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Abstract

A theoretical analysis for internal bone remodeling induced by a medullary pin is presented.
Bone is treated as a poroelastic material using the Biot formulation. Based on the theory of
small-strain adaptive elasticity as described by Cowin and Hegedus, a new theoretical
approach for internal remodeling is proposed. Our results show that the rate of internal

remodeling decreases as the porosity of the bone increases.
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1. Introduction

Bone remodeling is a general term which describes the processes by which bone adapts its
histological structure to changes in long duration loading. Following the distinction made by
Frost [1] between surface and internal remodeling, internal remodeling refers to the
mechanism by which the bulk density of an osseous tissue changes, by means of resorption or

reinforcement of existing bone within fixed external boundaries.

The problem of internal bone remodeling induced by a medullary pin has been investigated
by Cowin and Van Buskirk [2]. Their approach is based on the small-strain approximation [3]
of the thermomechanical continuum theory of adaptive elasticity developed by Cowin and co-
workers [4, 5]. Bone is treated as a porous elastic solid representing the matrix structure of
bone including the bone cells and a perfusate which represents the extracellular fluid and the
blood plasma which flows through the matrix structure. The perfusate is accounted for, only
insofar as it transfers mass, momentum, energy or entropy to the bone matrix. They assume
that the load-adapting properties of living bone can be modeled by a chemically reacting
porous medium in which the rate of reaction is strain-controlled. A modified Hooke’s law that
incorporates a remodeling term is presented. Their proposed remodeling rate equation uses an
approximation with quadratic terms in the internal remodeling magnitude and linear terms in
the remodeling rate-strain coefficients. Firoozbakhsh and Cowin [6] have used this equation
to predict the devolution of a hypothetical initial inhomogeneity of bone density along the
shaft of a long bone. A higher order equation, retaining quadratic terms in strain, has been

proposed by the same authors for the remodeling rate [7].

The role of piezoelectricity of osseous tissues in bone remodeling induced as a sequel to
intramedullary nailing has been investigated by Misra and Murty [8]. The effect of material
damping of osseous tissues on the remodeling of an axially-symmetric specimen of long bone

with a force-fitted axially-oriented medullary pin has been studied by Misra and Samanta [9].



The influence of non-isotropy of osseous tissues on the internal remodeling dynamics has

been investigated by Misra and co-workers [10].

In our work the problem of internal remodeling induced by a medullary pin is reconsidered.
Our objective is to present a new theoretical model of internal bone remodeling where the role
of the fluid part is clear and make predictions about the progress of the internal bone
remodeling process for a range of porosities. In our proposed model, bone is treated as a
porous elastic deformable solid in the pores of which a viscous compressible fluid flows,
using Biot’s formulation of the theory of consolidation [11, 12, 13]. The theory of small-strain
adaptive elasticity [3], is appropriately modified in order to incorporate the fluid part
according to the new material description, The basic equations of the modified theory for
internal remodeling are formulated. The problem of internal bone remodeling around a
medullary pin is solved in two steps as illustrated in Fig. 1. First, the problem of the
remodeling of an isotropic hollow circular cylinder of adaptive poroelastic material subjected
to an axial load and an internal pressure is solved. Second, the solution of the problem of an
1sotropic solid elastic cylinder subjected to an external pressure as solved by Cowin and Van
Buskirk [2] is given. The two sub-problems are combined to obtain the solution of the forced
fit of an isotropic hollow adaptive poroelastic cylinder about an isotropic solid elastic
cylinder. The dependence of the elastic coefficients of the theory of consolidation on porosity
has been employed [14]. The unknown material functions are approximated for small values
of porosity. A constitutive equation incorporating the remodeling process is presented. A
strain-controlled remodeling rate equation where both the fluid and solid parts appear is
proposed. According to the proposed approximation of the material functions on porosity,
numerical solution of the remodeling rate equation with chosen values of the parameters

entering the problem leads to a relation between remodeling rate and porosity.



2.  Theory

The basic set of equations in the theory of internal bone remodeling as described by Cowin
and Van Buskirk [2], consists of the constitutive equations, the kinematic relations, the stress
equations of equilibrium and the remodeling rate equation.

