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Abstract: We consider the following motion planning problem for a point robot inside
a simple polygon P: starting from an arbitrary point s of P, the robot aims at reaching the
closest point ¢t of P from where the entire polygon P can be seen; the robot does not have
complete knowledge of P but is equipped with a 360-degree vision system that helps it “see”
its surrounding space. We are interested in a competitive path planning algorithm, i.e., one
that produces a path whose length should be no more than a constant ¢ times the length
of the shortest off-line path (in this case, ¢ x distance(s, t)); the constant ¢ is called the
competitive factor. In this paper, we present a new strategy that achieves a competitive
factor of ~3.126, improving over a 5.48-competitive strategy of Icking and Klein and a
3.829-competitive strategy of Lee et al. Additionally, our strategy possesses two advantages
compared to past solutions: first, the first point reached from where the entire polygon P is
seen is precisely the closest such point to the starting position, and second, all the points of
the path are directly determined in terms of the starting position and of polygon vertices,
which implies that an actual robot following the strategy is not expected to deviate much
from its course due to numerical error. The competitiveness analysis is based on properties
of the class of curves with increasing chords.

Keywords: Motion planning, competitive algorithm. kernel, simple polygon, curve with
increasing chords.

1. Introduction.

The field of robot motion planning has received considerable attention during the 1980s,
but research intensified in the late 1980s when technological advances paved the way towards
adequate autonomous function of robots. This fact, along with the need for autonomous
robots to undertake tasks that may be dangerous for humans (areas polluted by chemicals,
space exploration, ete.), led to a number of results pertaining to motion planning algorithms
in partially known or unknown environments in the 1990s. (A comprehensive survey on
motion planning results until the early 1990s can be found in [8].)

The general motion planning problem involves devising strategies which can help a robot
to get to a destination point in an environment which is being “discovered” by means of
a 360-degrees vision system (and in some early work, by means of tactile sensing). Most
motion planning problems are being modeled as two-dimensional problems where the robot
is a point moving inside or around polvgonal shapes. For example, a robot moving inside a
complex of rooms can be modeled as a point moving in the interior of a polygon containing



smaller polygzons; this polygon is the geometric image of the floorplan of the complex. It
is important to note that modeling a robot as a point (despite the fact that every robot
has nonzero mass) is not really restrictive, as real-world problems can be reduced to this
formulation by means of transformations of the geometric boundaries of the objects in the
robot’s world (Minkowski sum, etc; see [4]).

Of course, the application of an exhaustive search strategy of the environment is bound
to solve any motion planning problem considered. However, this is not what one wants to
have in practical applications. Instead, one would like to have strategies which guarantee
that the path traveled by the robot up to its destination is no more than a constant times
the length of the shortest path if the environment was completely known. Such strategies
are called competitive [20], and the ratio of the length of the actual path traveled over the
length of the shortest path is called the competitive factor. In other words, the competitive
strategies guarantee that the effort expended is not far from the optimal. Research results
indicated that finding competitive strategies for different motion planning problems exhibits
varving degrees of difficulty. In particular, some problems admit competitive solutions (e.g.,
axis aligned square obstacles [16]), in other problems the competitive factor is bounded by
a function of the description size of the environment (but not a constant) (e.g., the “room”
problem, the “wall” problem [1]), while finding competitive solutions for yet other problems
seems a very difficult task (the Canadian traveler problem is PSPACE complete [16]).

Early work on motion planning addressed problems where the location of the destination
was known, although the locations and shapes of the obstacles in between were not. More
recent work dealt with problems where the robot does not know the exact location of the
destination but it can recognize it as soon as it sees it. An interesting problem in the latter
case, the problem of locating the target ¢ in an (s-t)-street (a special type of polygon),
has been the focus of considerable research effort [12, 10, 19], which yielded competitive
strategies with factors less than 6, culminating to an optimal strategy with competitive
factor equal to /2 [10, 19]. Competitive strategies have also been proposed for target
location in “generalized” streets, (namely, the G-streets [3, 14, the HV -streets [2], and the
f-streets [2]), none optimal so far to the best of our knowledge.

In this paper, we consider the problem of planning the path of a robot inside a polygon
from any given starting position to a point from where the entire polygon can be seen;
in fact, the closest such point to the starting position is sought. This is the problem of
reaching the kernel of a polygon, and is what a mechanical guard is called to solve in order
to position itself so that it watches a certain territory. The problem has been considered
by Icking and Klein [9] who described a strategy to reach the closest point of the kernel
achieving a competitive factor of ~5.48. They also showed that no competitive factor less
than +/2 can be achieved. A different strategy with a competitive factor of ~3.829 was later
described by Lee et al. [13], while Lépez-Ortiz and Schuierer [15] improved the lower bound
to ~1.48. Lopez-Ortiz and Schuierer also noted that the competitive factor of [9] is not
guaranteed for negative instances (i.e., when the polygon has empty kernel, in which case
the competitive factor is defined as the ratio of the path length up to the point where the
robot realizes that the kernel is empty over the length of the shortest off-line path to come
to the same conclusion) and described a strategy that is guaranteed to work even in this
case at a competitive factor of ~46.35.

COur work contributes a new strategy for reaching the kernel of an unknown polygon
with nonempty kernel which achieves a competitive factor of ~3.126. The path consists of
line segments and circular arcs whose total number is linear in the size of the polygon P.
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QOur strategy is designed so that the robot walks into the kernel at precisely the point that
is closest to the starting position; additionally, it has the advantage that any point of the
course is determined by the starting position of the robot and vertices of P, and therefore
an actual robot following the strategy is not expected to deviate much from its course due
to accumulated numerical errors. The competitiveness analysis is based on properties of the
class of curves with increasing chords [18]. Experimental results suggest that the strategy
performs better than the theoretical competitive factor.

The paper is structured as follows. In Section 2 we review the terminology that we use
throughout the paper, and in Section 3 we outline our strategy. Sections 4 and 5 establish
the competitive factor of our strategy and some of the properties of the resulting path. In
Section 6 we conclude with final remarks and open questions.

2. Terminology.

A simple polygon is the region enclosed by a single closed polygonal line that does not
intersect itself; thus, a simple polygon does not have “holes” in it. A simple polygon P is
star-shaped if there is a point p of P such that the line segment that connects p with any
other point of P lies entirely in P. The set of all such points p is called the kernel of the
polygon [4, 17]. If we define the inner halfplane of an edge as the closed halfplane which is
defined by the edge and contains all the points of P in a sufficiently small neighborhood of
the edge’s midpoint, then the kernel of P is equal to the intersection of the inner halfplanes
of all the edges of P and is therefore convex.

We will follow the terminology of Icking and Klein [9]; we briefly summarize it in this
paragraph. From its starting position s, the robot probably does not see parts of the polygon
P in which it stands; if the robot sees all of P, then s belongs to the kernel and the robot
need not move. The hidden portions of the polygon are called caves. Each cave is adjacent
to a reflex vertex of P, whose very existence creates the cave; these reflex vertices are called
constraint vertices (Figure 1). A cave (associated with a constraint vertex v) is characterized
as either left if it lies to the left of the directed line §%, or right otherwise. By extension,
we say that a vertex is a left constraint verter if it is a constraint vertex associated with
a left cave, and similarly for a right constraint vertez. In Figure 1, the vertices v and w
are left constraint vertices, and the shaded regions next to them are the associated caves;
the vertex u is a right constraint vertex. For each of the constraint vertices v, we define
its inner halfplane with respect to the current position p as the closed halfplane which is
delimited by the line 7% and does not contain the corresponding cave. Clearly, any point
that sees the cave next to the constraint vertex v has to belong to the inner halfplane of v.

