A PROBABILISTIC RBF NETWORK
FOR CLASSIFICATION

M. Titsias and A. Likas

9-2000

Preprint no. 9-00/2000

Department of Computer Science

University of loannina
451 10 loannina, Greece

A Probabilistic RBF Network for Classification

M. Titsias and A. Likas
Department of Computer Science
University of Ioannina
45110 Ioannina - GREECE
e-mail: mtitsias@cs.uoi.gr, arly@cs.uoi.gr

Abstract

We present a probabilistic neural network model which is suitable for classification problems.
This model constitutes an adaptation of the classical RBF network where the outputs represent
the class conditional distributions. Since the network outputs correspond to probability densi-
ties functions, training process is treated as maximum likelihood problem and an Expectation-
Maximization (EM) algorithm is proposed for adjusting the network parameters. Experimental
results show that proposed architecture exhibits superior classification performance compared
to the classical RBF network.

1 Introduction

In pattern recognition it is well-known that a convenient way to consider a classifier is on the basis of
inferring the a posterior probabilities of each class. From the statistical point of view this inference
can be achieved by first evaluating the class conditional densities p(x|k) and the corresponding
prior probabilities P(k) and then making optimal decisions for new data points by combining these
quantities through Bayes theorem

__ palk)Pk) :
PURR) = 5, o) P(R) 0

and selecting the class with maximum P(k|z). Consequently, the above approach is based on the
evaluation of each class conditional density p(z|k) which is estimated separately by considering
only the data points of the corresponding class k.

In contrast to the statistical approach, classification neural network models (MLP, RBF) do
not make probabilistic assumptions about the network outputs, however, we can arrange for the
outputs to approximate the a posterior probabilities through appropriate normalization [1]. In
what concerns RBF, this network provides in the hidden layer density estimation of all data. In
this sense, the main differences of RBF with the previously described statistical approach is that
kernel functions (hidden units) are shared among classes and that the training points of all classes
contribute to the evaluation of all class conditional densities.

In the proposed probabilistic RBF (PRBF) network we combine characteristics of the statistical
and neural approaches. In particular, we have developed an RBF neural network which provides
output values corresponding to the class conditional densities p(z|k). Since the network is RBF, the
kernels are shared among classes and each class conditional density is evaluated using not only the
corresponding class data points (as in the traditional statistical approach), but using all available
data points. In order to train the PRBF network, an Expectation-Maximization (EM) algorithm
has been derived, which provides a fast iterative procedure for adjusting the network parameters.
We demonstrate the effectiveness of the proposed method using several data sets and provide also
a comparison with the classical RBF network trained using a two-stage procedure [1, 3].

Figure 1: The architecture of the probabilistic RBF network.

2 Description of the Network

Consider a classification problem with C' classes and a training set X having N supervised pairs
(z", k™) where z" € R and k™ is an integer indicating the class of the pattern z". The original set
X can easily be partitioned into C independent subsets X, with N; elements, where k =1,...,C,
so that each subset contains only the data of the corresponding class.

As mentioned in the introduction our intention is to model the class conditional densities using
an RBF network. The network architecture is displayed in Fig. 1. Typically this probabilistic
RBF network has d input units and C output units (one for each class). The main difference
with a classical RBF network lies on the specific functional form of the basis functions which are
considered to be densities functions as well as on some constraints involving weights from the hidden
to the output layer. More specifically, each basis function j (j = 1,..., M) in the hidden layer is a
Gaussian kernel of the form

| lz =
z|j) = eXp—~——F73— 2
plzlj) Bl p{ 207 } (2)
where 1 is a vector representing the center of the j kernel and Jj:'-' is the corresponding variance. This
specific form of the kernel function assumes that the components of the pattern r are independent
and can be represented by a common variance. Each output unit k provides density function values
p(z|k) for the corresponding class k in the following way:

M
p(zlk) =3 mup(zls) (3)
j=1
where the weight ;. represents the prior probability that a data point has been generated from
kernel j, given that it belongs to class k. These parameters satisfv the constraints:
M
Z ik =1 and mj >0 (4)

i=1

for every k.
Using the Bayes theorem we can compute the a posterior probability P(j|k,z) that kernel j is
responsible for generating pattern x given that it belongs to class k

2 _ “jkpf.xtj}
Pk) = o p(al?) &

From the above descripl,mn it is clear that the adjustable parameters of the PRBF network are
the means pu; and variances o? of the M Gaussian kernels and also the priors Tik. We denote the
whole parameter vector by 8. J[n the next section we provide a training approach based on the EM
algorithm for likelihood maximization.