Assuming that the bone is a porous isotropic solid that contains a viscous compressible fluid,
the above mentioned set of equations is reformulated by using the theory of consolidation

introduced by Biot [11, 12], in cylindrical coordinates.

The stress tensor in a porous material is

T=T,+5,T, (1)

where & is the Kronecker’s symbol, and T represents the total normal force applied to the

fluid part of the faces of a cube of unit size of the bulk material.

If p is the hydrostatic pressure of the fluid in the pores we may write

T=-fp, (2)

where [ is the porosity defined as

J=¥, (3)



where ¥, is the volume of the pores contained in a sample of bulk volume F,. Thus, f

represents the fraction of the volume of the porous material occupied by the pores.

This system of solid and fluid is a general system which has conservation properties. The
solid part is considered to have compressibility and shearing ngidity, and the fluid is
compressible. The deformation of a unit cube is assumed to be completely reversible. By
deformation is meant here the one determined by the strain tensors in the solid and in the fluid

[14].
The kinematic relations for the solid part are

Errzﬂﬁ EM:l%'}&: E zdd:
o radd r T &

where u,_, u,, u_ are the average displacement components and Eu i,j=r,8,z, are the
strain components of the solid.
Analogous relations hold for the fluid part with U_, U,, U_ and &

s I J=7r,0,z, denoting

the average displacement components and the strains of the fluid, respectively.

The constitutive equations for an isotropic poroelastic material are given as

T, =2NE, + AE+Qs,

T =2NE,, + AE + Q¢

T,=2NE_+AE+Qs,



T, = NE,,

jr;r T ‘h"lrE:J‘ * (5}
To=NE,,
T=QE+Re,

where 4, N, R, O are the elastic constants of the material, in accordance with the Biot

formulation [11-14] and £ and &£ are the dilatations of the solid and fluid, that is,

E=E +E;+E., ()
and

E=8. +EutEL: (7)
respectively.

We note that Eq. (7) does not provide the actual strain in the fluid but the divergence of the
fluid-displacement field which is derived from the average volume flow through the pores

[14].

The total stress field of the bulk material, in the absence of body forces, satisfies the

equilibrium equations

et ¥ (8)



Darcy’s law governing the flow of a fluid in a porous isotropic material, for non-existing

body forces, is given as

Z_cl@w,-u,),

1r c

2E e lu,—uy), 9
Py cﬁ‘( g u.ﬂ) (9)
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where C is a constant that depends on the permeability &, the porosity f of the medium and

the viscosity 77 of the fluid [15, 16], that is,

=%

o= (10)

In the theory of small-strain adaptive elasticity [3], the stress-strain relationship for bone that

incorporates internal remodeling 1s given as

:lT;, = {gﬁ + Er._,lkm {E}Ekm* '[:1 1}

where e is a change in the volume fraction £ of bone matrix material from its reference value

£, as aresult of internal remodeling, e=£-£,,.

Equation (5) can be written in matrix form as

e



T AT
Te.+T
T.+T
T, |
T:r
_Tr-!? Jd
(12)
2N+ A+Q A+Q A+0 0 0 OJE,+x¢]
A+Q IN+A+Q A+Q 0 0 0[Eg+xe
A+Q A+Q IN+A+Q 0 0 O(|E, +x¢
0 0 0 N 0 0|E, ’
0 0 0 0 N O0|E,
0 0 0 0 0 NJ|E, |

so that the following relationship is satisfied,

{EN"'A*Q}’-W+(A+Q}x2+(A+Q]x3=Q+R
(A+Q)x1+(2‘M+A+Q}x2+(A+Q]ISZQ+R =:'x]=x3=I3=2";(%,:Rl ’ (13}
(A+Q)x, +(A+0)x, +2N+ 4+ Q)x; =0+R N+34+30

Thus, the stress-strain relations for the isotropic poroelastic bone can be written as

O+R
T +8T|1=C, | E -6 ————¢|. 14
("'+ u ) ”*‘“[ - m2N+3A+3Q€] 14

In order to incorporate the adaptive nature of bone, we assume that the constitutive relations

describing the isotropic poroelastic adaptive bone can be written, in analogy to Eq. (11) as

