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Abstract

We propose an algorithm for Gaussian mixture modeling with un-
known number of mixing components that combines the EM and
the VDM algorithm (Lindsay, 1983). In contrast to previous ap-
proaches, our method (i) applies on multivariate data, (ii) features
an improved VDM pradient function based on a second-order Tay-
lor approximation of the mixture after component insertion, (iii)
uses partial EM steps and a kernel-based approach for efficient
searching for the global maxima of the log-likelihood. Simulation
results indicate thar the method manages to estimate the true num-
ber of components in most cases, while it compares favorably to EM
with fixed number of components in terms of the log-likelihood of
the obtained solutions.

1 Introduction

Finite mixture distributions [1] provide a simple framework for modeling population
heterogeneity. If fix; ) is the j-th component model parametrized on ¢, then a
mixture density for a random vector x assuming & components is

k

px) = 3w f(x: ;) (1)
=1
where 7; are the mixing weights satisfying = + ...+ m = 1, m; = 0. Mixtures have

proven useful tools for data analvsis and recent examples are mixtures of factor
analyzers [2] and principal component analyzers [3].

The estimation of the parameters of the mixture, i.e., the parameter vector ¢
of each component, is often carried out with maximum likelihood and the EM
algorithm [4]. However. one of the limitations of EM is that it assumes known



number £ of mixing components. For real applications, however, the number % is
often unknown, and it would be desirable to have an algorithm which starts with a
single component and adds components dynamically to the mixture until it reaches
a solution with log-likelihood close to the global maximum.

In this paper we propose an algorithm for Gaussian mixture modeling with un-
known number of components. Assuming k components, EM steps are repeated
until the log-likelihood converges. Then a new component is added to the mixture
according to the vertex direction method (VDM) [3] and a theorem that specifies
the conditions that hold at the global maximum of the log-likelihood. We extend
previous results [6, 7, 8] in several ways:

e Our method applies on multivariate mixtures.

s We define an improved VDM gradient function based on a second-order
Taylor approximation of the new mixture after component insertion.

e We propose a search technique for the maxima of the new log-likelihood (af-
ter component insertion) using partial EM steps and a kernel-based search
method.

2 Gaussian mixtures and the EM algorithm

A multivariate Gaussian mixture is defined as the weighted sum (1) with f(x; ;)
being the d-dimensional Gaussian density

flx: ;) = (27)"42|8;]7 2 exp [-0.5(x — m;)T 87 (x - my)] (2)
parametrized on the mean m; and the covarlance matrix §;, collectively denoted
by the parameter vector ¢;. We assume a training set {%x1.,---,%q} of i.id. points

sampled from (1) and the task is to estimate the parameters of the mixture that
maximize the log-likelihood

n
L=n"1} logp(x:). (3)
i=1

The solutions to the above problem using the EM algorithm are given by the iter-
ative update equations [J]

P(jlx) = % )
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i=1
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Details concerning the convergence properties of EM can be found, e.g.. in [9, 10].

3 The VDM algorithm

The VDM algorithm specifies an incremental strategy for the dynamic insertion
of new components in a mixture until a global maximum of the log-likelihood is
reached. It is based on the following result.



Theorem 1 (Lindsay 1983, Th. 4.1, 5.3) Let py(x) be a k-component mizture
and fre1(3 @) a new component model culside the mizture with parameter vector

. If
S Z fk-l-l'[xl _ }
= fozmn { Prlx;) . (8)

is a function of the parameter vector ¢ of the new component then:

1. At the global mazimum of the log-likelihood holds
sup D(@) = 0. (9)
fir}

2. If for some ¢ holds D{¢p") = 0, then the log-likelihood cannot decrease if
we add the component fro(x; ") to the mizture, with weight a € (0,1) so
that the new mirture is

Prs1(x) = afip1(x:0°) + (1 = a)pr(x). (10)

The first part of the theorem specifies the conditions that hold at the global maxi-
mum of the log-likelihood, namely, that the gradient function D{¢) is less or equal
to zero evervwhere in the parameter space. The second part of the theorem is more
useful in practice: it states that the addition of a new component to a mixture in
the form (10) will always lead to an increase of the log-likelihood, unless we have
already reached the global maximum.