3 Maximum Likelihood

Let P(k) where k = 1,..., C denotes the prior probability of the k class. In order to use
Bayes rule (1) for unlabeled input data we have to find first appropriate values for both prior
probabilities and parameter vector @ (training PRBF). The whole adjustable parameter vector is

= (6, P(1),...,P(C)). Assuming that all data points have been independently drawn from an
underlying process, we can write the log-likelihood function of the dataset X as

N
L(¢') = logp(X|¢') =) _ logp(z" k™). (6)

n=1

Using the relation p(z, k) = P(k)p(z|k) and the fact that the dataset X consists of C independent
subsets X, the above equation takes the form

[c N
L(#) =) Nilog P(k)+ Y > logp(z"|k). (7)
k=1 k=1n=]1

Maximization of the first term in the above equation yields P(k) = Ni/N (k = 1,...,C), while
the maximization of the second term is equivalent to training the PRBF network. Consequently,
the appropriate log-likelihood function for PRBF training is given by

L(g) = Z Z log p(z" k). (8)

=1 n=1

In order to maximize L(#) it is possible to employ computationally intensive nonlinear optimization
techniques. Nevertheless, since we seek maximum likelihood estimates, it is also possible to employ
the iterative EM algorithm [2]. In the following we describe our approach to PRBF training that is
based on the EM algorithm and we show that each iteration of the EM algorithm can be performed
analytically leading to a fast, effective and easily implemented training scheme.

3.1 The EM algorithm

The Expectation-Maximization (EM) algorithm [2] is a general technique for maximum likelihood
estimation. The algorithm assumes the existence of two data sets; the incomplete data set that
consists of the actual observations and the hypothetical complete data set which contains some
additional values called unobservable or hidden variables. The notion of hidden variables suggests
that the problem to be solved would be straightforward if these variables were known. One iteration
of the EM algorithm consists of two steps: i) the expectation step (E-step) where the expected
value of the log-likelihood of the complete data set is evaluated, given the current parameter vector
and the incomplete data set and ii) the maximization step (M-step) where this expected value is
maximized with respect to the parameters of the model.

In order to apply the EM for maximizing (8) we have to express the complete data set; the
corresponding incomplete data set is X. Similarly to EM framework for mixture models [4] the
problem we have to overcome is that each data point is not followed by a label indicating the kernel
which generated it. We express this missing information by introducing for each data point =" a
variable 2™ which is a M-dimensional vector of one-zero values specifying the kernel that generated

z". If 2™ was generated from kernel j, then 27 = 1, otherwise z_;-‘ = 0. Using these hidden variables
the complete data set Y is defined as follows:

Y={y',...,u"}, where y"=(z"k"2") (9)
and the corresponding log-likelihood function is written in the form

N M
Le(6) =) 3 2} log{mjnp(z"]3)}. (10)
n=] j=1
At the t + 1 iteration the current expected value of the 277, given the data point z" is equal to the

a posterior probability P (j|k", z") where ¢ reminds us that this probability have been evaluated
using the current parameters #(t). Eventually, the quantity to be maximized in the M-step is given
by
C Ny M
Q(6:69) =" 3" %" PY(jlk,z"){log mjx + log p(z"|)}. (11)
k=ln=]1j=1

It can be shown that M-step is analytically implemented. The above equation can be written as
Q= Q1 + Q2 where

C Ny M
(6;61)) = Z 323 POk, z™) log mji (12)
=] n=1 j=1
and
C Ny M
Qa(8;0) =33 > PO(jlk,z") log p(a"5). (13)
k=1n=1j=1

The quantity Q; depends solely on the parameters m;;, while the quantity ¢}z depends solely on
the parameters of the kernels. In order to maximize)7 we must take into account the constrain
ZM Tk = 1 which holds for every class k. Therefore we introduce C Lagrange multipliers A
a.nd after performing some algebra we finally find that the update equation of the prior 7, at the
M-step is

I.E+1lf 1 s (t) .z n

=N ZP (jlk, =) (14)
for k=1,...,Cand j =1,...,M . Taking the derivatives of (J2 with the respect to pu; and U

respectwely and setting them tcr zero we obtain the following equations for j=1,..., M:
Iu[_!--rl} Zk IZn—l P{:j{jlk rn] = {15}