% +R
T, +6,T)=Cp [E{-fﬁm -(1-¢)g,, ﬁ@f} (15)



The bulk volume of the poroelastic medium has been assumed to remain constant throughout

the remodeling process, which is denoted by the sum of coefficients £ and 1— < being equal

to unity. We further assume that the remodeling rate equation, in accordance with the
formulation used in the theory of small-strain adaptive elasticity [3], for an isotropic material,

is given as

é=A(e)+ Az{e{ﬁ‘uﬂg], (16)

2N +34+30

where 4 (e} and Al{e) are material coefficients dependent upon the volume fraction e.
Finally, a relation between the porosity [ as defined in Eq. (3) and the change in the volume

fraction of the bone matrix material e, can be derived. By writing

f=1-g. (17)
where [ is the porosity before internal remodeling takes place, and

f=1-¢, (18)

where f' is the porosity after internal remodeling has occurred, the change in porosity due to

the internal remodeling process can be expressed as

ff ==y g =g, (19)



Thus, the set of equations describing the proposed theory of internal bone remodeling for a
porous isotropic solid bone containing a viscous compressible fluid, consists of Eqgs. (4), (5),

(8), (9), (15) and (16).

3. The hollow cylinder problem

We now consider a problem in which a hollow circular cylinder of poroelastic bone (Fig. 2) is
subjected to a quasi-static axial load —P{I} and an internal radial pressure p(r]_ The

boundary conditions at the inner and outer surfaces of the cylinder are

at r=a: T, +T=-plt) To=T,=T. =T, =0, (20)
and
at r=b: T +T=-P, T,=T_=T,=0, (21)

where gand b denote the inner and outer radii of the cylinder and F, is a constant pressure

outside the cylinder. The boundary conditions (20) and (21) reflect the radial internal pressure
exerted on the cylindrical surface of the medullary canal by the forced fit of the medullary
pin.

We assume that the fluid is not allowed to flow out of the bone matrix, i.e., F, must always
be greater than the hydrostatic pressure anywhere inside the poroelastic cylinder. For
simplicity, it can be assumed that F, =0.

The boundary condition at a transverse cross-section S of the hollow cylinder can be written

as [3]

[@. +7)ds =-P(), (22)

5

-10-



where

ds =rdrd@, (23)

is the unit cross-sectional area of the hollow cylinder.

The system of Egs. (4), (5), (8), (9), (15), (16) and the boundary conditions (20), (21), (22)

constitute a well-posed mathematical problem. We assume a solution for the displacements

which satisfies the above equations. The proposed solution is

ur =Mr{r?r)7 ul‘i‘ ={:]’ I"!: =_‘D]{f}z (24}
U =U(n1) U, =0, U.=-D,(t)z .
Then, the constitutive equations become
T,,=(2N+A]ﬂm(£+a”=]+g[wr+&+—5D:],

or r Bz ar F gz

u du, Bu oul, U 8U
T, =2N+4)—+ 4 ——+—= |+ L+ —=
e ( +}r+(5‘r 52] Q[é‘r ¥ EEJ

cu du.  u aur, U U,
T.=2N+ A)—+ 4| —+— |+ | —+—+—|, 23
"( )§z+(&r+r] Q[Sf ¥ &z] &)
T=0 L +£+% +R —Sb’ +Drr +—5U:J,

ar r iz i ¥ oz

TemT=Fa=0

The equilibrium equations yield

-11-



i T:'r +T]+£Trr _lTEE =ﬂ!
ar r r

(26)
O +7)=0,
oz
and Darcy’s law becomes

ar

G
=C2(U, -
= =C5 U, -u),

(27)
i

e ay
o g )

Substituting the expressions given by Eq. (25) into Egs. (26) and (27) we obtain

(2N +A4+0)fu, +(0+R)£U, =0,

(28)
Ofu, +Ciu, +REU, —CEU, =1,
&t ot

(29)
QD U, +C8u: Uy Bl

Substituting the proposed solution for u_and U, into Eq. (29), we obtain an identity and a

relationship of the form

=]



c:%(ﬂl (1)-D, ) =0, (30)

which is equivalent to
D,(t)=D;(1)+@, 31

where @ is a constant.

