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Abstract

In this technical report we study path routing and coloring problems in
ring graphs and present some NP-completeness results. In the Path Coloring
problem (PC), a collection of paths in an undirected graph is given and the
goal is to color all paths using a minimum number of colors, so that overlapping
paths are assigned different colors. A variation of PC is the Routing and Path
Coloring problem (RPC), in which pairs of vertices are given instead of paths
and path specification i= part of the problem.

The decision version of PC for rings is know to be NP-complete [1]. In this
report we prove that it remains NP-complete in some special cases. Using this
fact, we prove that the decision version of RPC for rings is also an NP-complete
problem.



1 Introduction

A (proper) coloring of a collection' of paths P. is an assignment of colors to paths in
P, such that overlapping paths have different colors {we say that two paths overlap
if they pass through the same edge).

In the Path Coloring problem (P(C'), an undirected graph G(V, E') and a collection
of paths P are given and the goal is to find a coloring of P that uses a minimum
number of colors. A variation of PC is the Routing and Path Coloring problem
(RPC). In this problem instead of a collection of paths we are given a collection of
pairs of vertices R. The goal is to choose a path between every pair of vertices in R
and find a coloring of the resulting collection of paths. so that the number of colors
is minimum among all the possible choices of paths and colorings.

PC and RPC have been studied for several graph topologies that appear in net-
works. In this report we consider these problems for ring graphs (RING-PC and
RING-RPC problems). The RING-PC problem was first formulated as coloring of
circular arcs. The NP-completeness of its decision version follows from [1]. An ap-
proximation algorithm for RING-PC' is presented in [4]. Approximation algorithms
for RING-RPC appear in 2. 3]. In this report we prove that the decision version of
RING-RPC (denoted d-RING-RPC'} is also NP-complete.

In section 2 we give some definitions and technical preliminaries. In section 3 we
prove the NP-completeness of some special cases of d-RING-PC. Finally. in section

4 we prove the NP-completeness d-RING-RPC.

2 Definitions and Technical Preliminaries

A ring is a graph that consists of a single cvele. The vertices of a ring are labeled
1,2,...n in clockwise direction. Formally a ring is a graph R = (V}, E, ), where

=18 n}
E. ={{i,i+1}1<i<n-—1}U{{n1}}.

Notice that a ring is completely defined by the number of its vertices.

In a ring there are two alternative paths between anv two vertices. We denote the
path (7, (¢ mod n) 4+ 1,.... 7). that connects ¢ and j in clockwise direction, by (i, 7).
A path is short if its length is less than . or equivalently at most [2] — 1. A path

is long if it is not short.

1%We use the term collection instead of set, since a path may appear many times in P.




An instance of RING-PC is a pair (n. P). where n is the number of vertices in
the ring and P is a collection of paths. Similarly an instance of RING-RPC is a pair
{n, R), where R is a collection of unordered pairs of vertices.

Given a RING-PC instance the load of edge e (denoted by ke, P)) is the number
of paths in P that pass through ¢. The load of the instance is &( P) = max.cg, k( P, €).
Notice that k(P) is a lower bound for the number of colors needed to color all paths
in P.

In the following sections we consider the decision problems d-RING-PC and
d-RING-RPC. An instance of d-RING-P('is a triple (n. P.w), where n is the number
of vertices in the ring, P is & collection of paths and w is a positive integer. (n, P,w)
is a “yes” instance of d-RING-PC iff there exists a coloring of P with at most w
colors. d-RING-RPC is defined in & similar way.

An instance (n, P,w) of d-RING-P( is canonical if for every edge e in the ring
k(e, P) = w.

3 Coloring Short Paths in a Ring

In this section we prove that d-RING-P(' resiricted to canonical instances with only
short paths remains NP-complete.

Theorem 1 d-RING-PC restricted o canonical instances is NP-complete.

Proof. We will reduce d-RING-PC for arbitrary instances to d-RING-PC restricted
to canonical instances. Let (n. F.iw) be an instance of d-RING-PC. We construct a
collection of paths P' as follows. [ contains all paths in P. Moreover, for every
edge e = {i.j} such that kie. P) < w. P’ contains w — k(e. P) paths of length 1,
connecting 7 and j through «. Obviously (n, P'.w) is a canonical instance.

If paths in P’ can be colored with w colors. then paths in P can also be colored
with w colors, since P C P'. Converselv. if there exist a coloring of paths in P with w
colors, this coloring can be extended to paths in P’ — P, by assigning the w — k(e, P)
colors that are unused in an edge ¢ 10 the w — E{e. P} uncolored paths of length one
that pass through e. |

Theorem 2 d-RING-PC restricted to canonical instances with only short paths is
NP-complete.