From its starting position, the robot may detect zero or more left caves and zero or more
right caves. If the robot sees at least one left cave, the following lemma holds.



Lemma 2.1. Suppose that from its starting position s in a simple polygon P the robot
detects one or more left caves next fo the constraint vertices l1, ..., I (k = 1). Suppose
further that no left constraint verter exists such that the closure of the complement of its
inner halfplane contains all the left constraint vertices. Then, the kernel of P is empty.

Proof: For k = 1,2, there is always a left constraint vertex [ such that the closure of the
complement of its inner halfplane contains all the left constraint vertices: this is trivially
true if k = 1: if k = 2, | is the left constraint vertex that belongs to the inner halfplane of
the other constraint vertex. So, it must be the case that & > 3. Let us consider [y; then,
in accordance with the statement of the lemma, there exist left constraint vertices which
belong to the interior of {1’s inner halfplane; let [ be that among these vertices such that
the clockwise angle {1 sl; is maximum (Figure 2). Then, there are no left constraint vertices
in the interior of the wedge W, which is the intersection of I;’s and I;’s inner halfplanes. On
the other hand, there exists at least one left constraint vertex I; belonging to the interior of
l;’s inner halfplane; since W7 is empty of left constraint vertices, I; belongs to the interior
of the wedge W, which is the intersection of the inner halfplanes of I; and I;, or on the
halfiine sl’. In the former case, the intersection of the inner halfplanes of I3, [; and l; is
{s}; since the kernel K is a subset of the inner halfplanes of all the left constraint vertices,
then K C {s}, which implies that K = ), because s does not see the entire polygon. In
the latter case. the intersection of the inner halfplanes of I3, I; and [; is the halfline sl'; the
kernel is empty again, since no point of the halfline can see [)’s associated cave.

A similar lemma holds for the right constraint vertices. Therefore, if the conditions of
Lemma 2.1 hold, we need do nothing, since the polygon has empty kernel. Otherwise, there
is a left constraint vertex such that the closure of the complement of its inner halfplane
contains all the left constraint vertices and it is unique (if there are more than one vertices
collinear with s then we choose the one farthest away from s); we call this vertex mazimal
left constraint vertez. In Figure 1, v is the maximal left constraint vertex. In a similar
fashion, we have the mazimal right constraint verter.

We include below another lemma, which establishes a fact about the spatial relationship
of the left and right constraint vertices in a polygon with nonempty kernel.

Lemma 2.2. Suppose that from its starting position s in a simple polygon P the robot
detects one or more left caves next to the constraint vertices Iy, ..., lx (k = 1) and one or
more right caves next to the constraint verticesry, ..., rm (m > 1). Let ) be the mazimal
left constraint verter and let H(l;) denote the complement of the inner halfplane of ;.
Then, if there erists a right constraint verter belonging to H(l) — N:H (L), the kernel of
P is empty.

Proof: Let l; be the left constraint vertex for which the coun- =
terclockwise angle I;;E,- is maximum. Then, in accordance W
with the definition of the maximal left constraint vertex, all s \ ;
the left constraint vertices belong to the wedge which is the \x\ '
intersection of I;'s inner halfplane and the complement of i;'s : R, o
inner halfplane. In fact, this wedge is precisely the intersec- ] b
tion H(l;)— N;H(l;); the wedge contains the halfline si;, but el
not the halfline sl;. If there exists a right constraint vertex TUEL e
rin H(l;) — N:H(L), then no matter whether it lies in the ff 4 ;3
interior of this wedge (Figure 3), or on the halfline sl;, the “*-)f’}/
intersection of the inner halfplanes of I3, {; and r is precisely "

{s}, and the kernel is empty. Figure 3



A similar lemma holds for the right constraint vertices. The lemma implies that in a polygon
with nonempty kernel, the left and right constraint vertices are not “intermixed” and this is
why in papers on this problem which assume polygons with nonempty kernel, figures show
the left and the right constraint vertices all gathered on the left and on the right of the
polygon boundary respectively.

Crucial in the analysis of our strategy iz the notion of a curve with increasing chords;
a curve has increasing chords if |ad| = |be| for any four points a, b, ¢, d lying on the curve
in that order (|pg| denotes the length of the line segment connecting p and g). For a plane
curve with increasing chords, Rote proved that

Lemma 2.3. [18] The length of a plane curve with increasing chords connecting two points
a and b does not erceed QT"" times the length of the line segment connecting a and b.

We will also refer to the quadrants associated with a
point p. If p is a point different from the starting position s
of the robot, then we define the quadrants Ay, B,, Cp and
Dy, at p as the four closed quadrants determined by the line
5p (through & and p) and its perpendicular at p: the quad-
rant A, is the quadrant that contains s and lies to the right
of the directed line sp, while the other quadrants B, C, and
Dy follow quadrant Ay in counterclockwise order around p
(Figure 4).

Figure 4

We close this section with a well known geometric fact and another lemma, which will
be useful later.

Fact 2.1. Consider a circle with diameter ab. Then, for the angle Eﬁ of the triangle with
vertices a, b, and p:
(i) :;;?_Er < w {2 if p lies outside the circle;
(ii) E}_QE = /2 if p lies on the boundary of the circle;
(#ii) Ja?u?; > 7 /2 if p lies inside the circle.

Lemma 2.4. Let Cy be a connected non-self-intersecting curve which does not intersect the
line segment connecting ifs endpoints a and b, and Cs a conver polygonal line with the
same endpoints which les in the region enclosed by Cy and the line segment ab. Then,
the length of Cy does not exceed the length of Cy.

Proof: (Proofs of the above proposition for a convex polygonal line C; can be extended
to prove this case as well.) Let a = vy, v9,...,1u = b be the vertices of C3 in order from
a to b. We extend each line segment w;_jv; past v; until it hits Cy; let u; be the point
of intersection. Because Cs is convex, no pair of these extensions intersect. Moreover, for
each segment v;_jv;, we have that |vi_i1w| = |vi_1vs| + Jvsus| £ |vi—1ui—g| + |uisTy;], where
|pg| and |pg| denote the length of the line segment and the length of the curve C; between
p and g respectively. The lemma follows from the summation of all these inequalities; for
1 < i < k the terms |v;u;| cancel out, whereas |vju;| = |aa) = 0 and |veug| = |bb| = 0. 1

Angle Notation: Sﬂi}l:::ra three points define two angles (which sum up to 27), in the
following, the notation abe (where a, b, ¢ are three non-collinear points) is meant to indicate
the smallest of the two corresponding angles.



3. The Strategy.

The basic motivation behind our strategy stems
from the study of the simplest case, i.e., a single re-
flex vertex v whose incident edges are not both visi-
ble from the starting position s. Since the robot does
not know the direction of the invisible edge e inci-
dent upon v, it does not know where the closest point
t of the kernel might be. However, no matter what
the direction of e is, ¢ belongs to the semicircle with
diameter sv, assuming that the semicircle lies in the
polygon P (Figure 5). So, a good strategy is to follow
this semicircle.

Our strategy is based on this idea. Therefore, the path of the robot consists of circular
arcs and line segments; each circular arc belongs to a circle with diameter sp, where s is
the starting position and p is a constraint vertex. This strategy makes the robot reach the
kernel at its closest point to s.!

Figure 5

We first consider the one-sided case, where there are only left or only right caves; our
strategy for the general case consists of applying the one-sided case strategy twice, first for
the left caves until we see them all, and then for the right caves (if needed).

3.1. The one-sided case. Without loss of generality, we consider the case where there
are only left caves (the case where we have only right caves is similar]. Until the robot
sees all the left caves, there exist left constraint vertices and among them a maximal left
constraint vertex, which may change as the robot moves; at any given time, the robot’s
objective is to try to see the cave incident upon the currently maximal constraint vertex.