The boundary conditions become

atr=a:

8 u oU, U
(2N +4+Q) e—; +(4 +Q(T*—D1{r}]+(Q+ R{a—’y Tf-a{:)—ej =-plr). 32

at r=h:

2V +4+0) 2% +(A+Q)[Ea-mr)]+{g+ R & +i-n.(r}—@j =0, (Y
&r r or r
andat §:

272(4+O)bu, (b,1)- au,(a.1)) - z(b* - a® 2N + 4+ Q)D, (¢)+

+272(0+ RXbU, (b,1)-aU (a,1))-z(b* - a* O + RXD,(r)-©) = —P(r). S

The problem has non-homogeneous boundary conditions and therefore we employ the

following method to solve it. We assume there exists a function w = w[rﬁt} such that

Pw(r,t)=0 = w(r,r}=A]{f}‘+A2{r}~}, (35)

which satisfies the following equations

atr=a:

(2N + A4+ g}@ +(A4+ Q{E + D]{r]]+ (0+ R(-Jal’i+3+ﬂ1 (1)+ E}] = plt), (36)
or ¥ ar

atr=5b:

(2N+A+Q]@+(A+Q{E+Dl(r))+{g+R{EW_+E+D](:}+@J=n, (37)
or ¥ or r



andat S :

27(A+20+ RYbw(b,t)- awla, 1))+ z(b* -a® 2N + 4+ 20+ R)D, (1) +

+fr(bl—a k}+R]@—P

or equivalently,

atr=a

2N+ A+20+R)4,(r)- 2N 4,()+(4+20+ R)D,(t)= p(t)-(0+ RO,

atr=>b:
2(N + A+20+ R)A4,(1)- zN = 4,()+(4+20+R)D,(1)=—(Q+R)® .
and at §:

2(4+20+R)4,(c)+(2N + 4+20+ R)D\(t) = ;[% -(0+R)O.

Then the functions

i, (r,.t‘) =u, (r,i‘)+ w{r,!‘] ,
{1 (r,r} =U, (r,r)+ w(r,r),
satisfy the system of equations

(2N + A+ Q)0 +(Q+ R)£T, =0,

e g . ~ & ~
U +C—u +REU. -C=U_=0,
o4,  a : a

with homogeneous boundary conditions

atr=a

T r

(2N + A+Q}£+(A+Q]£+{Q+R{%+ﬂjzﬂ,
ar r

“14-

(38)

(39)

(40)

(41)

(42)

(43)

(44)



at r=h:

{zmmg)@ (A+Q)_+(Q+R)[*"‘U U] 0,

or r

and at S :

(4+0)bi, (b.1)-ait, (a,0))+ (@ + RN T, (b,1)—al (a,1))=0.

The system of Eqs. (43) can be written as

where

Introducing a function /4 such that det(ﬂ)h=ﬂ . [17, 18], we obtain
g~ _1a 1 0
+ R —_—— |+ O —
(Q {Q[S‘rz r or rz] 5!‘}
4

G -
_(eN+a+0f R 2 +1i—i2 gl
_ &t rér it

Assuming that s = h, + h, , Eq. (48) is equivalent to the system of equations

-15-

(45)

(46)

(47)

(48)



where

B C(2N +20+R+ 4)
~ Q*-2NR-A4R

The solution of Eq. (49) is given as

hr0)= a0 + 240,

Using the method of separation of variables, /, can be written as

(1) = RET().

Then, Eq. (50) becomes

R(r}‘” 1R() 1 _ T[r)“]
R r R

or equivalently,
kTY +m’T =0,
with solution

o't

T(1)= Ble_T ;

and

P2R(r)* +rR(r)" —(rzm2 + I)R(r] =0

with solution

R[r] =B.1 (mr)+ B.K, {mr},

-16-
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(50)

(51)

(52)

(53)

(34)

(35)

(36)

(57)



where /| (mr) and K, (mr) are the modified Bessel functions of the first and second kind,

respectively, of order one.

