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Abstract

A method for adjusting the solution of the elasticity equation in the spheroidal geometry space is presented. The
first task concerns the construction of a basis, which contains the Navier eigenvectors in the spheroidal geometry
and the second the satizsfaction of the boundary conditions which leads to the eigenfrequencies determination.
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1 Introduction

The examination of scattering and vibration problems in the framework of linear elasticity is accompanied with several
complexity factors having physical as well as mathematical origin. From the physieal point of view, the coexistence
of two different waves (propagating or stationary) connected through the boundary conditions and travelling with
different velocities renders the investigation of the elastic problem rather difficult. From the mathematical point of
view, every approach to the problem incorporates in its treatment the above mentioned peculiarity accompanyving
elastic waves and usually the price for that is high. As an example, the integral equations of elasticity contain kernel
functions reflecting this physical situation and their handling differs not only quantitatively but also gualitatively from
other physical phenomena corresponding formulations (acoustics or electromagnetism).

The adopted methodology for the solution of the emerged boundary value elastic problems depends on several
parameters of the problem. The main two factors orientating the mathematical framework are the particular physical
situation as well as the geometrical characteristies of the system. Indeed the situation changes drastically from
treatment of scattering procedures - exterior boundary value problems - to treatment of vibration problems, which
refer to bounded domains. In addition. it is obvious that the underlying geometry constitutes a difficulty factor to
DVErcome,

This work aims at the study of stationary elastic waves occuring in structures occupied by elastic materials and
fitting geometrically to the spheroidal coordinate system. The motivation to this work lies on the necessity to study
the dynamic characteristics of struetures simulating the human head system but it is not restricted to this case.
Systematic and hierarchical analysis of several models 1, 2| belonging to this biomechanics area, has proved that the
dynamic characteristis behave smoothly as the geometrical characteristics of the investigated multilayer structures
change slightly. We mention here the application of perturbation method techniques in [1], in order to study how
the eigenvalues and the corresponding eigenmodes change when the system is transformed from the spherical to the
perturbed spherical case, which is equivalent to spheroidal of slightly different axis. However, this is an asympiotic
case and can not provide with the results for the spheroidal cavity of arbitrary axis.

The fundamental ingredients of the method is the expansion of the sought elastie fields in terms of the basis of
the Navier eigenvectors. More precisely, the generalized Sturm-Liouville theory assures the existence of a countahle
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Spheroidal Cranial Cavity 3

The spheroidal surfaces S, 5; are described by the equations § = & and § = §;, correspondingly. The hollow
cavity is represented as the region 8§ < § < 4;. Under the status of elastic vibrations, the physical motion of the
system is described by the time - harmonic displacement field u(r, t) = exp{—iwt)u(r), where the time-independent
function u(r) satisfies the reduced equation of linearized elasticity:

(2) aViu4+ A+ ) V(V-u) 4+ p?u=0, &H<di<h

where w stands for the frequency of the harmonic motion.

We suppose that the surfaces of the hollow system are stress free. Mathematically, this is realized through the
boundary conditions
(3) Tu(r) =0, d§=4;andé=4,

where T stands for the surface stress operator, given in general form as
(4) T=2un-V+ MV +pnx Vx

and f is the unit normal to the operator application surface.

The problem consisted of Eqs. (1) and (2) is a well - posed homogeneous boundary value problem and its solution
is the aim of this work. More precisely, we are interested in determining the eigenfrequencies w as well as the
corresponding eigenmodes u(r).

Alternatively, Eq. (2) can be written as

(5) EViu+ (g —¢)V(V-u) +w’u=0

where ¢, = {iﬂg"—t] %, Cs = I:%]lil stand for the velocities of the longitudinal and transverse waves, respectively [6]. It
is well known [3] that every elastic field can be decomposed as the superposition of the longitudinal and transverse
elastic components according to the following formula

(6) u(r) = up(r} + us(r)
where the components satisfy the vector Helmholtz equation
(7) Vi, +k2ua =0, oa=p,s,

and k, = 2, a = p, s denote the wave numbers of the p- and s- elastic waves.
As it is shown in [4], the transverse elastic fields u, can be represented through the following basis, family of Navier
eigenvectors

(8) *M = Vi x a,
(9) "N=Vx*M=Vx (V¢ xa),

where a € {%,¥,2.r} (%,¥.% are the unit vectors in the z,y, z directions respectively).

These vector functions do satisfy vector Helmholtz equation and constitute eight choices to represent the transverse
components of the vector fields, if and only if the scalar function 1 runs over the countable basis set of scalar Helmholtz
equation with wavenumber k.

In addition, the longitudinal elastic field u,(r) can be expanded in terms of the eigenvectors

(10) L=V¢

where ¢ exhausts all the solutions of the scalar Helmholtz equation with wavenumber k.
We recognise then the crucial role of Helmholtz equation

(11) Vi + K219 =0, a=ps,

whose study in spheroidal coordinates is proved necessary. Omitting indices for simplicity we express the Laplace
operator in the spheroidal system:
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Actually, this is the straightforward construction of the eigenvector ’N:,,m and previous relation is the preferable
form, under some possible slight modifications used in a few works treating spheraidal problems [7, 8, 9]. However the
expression (18) is a very complicated expression and becomes much more complex if someone tries to apply boundary
differential operators on it. As a matter of fact, it contains a lot of differentiations of second order and this creates
the question whether some terms can be simplified after combining this expression with the differential equation itself.
In other words there exists the feeling that expression (18) contain some ficticious terms, which should be rearranged
suitably to lightening the burden of the equation. Actually these terms stem from the fact that operator curl does
not “know” the differential equation satisfied by the funetions on which it acts. Nevertheless, instead of rearranging
terms, it would be preferable to follow a simple different procedure to obtain an alternative “minimal” expression of
"Nimn-

Indeed, following some simple arguments based on differential equation properties, we begin with the definition
equation
(19) N = Vot ML,

and we obtain

3
"Nimn

vx (v xrmg‘,ﬂm) v x [v x (Vfhar )]
V([ (6fnr) | = V2 (¥0nr) = 9 [Fginr - x| + 39950, — V2 (ks ) 7 = 29450,

(20) - wginwzuﬂnnv[{r V) ¥ ]:méﬂm R e (- V) VU,

The first term of the last part of the representation (20) is equal to L,mm while the third term is acquired after
applying the differential operator r- V on the same function. As far as the second term is concerned, it has a very
simple expression. In other words, we have

(21) Nemn = 2Lgpnn + (¢

V) Ll

S

'E-?Ll*nlnr
Another useful representation of 'Néiﬁm is the intermediate step of (20) fournishing the formula
i) £ o
(22) "Niws =L + V (r- L) + B29lr

It is true that expressions (20} - (22) dispose as well second order differentiations (all appearing in the term

(r-WV) Lg‘ln}, but now no retractable differentiation is appearing. Special mention must be assigned to the fact that
every function involving in transverse field expresions, incorporates the wavenumber k; in its argument, while every
longitudinal component disposes ky respectively.

3 Solution of the Problem

The completeness of the Navier eigenvectors permits the representation

. (i) g (%) (i) A7) (i)
(23) u(r) = Z { Q: il mn + -S:ﬂ‘tﬂ rM;mn T ";rrmr gmﬂ} 1
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