Initially, the robot finds the maximal left constraint vertex vp as seen from the starting
position s and starts following the semicircle with diameter svy. The two fundamental cases
that characterize the robot’s path are:

1. A new mazimal constraint verter u is discovered.  Then, the robot will start following
the semicircle with diameter su (Figure 6: point a). Interestingly, the current location
of the robot belongs to both semicircles.

2. The cave nest to the currently marimal con-
straint verter u becomnes visible.  This im-
plies that the second edge e incident upon u
has become visible as well. Then, the robot
at its current position, say, b, finds the new
maximal constraint vertex. If no such ver-
tex exists, then the entire polygon is visible
and the robot has achieved its goal. If such
a vertex exists —let it be v— and v is a Figure 6
constraint vertex just seen for the first time
(for example, if v is the other endpoint of €), then we execute the previous case.
The remaining possibility is if v is a constraint vertex that has already been seen, in
which case the robot walks along the line segment bu trying to reach (if possible) the
semicircle with diameter sv (Figure 6: points b and c).

1 Tt must be noted that this strategy is not optimal for the simple case of a single reflex vertex; it yields

a warst-case competitive factor of /2 = 1.57. See [11], for a proof that the optimal competitive factor is
~1.212, and for a strategy achieving it.



Note that it may be the case that the robot has to reach the currently maximal
constraint vertex u in order to see the cave next to u. (This can only happen if u
is the maximal left constraint vertex vy seen from s.) In this case, if there exists a
new maximal constraint vertex w, w has to be a constraint vertex just discovered, for
otherwise the polygon has empty kernel. Moreover, w belongs to the quadrant D, of
u and hence the clockwise angle suw does not exceed 7/2. Therefore, the robot at u
lies on or outside the semicircle with diameter sw (Fact 2.1}, and it will try to walk
along the line su away from s in an attempt to see the cave next to w.

The above two cases do not take into account the fact that the robot may take advantage
of what it has seen in order to avoid wandering around the polygon P. Clearly, the kernel
of P is a subset of the inner halfplanes of the edges of P and of the inner halfplanes of
the constraint vertices. Since the robot seeks to locate the kernel, it seems reasonable that
it should not leave the inner halfplane of any of the polygon edges or constraint vertices
which it sees or has seen. To be able to do that, the robot maintains the free polygon
which is the subset of P in which the robot may walk (the free polygon is a combination
of the gaining and keeping wedges introduced in [9] and also used in [13] for the same
purpose). Initially, the free polygon is the intersection of the inner halfplanes of the visible
edges and the visible constraint vertices from the starting point s. As a new edge or a new
constraint vertex becomes visible, the robot updates its free polygon by intersecting it with
the corresponding inner halfplane.

By requiring that the robot maintains the free polygon up to date and remains in it, we
ensure that the portion of the polygon seen by the robot never decreases; at the same time,
the free polygon keeps shrinking and when the robot reaches the kernel, the free polygon
is precisely the kernel of P. Additionally, a left (resp., right) constraint vertex will remain
so until both edges incident upon it become visible; it will not turn into a right (resp., left)
constraint vertex, which might happen if the robot zig-zagged inside P.

At any time during its trip, the robot lies at a point, say, p, on the boundary of the
current free polygon and it can only walk in the free polygon, that is, in the wedge delimited
by the lines supporting the free polygon edges that are incident upon p. Since the free
polygon is defined as the intersection of halfplanes, the opening angle of this wedge does
not exceed m. Because the line supporting the edge to the left of p (with respect to the
robot’s motion towards the interior of the free polygon) bounds the current free polygon
from the left, we call it a left-bounding line; similarly, the line supporting the edge to the
right of p is a right-bounding line.

The following two cases complete the path planning strategy of the robot.

3. The robot’s intended course leads or lies outside the free polygon.  Then the robot
walks along the boundary of the free polygon as close to the intended course as possible
(Figure 7). In particular, let v be the currently maximal constraint vertex and p’ be a
point on the intended course of the robot that falls outside the free polygon. Then, the
line vp’ intersects the boundary of the free polygon in at most two points; the point p
closest to p’ is where the robot should be. (Note that if vp” does not intersect the free
polygon, then the kernel of P is empty, and the robot stops and reports it.) In terms of
left- and right-bounding lines, the robot walks along the left-bounding (right-bounding,
respectively) line of the current free polygon if and only if the intended course leads to
the left (right, respectively) of the free polygon.
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4. An edge that was not visible becomes wvisible. Then, the robot updates the free
polygon by intersecting it with the inner halfplane of that edge. Note that this case
has to be executed in case 2.

An example is shown in Figure 8: The robot starts along the semicircle with diameter sv.
At a it sees the new maximal constraint vertex u and it starts walking along the semicircle
with diameter su. At b, it sees the cave next to u; the new maximal constraint vertex is v
again and so the robot walks along the line supporting bu. When it reaches the semicircle
with diameter sv at point ¢, its starts walking along the semicircle. At d, it has to follow the
left-bounding line bu. At e, it detects the new maximal constraint vertex w: the semicircle
with diameter sw lies outside (and to the left of} the free polygon, so the robot continues
walking along the left-bounding line bu, and later at f along the left-bounding line fh. At
h, it sees the cave next to w and all the other left caves, and it stops.

It is important to note that the ending point A lies on the line supporting the edge which
was seen last. Another important observation pertains to the way the value of the angle
pstp behaves, where p denotes the current position of the robot on its way from s to h,
and vp is the maximal left constraint vertex as observed from s. In the most general case,
the following behavior of the angle p&ty is exhibited: it is initially 7/2, then it decreases,
potentially reaching 0 but not decreasing below 0 (sub-path from s to f in Figure 8),
and then it increases (sub-path from f to h). (Note that the robot may walk along svp.)
However, two special cases may arise: first, the value of psw; is always decreasing from s to
h (for example, consider the case that the caves of both v and w of Figure 8 were visible
at f), and second, the value of p&iy is always non-decreasing. The latter case may occur if,
due to clipping, the left-bounding line of the free polygon is farther to the right from the
semicirele with diameter svp; in this case, the robot will not follow any of the semicircles
defined by s and the maximal left constraint vertices.

Lemma 3.1. Suppose that the angle pstn decreases and then increases, reaching ifs mini-
mum value when the robot is at the point x. Then,
(i) x is either on or outside the corresponding semicircle,
(ii) the part of the robot’s path past x lies outside the semicircle defined by s and the
currently mazimal constraint verter.

Proof: (i) Consider a line [ through s infinitesimally to the left of x. The line intersects the
robot’s path at two points g and ¢’ and let g be closer to s than ¢'; then, g belongs to the
robot’s path from s to z, whereas ¢' belongs to the robot’s path past z. Moreover, all the
points of the line segment gq’ belong to the free polygon. If z were inside the corresponding
semicircle, then so would ¢ as well as any point r of the segment gq’ in a sufficiently small
neighborhood of ¢. This is a contradiction, however, since the robot tries to stay as close to
the corresponding semicircle as the free polygon allows it; therefore, on its way from s to z,
it would not have gone through g if it were free to be at v or even closer to the semicircle.