Thus, Eq. (53) becomes

h(r,t)=(B.I,(mr)+ B.K, {mr}}e_mTlr ,

The functions #, and U . can be expressed as

7 =(Q+RJ[ 4 +1E-—ri3]{h, +h),

&’ reér
~ a7 18 1
U=-2N+4+0) —+—-— |l +
Given that
#,18 1),
ol raor ?
and

o L e (10

~|

(BEII {mr:l+ B.K, (m"}}WEE_ :

the expressions for %, and U/, be written as

e

i, =(Q+ RAB.I(mr)+ B K (mr)me *

i
-’:’, = —(2.N'+A+Q}{B,,,I] [mr)+B}K| {mr}}rrxzeT

o
+B. K (mr:I)eHT =

(58)

(39)

(60)

(61)

(62)

(63)



Introducing (63) into the boundary conditions (44) and (45), we obtain

BbI,{ma]+E?Kl{ma]= 0,

(64)
B,I,(mb)+ B.K,(mb)=0
The system of equations (64) has a non-zero solution only if its determinant is zero, L.e.,
1,(ma)K, (mb)-1, (mb)K,(ma)=0, (63)
and then
K (ma]

B =-B,— 2 66

; "1 1 (ma] s

Equation (65) must be solved for m . If Eq. (65) holds, the boundary condition (46) is
automatically satisfied.

Using Eq. (42), the radial displacements for the solid and the fluid part can be written as

u, =(0+ R\B,1,(mr)+ B.K (mr))rie * —Alt)r-4, f}—

(67)
U, =(2N+4+O)B( )+ B mie F — Ay — A0

¥

Using Eg. (67) and the expressions for the axial displacements
u, =-D(t)z,

(68)
U, =-D,(t)z,

the stress components are calculated from Eq. (25) as
v 2 -%tr 1 1
T, =-2N(Q+R)m’e * | B,—1I,(mr)+B,—K,(mr)
r ¥

(@~ 2NR AR (Bt ) Bk o)
2N+ A+0)4,(1)+ 2:‘#342(:}:—2—{.4 +0)D,(t)-00,



T, =—{0*+20N - Aﬂ}n’*e'mTr (B,mI,(mr)— B,mK ,(mr)) (69)
~2(4+0)4,(r)-(2N + 4+ 0)D,(1)- 00,

and

T =(0*-2RN - AR}nEE_MT:r (B,ml, (mr)— B,mK,(mr))
_2(Q+ R}AL(I]_ (Q+ R)DJ(I]_ RO.

where I,(mr) and K (mr) are the modified Bessel functions of the first and second kind,
respectively, of order zero.

The solution of the system of equations (39) to (41) leads to expressions for the unknowns,
A(t), 4,(t), D,(¢) given in Appendix A. Taking

_3A+2N+60+3R
O+R

and substituting 4,(¢), 4,(¢), D,(r) into Egs. (67), (68) and (69), we obtain the

®

and B, =1,

displacements and stresses in the hollow cylinder, respectively. The strains for the solid part
can then be estimated from Eq. (4) and for the fluid part from the corresponding relations for

the fluid.

4.  The forced fit of the hollow cylinder about an isotropic solid

elastic cylinder

For an isotropic solid elastic cylinder subjected to an external pressure p{.t‘ }._ the non-zero

stressis 7, =— p(f ) . The displacement in the radial direction is given [2] as

=, =2, )ple)r

= - ; (70)
24,34, +2u,)



where A and u, are Lame’ s constants for the isotropic solid elastic cylinder.

We calculate the pressure of interaction p(f) which occurs when an isotropic solid cylinder

of radius a, +£2)- is force-fitted into a hollow adaptive poroelastic cylinder of radius a;.

Let @aand b denote the inner and outer radii, respectively, of the hollow adaptive poroelastic

cylinder at the instant after the solid isotropic cylinder has been forced into the hollow

cylinder. Although the radii of the hollow cylinder will actually change during the adaptation

process, the deviation of these quantities from @and b is assumed to be negligible in small

strain theory.