! L1 Taky PA(jlk, z7)
(a?)(+D) — 1 T8, oty PO (ilk, z°)||z™ - I:-t'H]Hg (16)
% d Zk 1En=1P[t](J|k z")

Starting from some initial parameter values, we perform alternatively the E-step and M-step until
we reach convergence.
In the following we summarize the simple training procedure for the PRBF network:

1. Determine the number of kernels M and the initial parameter vector 8(%.
2. Set ¢t := 0 and compute the initial log-likelihood L'%) (8).
3. Repeat

| Number of kernels

Algorithm | 6 8 10 12 | 14
PRBF 11.13 | 10.46 | 10.43 | 10.3 | 10.2 |
RBF 2546 | 235 | 23.2 | 22.94 | 22.04 !

Table 1: Generalization error for the clouds data set.

Number of kernels

Algorithm | 12 18 24 30
PRBF [1566 | 15.77 | 15.06 | 13.95
| RBF |16.51 |15.85 | 14.7 | 14.28

Table 2: Generalization error for the Satimage dataset.

(a) E-step: Compute P'(j|k,z") foreach k=1,...,C,n=1,...,Nyand j=1,..., M.

(b) M-step: Compute the new parameter values 7', pﬁ”” and (0)"*+Y using (14), (15)

I
and (16) respectively.
(¢) Set t :=t + 1 and compute the new log-likelihood Lt

4. until L™ — L*~1| < ¢ where ¢ determines the strictness of the convergence criterion.

4 Experimental Results and Conclusions

In this section we compare our method with the classical RBF network which has linear outputs
and spherical Gaussian basis functions, described by (2) without the normalization factor. For
training such a RBF network a two-stage procedure is used. In the first stage the basis functions
parameters are determined by fitting a Gaussian mixture model using EM, while in the second
stage the basis functions are kept fixed and the second layer weights are found by solving a set of
linear equations giving rise to least squares solution. This implementation of the RBF training was
found in the Netlab toolbox [3].

For the experiments we have considered data sets from ELENA database available via anony-
mous ftp from ftp.dice.ucl.ac.be. We have chosen one artificial dataset (Clouds) and two real
datasets (Satimage and Phoneme).

For each dataset, in order to obtain an estimate of the generalization error, we have employed the
K-fold cross-validation method with K = 5. Tables 1-3 provide the obtained results for the PRBF
and RBF networks, for several values of the number of kernel functions M. These results indicate
that the proposed PRBF network trained using the EM algorithm provides superior performance
compared to the classical RBF network. It must also be noted that the method is fast, since in all
experiments 100 EM iterations were sufficient for reaching the final solution.

In what concerns future enhancements of the method, our current work focuses on developing
an approach for dynamically adjusting the number of kernels M, which constitutes the main issue
in RBF network training. Our aim is to exploit recent results for adjusting the number kernels in a
Gaussian mixture that have developed in the framework of pdf estimation (unsupervised learning)
15, 6].

References
[1] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

Number of kernels

Algorithm 6 | 8 10 12 14
PREF 22.18 | 21.59 | 21.33 | 20.9 | 21.16
RBF 2412 | 245 | 2457 | 24.0 | 24.12

Tahle 3: Generalization error for the Phoneme dataset,

(2] A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum Likelihood Estimation from In-
complete Data via the EM Algorithm”, Journal of the Royal Statistical Society B, vol. 39, pp.
1-38, 1977.

[3] I. Nabney and C. Bishop, Netlab: Neural Network Software, available from
http://www.ncrg.aston.ac.uk/netlab

[4] R. Redner and H. Walker, "Mixture densities, maximum likelihood and the EM algorithm”,
SIAM Review, vol. 26, no. 2, pp. 195-239, 1984.

5] N. A. Vlassis, G. Papakonstantinou and P. Tsanakas, "Mixture Density Estimation based on
Maximum Likelihood and Test Statistics”, Neuwral Processing Letters, vol. 9, no. 1, 1999,

6] N. A. Vlassis and A. Likas, "A Kurtosis-Based Dynamic Approach to Gaussian Mixture Mod-
eling”, IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 29,
no. 4, pp. 393-399, 1999,