(ii) Let v be the currently maximal constraint vertex when the robot is at . Then, because
of (i), the angle #zv < 7/2 (Fact 2.1). Since z is the point where the angle psty reaches its
minimum value, then the course of the robot past x lies on or to the right of the directed
line §&. Moreover, it lies in the inner halfplane of v at z, that is, to the right of the directed
line 2 (Figure 9). On the other hand, if w is the maximal constraint vertex when the robot
is at p (no matter whether this is a newly seen constraint vertex or one that has been seen
before the robot reached x), w has to lie on or to the left of st (for, otherwise, the line sw
would be a clipping line and x would never have been reached), and on or to the left of
Zv (for, otherwise, v would not be maximal when
the robot was at x). Thus, for any point p of the
robot’s path past z, the angle spw is less than
szv. To see this, let g be the point of intersection
of the lines pw and sz: if ¢ belongs to the line
segment sr, the above statement is clearly true
given that w is on or to the left of #&; if ¢ does not
belong to the line segment sz, §pir < fqw < 570
(with equality holding only if p = z). Therefore,
spw < /2, and z lies outside the semicircle with Figure 9
diameter sw.

3.2 The general case. Our strategy for the general case consists of applying the one-
sided strategy twice, once for the left caves and once for the right caves. In particular, the
robot starts by applying the one-sided strategy for the left caves until either all the left
caves are seen or it defermines that the kernel is empty. In the latter case, it aborts its
mission and reports its finding. In the former case, it stops when it entirely sees the last
left cave. Then, it turns its attention to the right caves. If all the right caves have become
visible, then the robot stops because it has reached the kernel. If there still exist right caves,
the robot applies the one-sided case once again for the right caves this time.

Suppose that the robot is at point h, when it finally sees all the left caves. Then,
the robot finds the maximal right constraint vertex u and updates its free polygon by
intersecting it with the inner halfplane of u at h. The robot’s intention is to walk along the
semicircle Cy, with diameter su; however, it has to reach C,, first. To do this, the robot
tries to walk along the line hu towards the semicircle; by walking in this direction, the robot
does neither gain nor lose visibility of the cave next to u. Of course, this course is subject
to clipping about the free polygon; so, if the path along hu towards Cj,, leads outside the
free polygon, the rohot follows left-bounding lines if A is inside C,, and right-bounding
lines if h is outside C,,. The four main cases are shown in Figures 10 and 11 depending on
whether h is before or after the point r where the angle psvy achieves its minimum value.
In Figure 10, h is before or coincides with z: in the case (a), h is inside C,, and the robot
walks along the left-bounding line, i.e., along hv towards v; in the case (b), k is outside C,,,
and the robot walks along the right-bounding line, ie., along hv away from v this time.
In Figure 11, h is after x: in the case (a), h is inside Cj, and the robot walks along the
left-bounding line of the free polygon at h; in the case (b), h is cutside C,, and the robot
walks along the right-bounding line, i.e., along hv away from v.

It is interesting to observe that if h is after = and h is outside C,,. the maximal right
constraint vertex u does not fall in the inner halfplane of hv (Figure 11(b)). This follows

from the fact that vhs < /2 (since h is outside Cs,), and that shu < 7/2 (since h is outside
Cau).
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Figure 11

The final path consists of two sub-paths, one from s to h and the other from h to the final
point t, each similar to the path shown in Figure 8. That is, each one of them consists of a
number of clipped circular arcs and line segments (cases 1 and 2 of Section 3.1), potentially
followed by one or more line segments that result from clipping whenever the corresponding
semicircles fall outside the free polygon. Our observation in Section 3.1 about the behavior
of the values of the angle psvy (where p is the robot’s current position and vy is the maximal
left constraint vertex as observed from s) is generalized and implies that, in the most general
case, psty is initially /2, then decreases, potentially reaching 0 but not decreasing below
0, then it starts increasing assuming values up to ugstg (where up is the maximal right
constraint vertex as observed from ), and then it may start decreasing again up to 0.

3.3 Simulating the strategy. The obvious way to simulate a motion strategy involves
starting at the predetermined starting position and executing small steps applying the rules
of the stratesy. This method has the obvious disadvantage that a good approximation of
the robot’s path requires a large number of steps which may lead to increased execution
time and large errors resulting from accumulated numerical errors at each step.

A second approach is to split the given polygon P into regions in each of which the
robot follows the same curve. Clearly, we will have to split P about the lines supporting
the polygon edges incident upon reflex vertices. Moreover, we need to split P about lines
that connect pairs of (left or right) constraint vertices that consecutively become maximal.
To do that, we find the tree of shortest paths inside P from s to all the reflex vertices and
we split P about the lines supporting the edges of this tree as well. Then, the robot can
traverse any of the resulting regions in one step. This method involves fewer steps compared
to the previous one but it requires computing the partition of the polygon about the above
mentioned lines, whose total number is linear in the number n of polygon vertices. Building
the partition requires O(n?) space and it can be done incrementally in O(n?) time in a
fashion similar to the incremental construction of an arrangement of lines [7, 6]. The free
polygon is maintained by turning on or off a bit associated with each region, while the only
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computation in each region involves finding the points of intersection of the path with the
region boundary.

4. Competitiveness Analysis.

In order to compute the competitive factor of our strategy, we need to compute the worst-
case ratio of the length of the path resulting from the application of our strategy over the
length of the line segment connecting the starting point s to the ending point . Obviously,
the worst case scenario involves double application of the one-sided case. Moreover, in order
to simplify our analysis, we will consider an “augmented” path by ignoring (most of) the
clipping while making sure that (i) the length of the augmented path is no less than the
length of the actual path and (ii) the augmented path can be partitioned into pieces for
which a bound on the competitive factor can be easily derived.

4.1. L-path and r-path. Before we describe the “augmentation” procedure, we review
the important stops in the robot’s path and define the I-path and r-path which will be used
to augment the path. The robot first applies the one-sided strategy tryving to see all the left
caves; let h be the final point during this phase, that is, the point from where all the left
caves are visible. Then, the robot applies the one-sided strategy again, for the right caves
this time. As mentioned in Section 3.2, the angle psip (defined by the current position p
of the robot, the starting position s, and the maximal left constraint vertex vg observed
from s) decreases, then it may increase and finally it may decrease again: let x and y be
the turning points where these changes of monotonicity occur (if the robot walks along the
line sz or sy, we let = and y be the closest such points to s). Note that r may coincide
with k or may be before or after h along the robot’s path; ¥y may coincide with t, although
this is not true in the most general case. Clearly, the sub-path from s to y lies in the closed
halfplane to the left of the directed line s%; similarly, the sub-path from z to ¢ lies in the
closed halfplane to the right of s

Moreover, as mentioned earlier, the point k lies on the line supporting the polygon edge
that just became visible at k; let I, be that line. Then, [}, is a right-bounding line of the
free polygon at h. Similarly, the ending point ¢ lies on the line I; supporting the edge that
became visible last, and l; is a left-bounding line of the free polyvgon at ¢.

We define the l-path as the path that the robot would follow if it only applied cases 1 and
2 of Section 3.1 from its starting position s until it either saw all the left caves or reached
the line sz, whichever came first; in the former case, we extend the l-path by adding a line
segment from the final point to the point of intersection of sz with the left-bounding line
of the free polygon at the final point. Because clipping is ignored, this left-bounding line
supports a polygon edge next to a maximal left constraint vertex; this edge is not necessarily
the edge that became visible last. As a summary, the l-path consists of a sequence of circular
arcs (case 1 of Section 3.1) occasionally separated by a line segment along a line supporting
an initially invisible polygon edge (case 2 of Section 3.1). We define the r-path similarly:
this is the path that the robot would follow if it only applied cases 1 and 2 of Section 3.1
starting from s until it either saw all the right caves or reached the line sy; again, if the robot
has seen all the right caves before it reached the line sy, we extend the r-path accordingly.
We finally define the l-region as the closed region bounded by the l-path and the line sx;
similarly, the r-region is the closed region bounded by the r-path and the line sy.