At some instant after the two cylinders have been force-fitted together the pressure of

interaction is p{f} . The radial displacement of the solid cylinder at its surface 1s

s _(il'up +ﬂ.p)p{.t‘)a
: Eyﬂ{fyﬂ,p+2,uﬂ) ‘

The radial displacement of the bone at its inner surface is

-t

1

u, +U, = —(2N + A - R)B,],(ma)+ B,K,(ma))m’e * —24,(t)a-24,(t)— .
o

Since the two surfaces are at the same radius after insertion of the rod, that 1s,
= P s 7
a—an+-2—+u._ =q,+u, +U,,

we find

P:‘?'(uz +U, _“1) :

-20-

(71)

(72)

(73)

(74)



or
p=2(A,P(t)+ A, +Ayplt)), (75)
where A,, i=1.23 are given in Appendix B.

Solving Eq. (75) for p(r) we obtain,

pl)= é[g—h.f’{r}—m] - (76)

When Eq. (76) is substituted into Egs. (67), (68), (4) and (25), the displacement, strain and

stress fields are determined. They are functions of the porosity f or, equivalently, of the

change in the volume fraction e.

The remodeling rate equation is obtained by substituting the expressions for E and & into

2N +34 +BQ

é:A,{f)+Az{f{E—M£J, (77)

In order to solve Eq. (77) explicit forms for 4,(f), 4,(f), E(f), &(f). o(F). R(f) .

N(f) and A(f) must be inserted.

5 An approximate solution

The remodeling rate equation is given as

é=A(f)+ &U{E—Ms], (78)

2N +34+30

where

=21-



E=—(0+ R)m*r%lr[ K, (ma)l (m;}{;j){m“)x"{mr)J =D,()-24,(),

and

£ =(m-'+A+the%[K‘{”"’}f‘*{m’)_fl{m”]KD(“’)J—{a (1)+©)-24()

1,(ma)
We assume that 4 {f) and 4, [f} can be approximated as

4(f)=C,-C.f-C,f,
and

Az{fj= A? —A;f,

where C,,C,,C,, 4, and A, are constants.

The dependence of O, 4,R, N on f is given by Biot and Willis [14],

)

K
i?==----:;;'n

y+o——

K

fl
R= 3T
YA r——
K

22

(79)

(80)

(81)



and
N=u,,
where & 1s the coefficient of jacketed compressibility, & the coefficient of unjacketed

compressibility, » the coefficient of fluid content and x4, the shear modulus of bone.

Introducing Egs. (80) and (81) into the expressions for 4,(1), 4,(r), D,(r).© and then to Egs.

(79) and (78) we obtain an equation of the form

é=g(f.m, plt). P(r)). (82)

that is, the remodeling rate is a function of f, m, p[f) and P{r). The parameter m can be

found from Eq. (65) and pl¢) is related to P{t) as indicated by Eq. (76).
Equation (82) is solved numerically. For a constant value of P at a specific time f, we obtain
p as a function of f, using Eq. (76). Finally, we end up with an expression of é as a

function of the porosity f that is numerically solved.

6. A numerical example

To illustrate the numerical solution of the remodeling rate equation we present a numerical
example with chosen data. We examine the case of a stainless steel medullary pin being
force-fitted into a femur with an internal radius @ = 10mm and an external radius b =15mm .

The ratio of o to a is 0.005. Then, m is calculated from Eq. (65) and found equal to
~1.52151x10™" +632.1871. The material properties of the pin are A, =120GPaand

i, =80GPa [3].

o



The material properties for bone are obtained as described below. According to Biot and

Willis [14], A, N.O.R are related to p, A,k and [ as follows,

(83)

*

N=u, A—%=A, 2u+3A=

|

Taking u, = 5.5GPa, A, =40GPa [19, 20, 3], we obtain x =0.023(GPa )" .Assuming

that for bone § = 0.02(GPa ) 'and y = 4.68(GPa )™, Egs. (81) are written as

=f({}.131—f)GPH!

© 4.682

4.682

p =[2G3.4?8+ ,: ;3[; 2/)0.130 _3.551]{;&, g

and

N=55GPa.

We further assume that the fluid occupying the pores is water, whose viscosity is
n=1x10""GPa sec [21], and that the permeability of bone is [15], &, =107 m?, so by
using Egs. (10), (84) and (51), the parameter k& can be expressed as a function of the

porosity [ .