Proving the first part of the theorem for the mixture model (10) g;wes some useful in-
sight. The difference between the new log-likelihood £ipy = n7! 30 log prst (%)
and the old log-likelihood £ = n™! 30, logpe(x;) is

g afir1(xii @) + (1 - G]MKJ}
il Zl { i)

()} w

If we use the inequality logz <z — 1 we get
AL <aD(g) (12)

which. since a is positive, states that the log-likelihood cannot increase (i.e., we
reached the global maximum) if D(¢) < 0 for all ¢ in the parameter space (i.e.,

supg, Dig) =10).

Intuitively. the above theorem says that in order to increase the log-likelihood of
our data set we must place a new component so that it fits as many input data
as possible (numerator in (8)). which are at the same time inadequately fitted by
the existing k-component mixture (denominator in (8)). From a practical point
of view, an important consequence of the theorem is that the mixture (10} is a
sufficient model for searching for the global maxima of the log-likelihood.

Based on the above theorem, an incremental algorithm called the vertex direction
method (VDM) was proposed in [5] for searching for the global maximum likelihood
solutions. The idea is to find in each step the parameter vector ¢° that maximizes
D(¢) and then to estimate a in (10) that maximizes AL, The VDM algorithm can
be shown to converge to the global maximum of the log-likelihood [3].



The VDM algorithm can be justified by a first order Taylor expansion of AL in (11),
regarded as a function of a, about a = 0. This corresponds to approximating AL
by its upper bound from (12)

AL =al(g). (13)

Since a is positive, the above equation implies that we can search for the maxima of
AL by maximizing D{¢). However, a linear approximation can often be too rough
and in [7] a second order Taylor expansion about a = U is proposed. However, due to
the discontinuities of AL near a = (), suboptimal solutions may arise as we noticed
in our implementations. Moreover, it is not clear how we can efficiently search for
the maxima of AL over the parameter space, especially in the case of multivariate
mixtures. These limitations of the original VDM method motivated our approach
described below.

3.1 A VDM approach based on partial EM

Our approach is based on the observation that the mixture peiq(x) in (10} can be
regarded as a two-component mixture, the first component being the new added
component fgey(x; @) and the second component being the old mixture pp(x).
Thus, partial EM steps can be used to find the parameters a* and ¢" which max-
imize the new log-likelihood L4 (and thus AL) while leaving the parameters
of pr(x) unchanged. This means applying the EM equations (4)-(7) only on the
mixing weight @, the mean m. and the covariance matrix § of the newly inserted
component, i.e.,

afyse1(%i;m,S)

Plk+1x;) = ; 14
b+ 1) = o e m.8) + (1 - AP () (14)
1 < : .

i ; Pk + 1|x:), (13)
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Since only the parameters of the new component are updated, partial EM steps
provide a simple and fast method for searching for the maxima of L4, without
needing to resort to expensive gradient-based nonlinear optimization methods.

3.2 Initialization of partial EM

Still, for the partial EM to be effective we need a good initialization of the parame-
ters of the new component. We propose the following method. We expand Lp4q by
second order Tavlor about a, = 0.5 (which avoids problems of discontinuities near
the bhoundaries of a) and then maximize the resulting quadratic function w.r.t. a.
It is not difficult to check that this procedure gives the solution

_ (e (@)
Li+1 = Letr(ao) = LT (aa) (18)
with £, and £}, the first and second derivatives of Ly4; w.r.t. a. If we define

Frrr (% ) — po ()
S @) + prlx:)

f(x,.d) =2 (19)



then the local maximum of £+ near a, =0.5 15

n = ! 2
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Lisi=n Zlog 2 T Tim %(xi, 9)
1=1 - -

and is obtained for o equal to

—1 =0 o
o 1 . T E,_:l '5(:'[11@) {'_)l:l

2 a8 (xi @)

3.3 Kernel-based search

The above procedure makes the new log-likelihood (20) independent of the mixing
weight a, while the value of @ from (21) that maximizes L4 can be used in the
initialization of the partial EM. The next task is to find a sensible initialization
of the center m and covariance matrix 5 of the new component so that Lp4, is
maximized.