For the I- and r-path, the following lemmata hold, which will be important in establishing
that the |- and r-path are curves with increasing chords.
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Lemma 4.1. For any point p of the l-path, the part of the l-path from the starting point
s up to p belongs to the closed quadrant A, of p, whereas the part of the l-path past p
belongs to the quadrant Cp of p.

Proaf: One needs to consider the different cases
for p: on a circular arc, at the intersection of two F
arcs, at the intersection of an arc and a line seg- -Xh\\

ment, on a line segment. The lemma follows from }ﬁ ){‘.

the fact that for any point ¢ of a semicircle with » b

diameter ab, the angle agb is equal to 7/2 (see u
Fact 2.1). (Figure 12 gives some examples for il-

lustration purposes; the crosses indicate the lines .
RS Figure 12
delimiting the quadrants.)

A similar lemma holds for the r-path.

Lemma 4.2. For any point p of the r-path, the part of the r-path from the starting point
s up to p belongs to the closed quadrant Dy, of p, whereas the part of the r-path past p
belongs to the quadrant By of p.

The above lemmas and the fact that the l- and r-paths are defined up to the point of
intersection with the lines sz and sy respectively imply the following corollary.

Corollary 4.1. The boundaries of the I- and the r-region are intersected by any line through
the starting position s in at most one point other than s.

We close this section with another useful cbservation.

Observation 4.1. The point h from which all the left caves are finally visible does not
belong te the interior of the l-region. Simularly. the final point t from which the entire
polygon is visible does not belong to the interior of the r-region.

Proof: Clearly, h belongs to the intersection H of the inner halfplanes of all the invisible
edges incident upon the left constraint vertices. We will show that the interior of the l-
region belongs to the complement of H. If the l-path ends with a circular arc associated
with a left constraint vertex, say, v, then the entire l-region belongs to the complement of
the inner halfplane of the invisible edge incident upon v. If the l-path ends with a line
segment (case 2 of Section 3.1, or extension of the l-path to reach the line sz), then this
line segment lies on a line supporting an invisible edge; again, the interior of the l-region
belongs to the complement of the inner halfplane of that edge. The case for ¢ is similar.
|

4.2. Augmenting the robot’s path. The robot tries to follow the l-path and the
r-path if possible, or otherwise stay as close to them as possible. On its course from the
starting point s to h (the case is similar for the part from A to the ending point t), it follows
(parts of) the l-path, may move outside the l-region due to clipping about a left-bounding
line (when the l-path leads farther left than the left boundary of the free polygon), or may
move inside the l-region due to clipping about a right-bounding line (when the l-path leads
farther right than the right boundary of the free polygon). In general, the robot may move
in and out of the l-region several times; after it has moved in, it may walk along several
different right-bounding lines (tracing a convex curve inside the l-region). whereas after it
has moved out, it may follow several different left-bounding lines (tracing a concave curve
outside the l-region). It is important to observe:
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Figure 13 Figure 14

Observation 4.2. The robot never follows a left-bounding line followed by a right-bounding
line {or vice versa), except af the point h where it has seen all the left caves and sefs off
to see the right caves.

The observation follows from the fact that the robot tries to stay as close to the correspond-
ing semicircle as it can and if this is farther left (right, respectively) than the left (right,
respectively) boundary of the free polygon, the robot will keep following the left (right,
respectively) boundary of the free polygon until it reaches it, if ever.

Now we are ready to see how the actual robot’s path is being augmented; we will also
define the points £’ and ' which will be crucial in partitioning the augmented path into
curves with increasing chords. We concentrate on the most general case in which = # s
(i.e., the angle psvy starts by decreasing) and z # ¢; the special case where x = s and the
two special cases where x = ¢ are investigated in Section 4.4. Note that ¥ may or may not
coincide with .

1. the part of the robot’s path from s to x: We recall that  may be either on the l-path
or outside the l-region: in the latter case and if additionally h coincides with or is
reached after x, then the robot has been walking along left-bounding lines from the
last point of its course on the l-path up to x. Recall also that hk is either on the l-path
or outside the l-region (Observation 4.1); if it is outside the l-region, then again the
robot has been walking along left-bounding lines. In all cases where the robot walks
along left-bounding lines after it leaves the l-region (no matter whether h is reached
before or after x), the sub-path from s to z is augmented by considering the entire
l-path, followed by a line segment from the final point of the l-path to z along sz
(Figure 13); this includes as a special case the case where z belongs to the l-path. It
remains to consider the cases where the robot walks along right-bounding lines. There
are two cases to consider. In the first case, k belongs to the l-path, z is reached after
h, and the robot walks along a right-bounding line past h towards z; this implies that
r =t and is the special case 2 which we consider in Section 4.4. In the second case, h
is outside the l-region, x is reached after h, and the robot walks along a right-bounding
line past h towards z; this again implies that = = ¢ and is the special case 3 considered
in Section 4.4.

2. the part of the robot’s path from x to y: We distinguish two cases depending on whether
the robot walks along left- or right-bounding lines past z.
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Figure 15 Figure 16

(i) the robot walks along a left-bounding line past z. If the point h is before z or
coincides with x, then r must belong to the r-region for the robot to follow a left-
bounding line past z. We let =’ be the point of intersection of sz with the r-path, and
we augment the sub-path from z to y by considering the line segment zx', followed by
the r-path up to its intersection with the line sy, followed by the line segment from
that point to y (Figure 14). If the point h is after z, then past k the robot may walk
along a left- or a right-bounding line depending on whether h belongs to the r-region
or not. Let g be the point of intersection of the lines sz and Iy, If h is outside the
r-region, or if h belongs to the r-region but g does not, we set 2’ = ¢ and we augment
the path by considering the line segment xz' (along sx), followed by a line segment
along [ from z' to the point of intersection with the r-path, followed by a line segment
from that point to y along sy (Figure 15). If both ¢ and h belong to the r-region, then
we let ' be the point of intersection of the line sz with the r-path, and the sub-path
from = to y is augmented by considering the line segment zz' (along sx), followed by
the r-path from z' to its final point on the line sy, followed by the line segment from
that point to y (along sy); the situation is similar to the one depicted in Figure 14.

(ii) the robot walks along a right-bounding line past x. Then, h cannot be before z,
for, if h were reached before z, the robot must have been walking along right-bounding
lines from & to x; this implies that x = £, a contradiction to the continuation of the path
past z. Moreover, h cannot be after x either; if A were reached after z, then h would
be outside the l-region and the robot would be walking along left-bounding lines from
x to h. Therefore, h = z, and we set £’ = h. Additionally, h lies outside the r-region
(otherwise, the robot would not be following a right-bounding line past z). Let g be the
point of intersection of I, with the r-path (if I}, intersects a line segment of the r-path,
then g is the point of intersection of I, with the immediately following semicircle); if
the line {;, does not intersect the r-path, we let g be the point of intersection of I;, and
sy. Then, the sub-path from z to y is augmented by considering the line segment xq
along I, potentially followed by the r-path from g to its intersection with the line sy
(if ¢ does not belong to the line sy), followed by the line segment from that point to y.
the part of the robot’s path from y to the final point t: Ify =1t then wesety =y=1.
If y # t, then the path past y lies outside the corresponding semicircles (Lemma 3.1)
and the robot on its way to t walks along right-bounding lines only. So, this part of the
actual path is augmented by considering the polygonal line formed by the segments
yy' and y't, where 3’ is the point of intersection of the lines sy and [, (Figure 16).
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It is important to observe that the augmented path does not cross itself. This follows from
the fact that x lies on the boundary or outside the l-region, y similarly lies on the boundary
or outside the r-region and y lies in the inner halfplane of [, Moreover, the augmented
path always moves along or to the left of the left-bounding lines that the robot follows and
along or to the right of the right-bounding lines, thus enclosing the actual robot’s path.
Therefore, we have the following two observations.

