edges of the triangle belong to the same Pj-component, in contradiction to the fact
that every Pj-component is acvclic. Thus, w € V(Cy).
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Since every Pj-component is acyclic, at least two of the Ps-components C;, Cx, and C;
must be different. In fact, they are all different. Note that if the three edges of the triangle
participated in two distinct Fj-components, then j = k. since £ # j and £ # &k because
w & V(C;). Moreover, C; would be either of type A or of type B with respect to C;. In the
former case, Lemma 2.8 would imply that the edges uw and vw would be oriented either
both towards w or both away from it, and thus the triangle with vertices u, v, and w could
not form a directed cycle. In the latter case, according to Lemma 2.9 (statement (iv)), the
edges uw and vw would again be oriented either both towards w or both away from it,
and thus the triangle with vertices u, v. and w could not form a directed cycle in this case
either. Therefore, the three edges of the triangle belong to three distinct Pj-components.

Let us consider the Pj-component C;. Because w @ V(C;) while u,v € V(C;), the other
two components C; and Ci are of type A or of type B with respect to C;. If any one of
them is of type A, then, according to Lemma 2.8, the edges uv and uw belong to the same
Fj-component, in contradiction to the fact that C; # Ci. Therefore, both C; and Cy are of
type B with respect to Cg. Let j = min{i|i < j and C; is of type B with respect to C;} and
k= min{i|i < k and Cy, is of type B with respect to C;}; note that 7 and i are well defined
and do not exceed £, since £ < j, £ < k and both C; and C;, are of type B with respect to Cy.
Then, according to the statement of the lemma, the orientation convention implies that the
edges of the Psj-components C; and Cj are oriented towards their endpoint which belongs
to V(C;) and V(C;) respectively. Then, j # k: if j = k. the triangle with vertices u, v, and
w could not form a directed cycle, since, according to the orientation convention, the edges
uw and vw, which belong to C; and Cp respectively, would be oriented both towards w if
w € V(C;), or both away from w if w € V(C;). Since j # k. we may assume without loss of
generality that j < k. Then, j < £, since j < k and k < £. We distinguish two cases:

(i) the Pj-component C; is not of type B with respect to any component C; for1 <i < £: If
the Fy-components Cy, C;, and C; have a common midpoint, then Lemma 2.12 applies:
note that Cy is of type B with respect to C; (Lemma 2.11, statement (iv)), C; is of
type B with respect to C;, and |V'(C¢)| = |V/(C;)| since £ > j. Lemma 2.12 implies that
the component Cy is of type B with respect to C;. which contradicts the fact that Cy is
not of type B with respect to any component C; (1 < i < £). If the Py-components Cy,
C;, and C; do not have a common midpoint, then the Fj-components Cy, C;, and C; do.
Suppose for contradiction that they do not. ie., V1(Cx) N V1(C;) N Vi(C;) = 0, where
by V1(K) we denote the set of midpoints of a separable Pj-component K. Moreover,
from the assumption that the Pj-components (¢, C;, and C; do not have a common
midpoint, we have that V1(C;) N V1(C;) N V1(C;) = 0. Therefore, by taking the union
of these two set intersections, we find that

( VilCe) N WA(C;) N Va(C5) ) U (Va(Ce) N VA(C;) NWA(C5) ) = O
= ((V(C) N W(C)) U (VilC) NWA(Cy)) ) N WA(C) = 0.

Since the Pj-components Cx, C;, and Cy are of type B with respect to one another,
Lemma 2.11 (statement (ii)) implies that the sets V1(Ci) N V1(C;) and V1(C¢) NW1(C;)
partition the set V3(C;) of midpoints of C;; that is. (V3(Cg) N V1(C;)) U (Vi(Ce) N
V1(C;) ) = Vi(C;). Thus, the previous equality is equivalent to V1(C;) N V1(C;) = 0.
However, this comes into contradiction with the fact that C; is of type B with respect
to Cj; therefore, the Pj-components Cy, Cj, and C; have a common midpoint. Then,
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Lemma 2.12 applies again, for the Fj-components Ck, C;, and C; this time (Cp is of
type B with respect to C;. C; is of type B with respect to C;, and |V(Ci)| > |V(C;)|
since k > k > j), and implies that the component ;. is of type B with respect to C;,
which contradicts the minimality of k, since j < k.