Proof. We will reduce d-RING-PC [or canonical instances to d-RING-PC for canon-
ical instances with only short paths. Let {n. P.w) be a canonical instance of d-RING-

PC. We will construct a secionce of instances (ng. Py, w). {ny, Py,w),. ... (rty Fiy 20
such that:
s Fori=0,1.; m:

— n; is an odd number

— {n;, P;,w) is canonical instance.
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- {(ni, Pw) is a “ves” instance iff {n. P.w) is a “yes” instance.

e P, contains only short paths.

If n is an odd numher then ny = » and B, = P. Otherwise, in order to achieve an
odd number of vertices. we split edge {n.1} into two edges {n,n+1} and {n+1,1}.
Thus. if n is even, then ng = n + 1 and paths in P, are obtained from paths in P by
replacing each subpath (n,1) by the subpath {n.n +1.1).

Assume that instance (n;. P.uw) contains a long path p; of length [;. Without

loss of generality we may assume that p; = (n; — | 2], [%]) (otherwise we can rename
vertices). Notice that
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since I; < n; — 1 and n; is odd. This implies that p, does not pass through edge
{n‘—l r1+1}

Tkt g dn

We construct a new instance (n;_;. Py, w). in which p; is replaced by two short
paths. The ring in the new instance contains two new vertices: a vertex r is inserted
between n; and 1 and cdge {n.. 1} is replaced by edges {n;. 2} and {z.1}: similarly a

“= and 22 and edge {251, 225 s replaced by edges

vertex z is inserted between
{22 2} and {=, 2tly,

All paths in P; except for p; are inserted in Py, alter replacing each subpath
(n,1) by (n,x.1) and each subpath {25, 2£1) by | Sz 5 Py also contains the

2

following subpaths of p;: p! = (n;— |2 |, n.—| 4| +1..... ni r)and p!f = (x,1....,[4]).
(Actually at this point a renaming of vertices must be performed to achieve the

standard vertex naming 1.2.....n., ).



It is easy to see that n; is odd and (n;, P..w) is canonical, for 1 = 0.1,...,7. We

next prove by induction the following fact:
(ni, Piow) 15 a “yes” instance iff (n, P.w)is a "ves™ instance.

The possible insertion of a new vertex in the construction of {ng. Fs. w) does not
affect path overlapping. Thus, the fact holds for i = 0. Suppose that the fact holds
for the instance (n;, P;,w). It suffices to show that (n;.;. Piy1,w) is a “ves” instance
if and only if (n;, Pi,w) is a "ves” instance, If paths in P; can be colored with w
colors, then we can get a coloring of paths in ., by assigning the color of p; to
gt and p!. The colors of the remaining paths are the same as in the coloring of F;.
Conversely assume that paths in £, can be colored with w colors. Paths p} and p
must have the same color: otherwise the remaining 1w — 2 colors do not suffice for the
remaining w — 1 paths passing through both edges {n;.r} and {z,1}. Thus. we can
get a coloring of paths in P by assigning the common color of p! and p¥ to p;.

The length of p! and p! is |% | + 1 and [%] respectively. It follows that p! and p
are short paths, since
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Moreover, any short path in P has length [ < ""_,‘1, which implies that it cannot

contain both edges {n,1} an ! {Z=1, £} Thus. its length in the new instance is at
most [ +1 < 24171 j e it remains short.
Consequently the number of long paths is decreased by one at every step. If Fy

contains m long paths, then P, contains only short paths. [

4 Routing and Path Coloring in Rings
In this section we prove that d-RING-PC' is an NP-complete problem.
Theorem 3 d-RING-RP(C’ in NP-complete.

Proof. We will reduce d-RING-P(' for cancnical instances with only short paths
to d-RING-RPC. Let (n, P, ) be a canonical instance of d-RING-PC, in which all
paths are short. Let R be the collection of requests. which contains a request {i, j} for
every path (i.7) in P. We will prove that (n. P.w) is a “ves” instance of d-RING-PC
if and only if (n, P,w) is a “ves” instance of d-RING-PC.



Assume that paths in P can be colored with w colors. Then we can assign to
each request {7, 7} the shortest path between 7 and j. i.e. satisfy the requests using
exactly paths in P. and color the resulting paths with w colors.

For the other direction assume thet there exisis a routing P' for R and a coloring
of paths in P' with w colors. We claim everv path in P’ must be the shortest path
between its endpoints. i.e. P’ = . In order to prove this claim notice that the sum
of the lengths of all paths .. P is exactly nw. If P’ contains a long path then the
sum of the lengths of all paths in P’ will be greater than nw. This implies that for
some edge e in the ring k(e P') > . But in that case paths in P’ cannot be colored
with w colors. Hence, P’ does not contain any long path, i.e. P’ = P. This implies
that paths in P can be colored with w colors, |
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