We observe that £iyp in (20) depends only on fr+:(x::m,S) which, for constant
spherical covariance S = ¢°1, is a function of the Euclidean distance between the
input x; and the new center m. If we restrict our search for m over all training points
x;, evaluation of (20) for all possible data implies estimation of O(n?) Euclidean
distances for each pair (x;.x;) of training points. However, this computation may
be carried out only once at the beginning of the algorithm by storing a kernel matrix
K with elements

21a?) (22)

and then use K;; for computing the fiy1(%;;x;.8) values in (20). This gives rise to
an algorithm similar to kernel feature analysis [11] where a kernel matrix is defined
and a search over all inputs is used in each step to optimize a contrast function
acting on a ‘feature’ space of the original data. In our case, we can define many
kernel matrices, one for each o, and then compute the maximum of (20) among all
of them.

Ky = (270%) %2 exp(—0.5|x; - x;

3.4 The algorithm

Summarizing the above ideas we have the following algorithm for Gaussian mixture
modeling with unknown number of components.

1. Initialize using one component. Set o° to a fraction (e.g., 0.1) of the mini-
mum eigenvalue of the covariance matrix of x;. Compute the kernel matrix
from {22).

. Perform EM steps until convergence.

[P I ]

. Search over all x; for candidate locations for the new component. Set m
to the x; that maximizes (20) using the precomputed kernel values K, in
place of fir1(xi:x;,0°I).

Initialize the partial EM with the estimated m, S = ¢”1, and a from (21).
Apply partial EM steps (14)-(17) until convergence.

If AL < VDMTHRESHOLD (e.g., 0.03) then terminate, otherwise allocate
the new component and go to 2.

oo e

Since EM cannot lead to decrease of the log-likelihood and the partial EM solutions
are accepted only if AL > 0, the algorithm ensures the monotone increase of the
log-likelihood.
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Figure 1: Performance of EM-VDM: log-likelihood (left), estimated k (right).

4 Demonstration and discussion

In order to assess the effectiveness of the proposed EM-VDM method in approx-
imating the correct number k of components of a Gaussian mixture, and also to
compare the solutions of EM-VDM with those of EM with fixed and known k.
we generated 30 random two-dimensional mixtures with centers uniformly sampled
within a square rectangle, and mixing weights and covariances also random (over-
lapping components were allowed which made the experiment difficult). From each
such mixture, 500 points were sampled and the theoretical log-likelihood was com-
puted. Then EM-VDM was applied starting with one component, and also five
trials of EM using the true k and keeping the best sclution among the five. This
experiment was repeated for values of k from one to nine.

In Fig. 1 (left) we plot the average (with lo error bars) of the absolute difference
between the theoretical log-likelihood and the estimated one for EM-VDM and
EM, as a function of the true k. In Fig. 1 (right) we plot average and error bars
of the difference between k and the estimated & for EM-VDM. We see that for
small number of components our algorithm can estimate very accurately the true
number of components, while its solutions outperform EM in terms of log-likelihood.
The latter can be attributed, on the one hand, to the local maxima of EM due to
improper initialization, and on the other, to the very good performance of EM-
VDM when the components of the mixture are well-separated. This property of
EM-VDM is more noticeable in dimensions higher than two, where the sparsity
of the data and the sampling of the mixture centers within a hypercube give rise
to well-separated mixtures, We should emphasize here that the above results are
unoptimized, in the sense that a single kernel matrix was used and no tuning was
tried aver the VDMTHRESHOLD or the value of o in the kernel matrix (22).

In the past we have also proposed a different dynamic approach which splits com-
ponents of the mixture based on a statistical test involving the kurtosis of each
component [12, 13]. However, the current approach is more robust and avoids
problems of the kurtosis related to outliers. An analogous method that deals with
the problem of local maxima of EM has also been recently proposed in [14]. In this
method split-and-merge operations are applied on the components of the mixture
using a criterion based on the Kullback divergence between a component density
and the empirical density in the vicinity of the component.

The current algorithm furthers existing VDM approaches [6, 7, 8] which are either



one-dimensional, are based on Taylor approximations of the mixture log-likelihood
near the boundaries of the a range, or use expensive global optimization routines
for optimizing the VDM gradient function. As future work we want to study the
effect of the free parameters VDMTHRESHOLD and # in (22} on the behavior of
the algorithm and how we can antomate their tuning. Also it would be interesting
to check to which extend our method can be used for estimating the number of
components in latent mixture models 2, 3].
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