(ii) the Py-component Cy is of type B with respect to a component C;, where 1 € i < £
Let £ = min{i |i < £ and C; is of type B with respect to C;}. If j < £, then we reach
a contradiction as in case (i); note that j < { implies that £ > 7, and recall that the
Ps-component C; cannot be of type B with respect to C;. If j = {, then the triangle
with vertices u, v, and w cannot form a directed cyele; the edges ww and uv, which
belong to C; and Cy respectively, get oriented both towards u if u € V(C;), or both
away from u if u € V(C;). according to the orientation convention in the statement
of the lemma. Suppose now that i < j. If the Py-components Cj, Cy, and C; have a
common midpoint, then Lemma 2.12 applies: note that C; is of type B with respect
to C¢, C¢ is of type B with respect to Cj, and [V(C;)| = [V(C;)] since j > j > £
Lemma 2.12 implies that the component C; is of type B with respect to C;, which
contradicts the minimality of j, since £ < j. If the Pj-components Cj, C¢, and C; do
not have a common midpoint, then, as in case (i), the Pj-components Cy, Cy, and C;
do. Then, again Lemma 2.12 applies, implyving that the component Cp is of type B
with respect to C;, which contradicts the minimality of k, since { < j < k.

In either case, we reached a contradiction, which proves that, if the orientation convention
described in the statement of the lemma is followed, then no directed cyele exists in the
directed subgraph of G spanned by the edges of the non-trivial Pj-components of G. 3

Theorem 4.1. When applied to a Pj-comparability graph, our erientation algorithm pro-
duces an acyclic Py-transitive orientation.

Proof: The application of the recognition algorithm in Step 1 of the orientation algorithm
and the fact that thereafter the inversion of the orientation of an edge causes the inversion
of the orientation of all the edges in the same Pj-component implv that the resulting
orientation is Pj-transitive. The proof of the theorem will be complete if we show that
it is also acyclic. Since the edges of the trivial Py-components do not introduce cycles given
that they are oriented according to a topological sorting of the vertices of the graph, it
suffices to show that the directed subgraph of G spanned by the edges of the non-trivial
Py-components of &, which results after the last execution of Step 3, is acyclic. This follows
directly from Lemmata 4.1 and 4.2. g

Time and Space Complexity.  As described in the previous section, Step 1 of the
algorithm can be completed in O(n + m?) time. Step 2 takes O(mlogm) time, since there
are (J(m) non-trivial Pj-components. Since the degree of a vertex of the graph does not
exceed n — 1, the total number of edges processed while processing the Fy-component C;
in Step 3 is O(n|V(C;)|), where [V(C;)| is the cardinality of the vertex set of ;. This
upper bound is O(n (|E(C;)| + 1)) = O(n|E(C;)|), because the component C; is connected
(Lemma 2.1, statement (ii)) and hence [V(C;)| < |E(C;)| + 1. The time to process each such
edge is O(1), thus implying a total of O(n |E(C;)|) time for the execution of Step 3 for the
component C;; since an edge of the graph belongs to one Py-component and a component
is processed only once, the overall time for all the executions of Step 3 is O(nm). Finally,
Step 4 takes O(n + m) time.
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Figure 6

Summarizing, the time complexity of the orientation algorithm is O(n + m?). It is
interesting to note that the time complexity is dominated by the time to execute Step 1;
the remaining steps take a total of O(nm) time. Therefore, an o(n + m?)-time algorithm
to recognize a Pj-comparability graph and to compute its Pj;-components will imply an
o(n + m?)-time algorithm for the acyclic Py-transitive orientation of a Py-comparability
graph. The space complexity is linear in the size of the given graph G.

From the above discussion, we obtain the following theorem.

Theorem 4.2. Let G be a Py-comparability graph on n vertices and m edges. Then, an
acyclic Py-transitive orientation of G can be computed in O(n + m?) time and O(n + m)
space.