The remodeling rate coefficients are taken [3] as,
Gy =107 8867, G =107 s 6 =107 i
and (85)

Ag =10"sec™ , A; =107 sec™’.

24-



We investigate the situation when remodeling starts. At ¢ =0, the medullary pin is forced
into the medulla. The internal pressure p(.f] is calculated from Eq. (76), where P(f) is

assumed to have a uniform value of 1631N [3]. An expression of éas a function of the

porosity f can be obtained, which is numerically evaluated for a range of porosities at

# = 0.0125m.. Figure 3 shows the variation of the remodeling rate with porosity. It can be

seen that as the porosity increases the remodeling rate decreases.

T. Discussion

A theoretical analysis of internal remodeling induced by the forced fit of a medullary pin in a
hollow cylindrical poroelastic bone model has been presented. In the proposed model, bone is
treated as a poroelastic medium, consisting of a solid elastic bone matrix and interstitial fluid
flowing through the interconnected pores inside the matrix. The formulation of the problem 1s
based on the three-dimensional theory of consolidation for poroelastic media introduced by
Biot [11, 12, 13]. For simplicity, bone has been treated as isotropic. A constitutive relation for
the poroelastic bone, which incorporates the internal bone remodeling process is proposed.
The contribution of the fluid term to the remodeling process is clearly indicated. Using Biot
and Willis approximation [14] for the dependence of the elastic constants on porosity, and a
second-order approximation for the dependence of the unknown material functions on
porosity, a new remodeling rate equation is proposed. Numerical values of the remodeling
rate coefficients have been taken from the literature [3]. The rate of internal remodeling,
which is defined as the temporal derivative of the change in the bone volume fraction of the
bone matrix material, is expressed as a function of porosity. Our results show that as the

porosity of bone increases, the rate of internal remodeling decreases.



To the authors’ kmowledge, the present work constitutes the first attempt to use the
poroelasticity theory in the formulation of the problem of internal remodeling induced by a
medullary pin. The advantages of using the Biot formulation for the material description of
bone are: (a) it offers a direct visualisation of the contribution of the fluid term, and (b) the

dependence of the elastic constants on porosity is known.

The suggested solution in our model allows an estimate of the relative rate of remodeling at
different locations inside the bone model. The present model is subject to further
improvement. An alternative solution could be sought for, so that more realistic predictions
might be reached. An insight into the remodeling rate equation could possibly lead to an
alternative approximation. The work presented here could be extended to include another
symmetry for bone such as transverse isotropy or orthotropy. In addition, the cavity of the
hollow poroelastic cylinder could be assumed to be filled with fluid which is free to flow in
and out of the pores of the bone matrix. The inherent complexity of the physical problem and
the mathematical difficulties encountered are to be taken into consideration but should in no
case be preventive. An improvement of the present model might offer a more realistic
approach to the internal bone remodeling problem. The analysis for surface bone remodeling

induced by the force-fitting of a medullary pin is in preparation.

Appendix A

4 ()= (4+20+ R)P(t)+ a*z(4+2N +20+ R)p(f)+ 2Nx(p* - a* O+ R)®
e 2(a* -B* INx(34+2N +60+3R) ’

a’b’p(r)
Eibj . ﬁ

4,(0)=-
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~(4 +2Q+R+N}P(I2—a2fr(A +20+R)p(t)+ Nz(b* -’ O+ R)O

Bife)= (a* -b*)34+2N +60+3R)
Appendix B
- —a(4+20+R)

' ¢* - INa(34+2N +60+3R)’

_ 240+R)
' (34+2N +6Q+3R)’

. | ab> a (N+A4+20+R) P (A+2u)a
-2V (@ -p*NBA+2N+6Q+3R) 2u(34+24))
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Figure 1

Figure 2

Figure 3

The decomposition of the medullary pin problem into two sub-problems:

{a) the hollow isotropic poroelastic cylinder is subjected to an internal radial
pressure p(tl.
{(b) the elastic isotropic solid cylinder is subjected to an external radial pressure p(1).

The poroelastic hollow cylinder is subjected to an axial load P(#) and a radial internal
pressure pitl.

The variation of the remodeling rate with porosity.