Observation 4.3. The path traveled by the robot and the augmented path have the same
endpoints.

Observation 4.4. The path traveled by the robot can be produced by clipping the augmented
path about the edges of a {shrinking) convex polygon.

4.3. The competitive factor.  With respect to the points z’ and ¢/, the augmented
path can be seen as the concatenation of three sub-paths, one from s to z', one from z'
to y', and one from ¥’ to the final point £. The sub-path from s to =’ consists of circular
arcs (case 1 of Section 3.1) occasionally separated by a line segment along a line supporting
an initially invisible polygon edge (case 2 of Section 3.1), potentially ending with a line
segment along the line sz. The sub-path from ' to v’ consists mainly of arcs and line
segments (in accordance with cases 1 and 2 of Section 3.1) as well, but may begin with a
line segment along I, and may end with a line segment along the line sy; the sub-path may
degenerate into a two-segment polygonal line, one along [, and the other along sy. Finally,
the sub-path from ' to ¢ is simply a line segment. See Figures 14-16. More importantly,
the following lemmata hold.

Lemma 4.3. The counterclockwise angle 31"‘? is at least equal to /2.

Proof: The definition of the point =’ in the case 2 of the preceding section suggests that
we need to consider two cases.

(i) ' is the point of intersection of sz with the r-path (if z is inside or on the boundary of
the r-region): Then, z’ lies on the semicircle of the currently maximal right constraint
vertex (case 1 of Section 3.1), or on the line supporting an edge incident upon a right-
constraint vertex which was initially invisible and became visible (case 2 of Section 3.1);
in the latter case, =’ lies inside the semicircle associated with the rigl'l_g_constraint vertex.
In either case, if w is the right constraint vertex, then the angle sz'w is at least equal
to /2. Moreover, the point y and (a fortiori) the point y' lie on or to the left of the
directed line z'w (see Figure 14). Therefore, ST’y y' = sz'w, and the lemma follows.

(ii) z' is the point of intersection of sz with [: This case occurs if h is reached after r,
or ' = h and h lies outside the r-region. In either case, 2’ coincides with or is farther
away from s than z; since r is on the boundary or outside the l-region (Lemma 3.1),

z' lies on or outside the semicircle of the last maximal left-constraint vertex, say, v.
Then, sz'v < 7/2 (Fact 2.1). The lemma follows from the fact that y and (a fortiori) y’
belong to the inner halfplane of [, and thus the angle sfy’ is at least equal to # — sz'v
(see Figure 15).

Similarly,

Lemma 4.4. If y #t, the clockwise angle ;;% s at least equal to w/2.
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Figure 17 Figure 13

Proof: In accordance with Lemma 3.1, the point y lies on or outside the semicircle of the
maximal right constraint vertex at ¢; let w be that maximal vertex. Then, ¢ has to lie on
or outside the semicircle as well, as it lies farther away from s than y along sy and the line
gy intersects the semicirele with diameter sw in at most one point other than s. Hence,
Sﬁ < 7/2. The lemma follows, since ﬁ:ﬁ =7 — sy'w (see Figure 14).

Lemma 4.5. The sub-path of the augmented path from s to ' is o curve with increasing
chords.

Proof: We first prove that for any point p of this sub-path, the part of the augmented path
from s to p belongs to the closed quadrant A, of p, while the part of the path from p to '
belongs to the closed quadrant C, of p. This follows from Lemma 4.1 and the fact that it
holds for all the points of the segment zz', which is along sz. Next, we consider 4 points a,
b, c and d in that order along the augmented path. We draw the corresponding quadrants
for the points b and c and draw the two lines I, and I, perpendicular to bc that pass by b
and ¢ respectively (Figure 17). Since ¢ belongs to the quadrant Cj, of b, [, lies in the closure
of the wedge defined by the quadrants By and Dy of b. Similarly, since b belongs to the
quadrant A, of ¢, I. lies in the closure of the wedge defined by the quadrants B, and D, of
c. Moreover, the point a lies in the quadrant A, of b, that is, to the left of . Similarly, the
point d lies in the quadrant C. of ¢, that is, to the right of I,. Therefore, the length of ad
is no less than the perpendicular distance of I and [, which by construction is equal to be.
1

Similarly,

Lemma 4.6. The sub-path of the augmented path from x' to y' is a curve with increasing
chords.

Proof: This sub-path is similar to the sub-path from s to =’ (and the proof is symmetric)
with the exception that it may start with a line segment along the line I3, and that it may
degenerate into a two-segment polvgonal line, one along [, and the other along sy. Let v be
the left constraint vertex associated with [g; recall that =" lies on or outside the semicircle
with diameter sv and thus we have that sz'v < 7/2 (see case (ii) of Lemma 4.3). This
implies that, in the case that the sub—ﬁp_ﬁth degenerates into a polygonal line consisting of
two segments r'q and gy', the angle 2’ "qy’ is at least equal to m/2; from the triangle with
vertices s, =, and g, we can see that 2'qy’ > gz's = 7 — sr'v. In a fashion similar to that
used in the proof of the previous lemma, we can easily show that two line segments at an
angle at least equal to 7/2 form a curve with increasing chords. Let us now turn to the
case that the sub-path starts with a line segment (along I),), say, z'q, and is followed by a
sub-path of the r-path. This may occur in both cases 2(i) and 2(ii) of Section 4.2; in either
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case, r’ is outside the r-region. Moreover, g belongs to an arc of the semicircle defined by
s and a right constraint vertex; let that constraint vertex be u. Since z’ is outside the
semicircle with diameter su, the angle sz'u is less than 7/2, which implies that the line [,
does not intersect the line segment su, because st'q = ™ — st’u > m/2. The situation is
therefore as shown in Figure 18, and it is easy to show that for any point p of z'q. the part
of the path from z' to p belongs to the closed quadrant D, of p, whereas the part of the
path from p to y’ belongs to the closed quadrant B, of p. The lemma follows from a proof
method similar to that used in the previous lemma, in light of Lemma 4.2 and the above
observation for the line segment z'q. 3

From the above, we conclude

Theorem 4.1. Our strategy has a competitive factor of +/2(27/3)% + 1 = 3.126.

Proof: Clearly, the length of the actual path traveled by the
robot is no more than the length of the augmented path,
as clipping with convex polygonal lines or curves leads to
reduced path length (Observation 4.4 and Lemma 2.4). So,
we only need to find an upper bound for the ratio of the length
of the augmented path over the length of the line segment st,
in order to have an upper bound for the competitive factor
that we seek. Figure 19 shows the skeleton of the augmented
path in the worst case; as stated in the Lemmata 4.3 and 4.4,
the angles a = sz'y’ and 3 = ?ﬁ are at least equal to /2. Figure 19

Let us denote by |pg| the length of the path from p to g as opposed to |pg| which
denotes the length of the line segment pg. Then the competitive factor r is

Lo ity Flszl+ By + 't
st - st] '-

since the augmented sub-paths from s to =’ and from z' to ' are curves with increasing
chords (Lemmata 4.5 and 4.6) and therefore their lengths are not more than 27 /3 times the
lengths of the line segments sz’ and z'y' respectively (Lemma 2.3). If we apply the law of
sines in the triangles sz'y’ and syt and factor out the length |sy’| we find

oy Sily+8i0{a+y) | SiN(G+4)
-3 sin + —Sins
r < or 111

¥

wherer/2 <o <mr/2<8<m0<y<7—aand0<d < w— 3. Obviously, the right-
hand side is maximized for the values of a and + that maximize the term Sm"";?:;:f“ﬂ’ :

The study of the behavior of the values of this term (by means of its partial derivatives in
terms of & and ) shows that the maximum value is achieved for & = 7/2 and v = 7/4, in

which case
%,r V2 + sin{3+4)

sind
= E_'l'ﬂ_ﬂ
sing
Maximizing the right-hand side over all the allowed values of § and 8 yields /2(27/3)Z + 1 =

3.126, which is an upper bound for r. g

17



Figure 20 Figure 21

4.4. Special cases in the augmentation of the robot’s path. In Section 4.2, we
focused on the most general case for the robot’s path. We will consider the special cases in
this section.