Note that the input to our crientation algorithm does not need to be a Py-comparability
graph. If it is not, this will be detected in Step 1, and the algorithm will stop and will
report it; otherwise, it will proceed, eventually computing the desired acyclic Ps-transitive
orientation.

5. Optimal Coloring and Maximum Clique

In (5], Chvétal proved that if a perfect order of a perfectly orderable graph G is given then
an optimal coloring of G can be found by the greedy (first-fit) algorithm in linear time.
Moreover, he showed that, for a perfectly orderable graph with chromatic number k, if H
is a clique consisting of vertices with colors e,e + 1,..., k, then there exists a vertex with
color ¢ — 1 that is adjacent to all the vertices of H. This result can be used in an algorithm
to compute the maximum eclique of a perfectly orderable graph [5]. As mentioned in [17],
it is easy to see that this algorithm can be made to run in O(n?) time. Below, we show
how the above result can be used to yield an O(n + m)-time algorithm which, given a
perfect order on the vertices of a perfectly orderable graph G, computes a maximum clique
of G. Clearly, the algorithm can be applied to the class of Py-comparability graphs, since a
Pj-comparability graph is also a perfectly orderable graph.

It is interesting to note that, unlike the comparability graphs where in each clique the
order of vertices by color matches the perfect order of the vertices, in a Pj-comparability
graph the vertex with color ¢—1 is not necessarily a predecessor (with respect to the perfect
order of the graph) of all the vertices in the clique H. Consider, for example the graph of
Figure 6: the indicated orientations of the edges define an acyclic Py-transitive orientation
of the graph, which thus is a Py-comparability graph; the maximum clique consists of the
vertices b, ¢, d, and e with respective colors 2, 1, 3, and 4.

Mazimum Cliqgue Algorithm.
1. We compute an optimal colering of the graph by applying the first-fit algorithm along

the given perfect order; let k be the maximum color assigned.
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2. We partition the set of vertices of the graph into the color sets V1, Vo, ..., Vg W}
denotes the set of vertices colored with the color 1.

3. We use an auxiliary array with one entry per vertex of the graph, which stores infor-
mation about whether the corresponding vertex is marked or unmarked; initially, all
vertices are unmarked.

4. We mark an arbitrary vertex of the set V.

5. for i=k-1,...,1
for each vertex v in Vj
if the number of marked vertices adjacent to v equals k — i
we mark the vertex v;
we exit the inner loop and continue with the next iteration of the outer loop;
end-if

6. The clique consists of the marked vertices.

Note that Chvdtal’s result implies that, for every iteration of the outer loop in step 5, the
inner loop will always produce a vertex adjacent to all the currently marked vertices.

Time and Space Complexity., As mentioned earlier, an optimal coloring of a perfectly
orderable graph can be computed by the first-fit algorithm in time linear in the size of the
graph, if a perfect order on the graph’s vertices is given; thus, step 1 is completed in linear
time. Steps 2, 3 and 5 take linear time as well, while step 4 takes constant time. Thus, the
time complexity of the maximum clique algorithm is linear in the size of the given graph.
The space complexity is also linear in the size of the graph. Therefore, we have:

Theorem 5.1. Let G be a perfectly orderable graph on n vertices and m edges. If a perfect
order on the vertices of G is given, then an optimal coloring and a mazimum clique of G
can be found in O(n + m) time and space.

6. Concluding Remarks

In this paper, we presented an O(n + m?)-time and linear space algorithm to recognize
whether a graph of n vertices and m edges is a Pij-comparability graph. We also described
an algorithm to compute an acyclic Py-transitive orientation of a Pj-comparability graph
which runs in O(n+m?) time and linear space as well. Both algorithms exhibit the currently
best time and space complexities to the best of our knowledge, are simple enough to be
easily used in practice, are non-recursive, and admit efficient parallelization. Finally, we
also showed how the maximum clique of a perfectly orderable graph can be computed in
linear time given a perfect order on the vertices of the graph.

The obvious open question is whether the Pj-comparability graphs can be recognized
and oriented in o(n + m?) time. Note that a better time complexity for the recognition

problem — assuming that the recognition process determines the Pj-components as well —
will imply a better time complexity for our orientation algorithm.
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