1. The point & coincides with the starting point s.

Then the left-bounding line of the free polygon at s is farther right than the semicircle with
diameter svg, where vy is the maximal left constraint vertex as observed from the starting
position s. Therefore, the robot keeps walking along left-bounding lines up to the point h,
at which point it may continue by walking along a circular arc if h belongs to the r-path,
a left-bounding line if A is inside the r-region, or a right-bounding line (the line I, or a
clipping line towards the inner halfplane of I;) if A is outside the r-region. In any case,
let z be the point of intersection of I with the line perpendicular to svp at s (Figure 20).
Furthermore, let g be the point of intersection of the line ; with the r-path (if I, intersects
a line segment of the r-path, then ¢ is the point of intersection of I}, with the immediately
following semicircle); if the line I, does not intersect the r-path, we let g be the point of
intersection of Iy and sy. If z belongs to the r-region, then the robot’s path from s to y is
augmented by considering the r-path from s to its intersection with the line sy, followed by
the line segment from that point to y. If z is outside the r-region (no matter whether h does
or does not), the robot’s path from & to y is augmented by considering the line segment
sz, followed by the line segment zq along Iy, potentially followed by the r-path from ¢ to
its intersection with the line sy (if ¢ does not belong to the line sy), followed by the line
segment from that point to y. (This case is similar to the case 2(ii) of Section 4.2) If
y # t, then the point ¥ is defined as described in the case 3 of Section 4.2, and the path is
augmented accordingly.

In the former case, the augmented path consists of the part of the r-path from s to g/,
followed by the line segment y't along l;. Since syt > 7/2 (as in Lemma 4.4), the method
used in the proof of Theorem 4.1 yields a competitive factor of +/[27/3)Z + 1 =~ 2.32. In
the latter case, the augmented path is the concatenation of the line segment sz, followed
by the line segment zq along Iy, followed by the r-path from ¢ to its point of intersection
with the line sy, followed by the line segment from that point to y', followed by the line
segment y't (Figure 20). By construction, z is outside the l-region; then, the angle 5%g is
larger than 7/2, implying that ,EEE > w/2 as well. Moreover, 3,??} = /2. The point z is
outside the r-region too; thus, if w is any maximal right constraint vertex encountered on
the r-path past g, the angle sqw < 7/2; given that 5zg > 7/2, we conclude that the line
does not intersect the line segment sw. That is, the sub-path of the augmented path from
z to y' is exactly like the sub-path z'y’ of the augmented path in the general case, and is
therefore a curve with increasing chords. Therefore, this case is similar to the general case
that we have considered in Section 4.3, except that the first sub-path is just a line segment
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and not a curve with increasing chords. Computing the competitive factor vields a value of
V(2m/3)F + 2 ~ 2.527.

2. The point h lies on the [-path, the turning point x is reached after h, and the robot walks
along right-bounding lines on its way from h to x.
Then, k is outside the r-region; this along with Observation 4.2 imply that the robot will
keep walking along right-bounding lines until it reaches x and that z = ¢. If ¢ is the point
of intersection of the lines sh and [;, the path from s to t is augmented by considering the
l-path from s to h. followed by the line segment hg along sh, followed by the line segment
gt along [; (Figure 21).

This augmented path can be seen as the concatenation of the sub-path from s to ¢, which
is a curve with increasing chords (Lemma 4.5), and the line segment gt. Additionally, g
is outside the r-region, which implies that the angle sqt = = — Gw > 7/2. This case
is simpler than the general case we have considered and yields a competitive factor of

Vr/3)Z 1 ~232

3. The point h is outside the l-region, the turning point T is reached after h, and the robot
walks along a right-bounding line | past h towards z.

Then, the starting point s has to belong to the inner halfplane of [. On the other hand,
because h is outside the l-region, the robot must have walked along left-bounding lines to
reach h. Given that = # h, the only possibility is that the line { is both a left- and a
right-bounding line; then z lies on [ and £ = ¢t. The path from s to z is augmented by
considering the entire l-path, followed by the line segment along sr from the final point of
the l-path to z.

This augmented path is similar to the augmented sub-path from s to z’, which is a curve
with increasing chords (Lemma 4.5). Then, the competitive factor does not exceed 27/3.

5. Path Properties.

It is interesting to observe that every point of the robot’s path belongs either to a
semicircle defined by the starting point and a vertex of the polygon P (a maximal constraint
vertex) or to the line supporting an edge of P. This guarantees that an actual robot
following our strategy is not expected to deviate from the intended course, as opposed to
other strategies where this is possible because the motion of the robot is dependent on the
current position. Consider, for example, Icking and Klein's strategy where the robot follows
the bisector of an angle with apex the current position; this has the drawback that, due to
accurmnulated numerical error, the robot may deviate substantially from the expected course.

Additionally, the following lemmata establish that the path constructed by our strategy
leads directly to the kernel point closest to the starting point and that it has size linear in
the number of vertices of the polygon P.

Lemma 5.1. The path resulting from the application of the above described strategy reaches
the kernel of the polygon at the kernel’s point that is closest to the starting point s.

Proof: Let t be the point on the robot’s course from where it first sees the entire P and
let w be the last maximal constraint vertex. Then, ¢ lies on the line I; supporting the edge
e of P which became visible last; this edge is incident upon w. If ¢ lies on the semicircle
with diameter sw (e.g., because the robot has been walking along the semicircle when it
reached t), then clearly ¢ is the point of the kernel that is closest to s because the line st
is perpendicular to the edge of the kernel on the line I; and the kernel is convex. However,
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t may not lie on the semicircle; the robot may have been walking along a (clipping) line
I' when it reached t. Because the robot is tryving to stay as close to the semicircle as the
clipping allows it, £ is closer to s than any other point of the kernel edge on [;. So, we need
only show that t is closer to s than any other point of the kernel edge on I, or equivalently
that the line perpendicular to I’ that passes through s intersects I at a point that belongs
to the closure of the complement of the inner halfplane of e.

Let ¢ be the edge of P that causes the clipping along the line I, and let g be the first
point of I' that the robot ever reached. We can show that the line perpendicular to I' that
passes through s intersects I’ at a point that belongs to the closure of the complement of the
inner halfplane of e, by showing either that the angle sgt > 7/2 or that the angle stp > 7/2
for any point p of ' that belongs to the inner halfplane of e. We distinguish two main
cases depending on whether the point ¢ is inside or outside the semicircle with diameter
sw. Suppose that the point t is inside the semicircle; then, stw > /2 (Fact 2.1). There
are three possibilities.

(i} s belongs to the inner halfplane of &' (Figure 22(a)). So is w. Then, for any point p of
I that belongs to the inner halfplane of € we have that stp > stw > 7/2.

(ii) the edge €' is incident upon a left constraint vertex v (Figure 22(b)). Let v" be the
maximal left constraint vertex just before the robot reached g; then, v’ belongs to the
inner halfplane of ¢'. Since the robot is free to walk from ¢ towards ¢, ¢ must be on
or inside the semicircle defined by s and v'; this implies that sqv’ > 7/2. Moreover, it
turns out that v’ is precisely v; if v" # v, the line segment gt does not belong to the
inner halfplane of ©' at g and hence the robot would not be allowed to walk towards t.
Therefore, sqt = §q0 = squ’ > 7 f2.

(iii) the edge €' is incident upon a right constraint vertex u (Figure 22(c)). Let u' be the
maximal right constraint vertex just before the robot reached g (note that v’ may very
well be u); then, »’ belongs to the inner halfplane of ¢’ and thus 7 < squ’. Since the
robot is free to walk from ¢ towards ¢, ¢ must be on or outside the semicircle defined
by s and o'; this implies that squ’ < 7 /2. Therefore, sqt = 7 — 5qu = T — squ’ > 7/2.

Suppose now that the point ¢ is outside the semicircle with diameter sw; then, stw < 7/2

(Fact 2.1). Again, there are three possibilities, similar to those of the previous case.

(i) s belongs to the inner halfplane of ¢' (Figure 23(a)). Then, w is not. Moreover, for
any point p of I’ that belongs to the inner halfplane of e we have stp > = — stw > w/2.
(ii) the edge €' is incident upon a left constraint vertex v (Figure 23(b)). Let v’ be the
maximal left constraint vertex just before the robot reached g (note that v may very
well be v); then, 5q0 < sqv’. Again, since the robot is free to walk from ¢ towards t, ¢
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must be on or outside the semicircle defined by s and v'; this implies that squ' < =/2.
Then, sqt = 7 — 5q0 > 7 — squ' > 7/2.

(iii) the edge €’ is incident upon a right constraint vertex u (Figure 23(c)). Let v’ be the
maximal right constraint vertex just before the robot reached ¢ and v’ belongs to the
inner halfplane of ¢’. Then, ¢ must be on or inside the semicircle defined by s and u';
this implies that .-.;;;E' > /2. Moreover, it turns out that u’ is precisely u; if v’ # u, the
line segment gt does not belong to the inner halfplane of ' at g and hence the robot

——

would not be allowed to walk towards ¢. Therefore, sqft = 5gu = squ’ > 7/2. 3

Lemma 5.2, The path that the robot follows in accordance with our strategy consists of
O(n) line segments or circular arcs, where n is the number of vertices of the polygon P.

Proof: We need only prove the lemma for the one-sided case, since the entire path consists
of two applications of that case. Let z be the last point common to both the robot’s path
and the l-path; then the robot’s path from s to z is a clipped version of the part of the
l-path from s to z. The proof for the one-sided case proceeds in two steps. First, we derive
an upper bound on the number of arcs and line segments of the l-path from s to z; the effect
of clipping and the line segments of the robot’s path past z are taken into account in the
second step. The l-path from s to z consists of circular arcs (corresponding to the maximal
constraint vertices) occasionally separated by a line segment along an initially invisible
polygon edge (cases 1 and 2 of Section 3.1). The semicircle corresponding to a constraint
vertex v may contribute more than one arc only if a new maximal constraint vertex u
appears, u's cave later becomes entirely visible and v becomes the maximal constraint
vertex again (see Figure 6). In this case, u ceases to be a constraint vertex, so the cost for
the additional arc and the line segment between the semicircles of u and v can be charged
to u. Since the number of constraint vertices is less than n, the unclipped path of the robot
up to z consists of less than n + 2 x n = 3n circular arcs and line segments.

Let us now take into account the line segments of the path past z and the effect of clipping
about the edges of the free polvgon; we note that the line segments past z are also due to
clipping about free polygon edges. Since the free polygon is convex and it keeps shrinking,
any of its edges will contribute one line segment in the robot’s path unless one or more
circular arcs or l-path line segments interrupt it: the two possible cases are shown in Fig-
ure 24. In the case (a), the corresponding semicircles will not contribute any more arcs as
their remaining portions lie outside the free polygon; therefore, the number of additional
segments is no more than the number of constraint vertices. In the case (b), an edge of the
free polvgon may contribute several line segments while a clipped semicircle may contribute
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at most two arcs; however, every pair of consecutive line segments that the same edge con-
tributes are separated by a vertex of the unclipped path of the robot (except for the starting
point and z), which as we saw earlier consists of less than 3n circular and line segments and
therefore has at most 3n vertices. Moreover, a semicircle may contribute several arcs due to
clipping with the edges of the free polygon (Figure 25); for every additional arc, however.
only the last clipping line may contribute more segments or arcs. So, we can account for all
the additional segments that the clipping produces in all three cases, if we charge each edge
of the free polygon with 2 units (one for a line segment and one for an additional arc) and
each vertex of the unclipped path up to z with 2 units as well (one for the additional line
segment and one for the additional arc), and add 2 more units for the last clipping line. In
other words, the additional number of segments does not exceed 2 x (n+2) + 2 x 3n + 2,
since the total number of edges of the free polygon is at most n 4+ 2 (as mentioned earlier,
they are contributed by the inner halfplanes of the edges of the polygon P and the inner
halfplanes of the maximal constraint vertices detected from the starting point s.)

Summing up for both steps, we conclude that the total number of arcs and line segments in
the entire path of the robot in the one-sided case iz no more than 3n + 80 4+6 = O(n).

6. Concluding Remarks — Open Problems.

We presented a strategy which enables a point robot to reach the point ¢ of the kernel
that is closest to the starting point s, and guarantees that the length of the path traveled
is not longer than 3.126 times the length of the line segment st (that is, 3.126 times the
shortest possible off-line path). The path generated consists of line segments and circular
arcs whose total number is linear in the size of the polygon in which the robot moves. Qur
strategy has the interesting feature that the robot reaches the kernel at precisely the closest
point .

However, the above competitive factor cannot be
guaranteed for negative instances, that is, when the
polygon has empty kernel. In such cases, the ratio of
the length of the path that our strategy imposes over
the length of the shortest path which establishes that
the kernel is empty may be unbounded. See, for ex-
ample, Figure 26: our strategy entails following the
semicircle with diameter sv and then moving along vz
until we reach point z where it is found that the kernel
is empty. The shortest off-line path involves visiting
the vertices v and u. Therefore, as we arbitrarily scale
the figure along the vertical axis, the competitive factor
becomes arbitrarily large. This holds for all strategies
where a point of the polygon seen by the robot never ceases to be in the robot’s visible
region thereafter (enforced by means of the free polygon in this work, and by means of the

Figure 26
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gaining and keeping wedges in [9] and [13]). Therefore, in order to improve on that, the
strategy needs to relax this condition, as is done in [15]. Perhaps, a combination of methods
may accommodate negative instances while improving the competitive factor of [15].

Experimental results suggest that the actual competitive factor may be smaller than
the theoretical competitive factor of 3.126. More extensive experimentation is under way
to investigate this possibility. If true, it would be interesting to come up with tighter
theoretical bounds on the competitive factor of our strategy.

Of course, the ultimate open question is to invent strategies with smaller competitive
factors which will close the gap between the current upper bound of ~3.126 and the lower
bound of ~1.48. To this effect, perhaps ideas like the ones in [11] may be of help.

Finally, good or better competitive solutions are needed for other motion planning prob-
lems in unknown environments. A recent paper by Lépez-Ortiz and Schuierer [15] has
addressed two interesting problems in this class: finding out whether a given polygon is
star-shaped (i.e., it has non-empty kernel), and locating a target (which will be recognized
when seen) in a polygon with non-empty kernel. The currently best competitive factor for
the first problem is 46.35. The currently best competitive factor for the second problem is
12.72 and is coupled with a lower bound of 9.

Acknowledgements. I would like to thank Bill Karaiskos whose program (implementing
the strategy described in this paper) helped to produce several of the included figures.
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