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Abstract

In this paper, we develop a general theory of currency and consistency for an extended client /server
environment in which the server broadeasts items of interest to a large number of clients. Such en-
vironments are part of an increasing number of emerging applications in wireless mobile computing
systems; they also provide a scalable means to deliver information in web-based computing appli-
cations, for example in publish-subscribe systems. We introduce various criteria of currency and
consistency and present a framework to precisely define protocols for enforcing such criteria. We
then show how the various protocols introduced in the literature fit in our framework and how new
protocols can be advanced by varying the parameters of the framework.

1 Introduction

While traditionally data are delivered from servers to clients on demand, a wide range of emerging
database applications benefit from a broadcast mode for data dissemination. In such applications, the
server repetitively broadcasts data to a client population without a specific request. Clients monitor
the broadcast channel and retrieve the data items they need as they arrive on the broadcast channel.
Such applications typically involve a small number of servers and a much larger number of clients with
similar interests. While the concept of broadcast delivery is not new [3, 26, 11], data dissemination
by broadecast has recently attracted considerable attention ([14], [22]), due to the physical support
for broadcast provided by an increasingly important class of networked environments such as by most
wireless computing infrastructures, including cellular architectures and satellite networks. The explosion
of data intensive applications and the resulting need for scalable means for providing information to
large client populations are also motivated by the dramatic improvements in global connectivity and
the popularity of the Internet [9, 28].

As such systems continue to evolve, more and more sophisticated client applications will require
reading current and consistent data despite of updates at the server. In most current research (for
example, [6], [2], [13], and [17]), updates have been mainly treated in the context of caching with no
transactional semantics. Transactions and broadcast were first discussed in the Datacycle project [11]
where special hardware is used to detect changes of values read and thus ensure consistency. The
Datacycle architecture was extended in [4] for the case of a distributed database where each database
site broadcasts the contents of the database fragment residing at that site. More recent work includes
among others the F-matrix technique [24] for enforcing a relaxed form of serializability; the deployment
of the broadcast medium for transmitting concurrency control related information to the clients so that
part of transaction management can be undertaken by the clients [5]; the SGT method [20] that is based
on serialization graph testing, maintaining multiple versions per item [19] and the BCC method [18]
that is based on timestamps.
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Our work in this paper is different from previous work in that instead of proposing specific protocols
for broadcast databases, we develop a general theory for correctness in such settings. Our model provides
the necessary tools for arguing about the correctness and other properties of the various protocols. In
addition, it provides the basis for the advancement of new protocols. An interesting feature of our
mode] that is applicable to non-broadcast systems as well is the distinction made between currency and
consistency. Currency can be enforced in non-transactional systems. We relate currency and consistency
through the definition of strict currency which is the type of consistency we get in transactional systems.

The remainder of this paper is structured as follows. In Section 2, we introduce the broadcast
model, give background definitions, define various broadcast schedules based on currency, and set the
assumptions for our theory. In Section 3, we define various models of consistency that provide clients
with transaction consistent database snapshots. In Section 4, we present our currency model that is
based on two different types of currency, strict and oldest value currency. In Section 5, we present our
currency control theory that defines the way server communicates updates to their clients. In Section
fi. we present our consistency control theory based on the Read-Test theorem. Finally, in Section 7,
we show how the various protocols introduced in the literature fit in our model, and in Section 8 we
present our conclusions and plans for future work.

2 The Problem
2.1 The Broadcast Model

In our setting, a server periodically broadcasts data items from a database to a large client population.
Each period of the broadcast is called a broadcast cycle. The items to be broadecast at each cycle are
determined by a broadcast program and depend on the client access preferences. Each client listens
to the broadcast and fetches data as they arrive. This way data can be accessed concurrently by any
number of clients without any performance degradation. However, access to data is strictly sequential,
since clients need to wait for the data of interest to appear on the channel. Clients do not need to listen
to the broadcast continuously. Instead, they may tune-in to read specific items. Such selective tuning
is important especially in the case of portable mobile computers, since they most often rely for their
operation on the finite energy provided by batteries and listening to the broadcast consumes energy.
However, for selective tuning, clients must have some prior knowledge of the structure of the broadcast
that they can utilize to determine when the items of interest appear on the channel. Alternatively, the
broadcast can be self-descriptive, in that, some form of directory information is broadcast along with
data. Techniques for broadcasting index information along with data are given for example in [16, 13].

In this paper, we consider the case of data being updated at the server. Our goal is to provide
consistency and currency guarantees for the data read by clients. Our protocols take into account the
following characteristics of broadcast systems. First, such systems are characterized by an asymmetry
between the communication capacity from the server to the clients and the communication capacity of
the backchannel from the client to the server. This asymmetry is the result of the huge disparity of the
transmission capabilities of clients and servers as well as the scale of information flow since a very large
number of clients is connected to a single server. Furthermore, for scalability reasons, it is important
to limit the clients requests to the server to avoid overwhelming it. These reasons as well as decreasing
the latency of client transactions justify enforcing currency and consistency at the client. In particular,
these considerations motivate the following model assumptions:

1. The server is stateless in that it does not maintain any particular control information about its
clients.

2. All updates are performed at the server and disseminated from there.



3. To get currency and consistency related information, clients do not contact the server directly
instead such control information is broadcast along with data.

We make no specific assumptions about concurrency control at the server other that the schedule of
server transactions is serializable.

2.2 Currency of Broadcast Data

Assume that a client makes a request to read an item x at time £, and then waits for the item to appear
on the channel say at time £.. The value of x that the client reads at ¢, is the value placed on the
channel at t, - d, where d is the communication delay. Minimizing the time ¢, — ¢, that the client has
to wait to get the item of interest is the goal of broadcast scheduling that is of designing broadcast
programs (for example, [1]). Such broadcast programs may also take into account timing constraints,
for example the fact that a client may need to read particular data items before a deadline [7, 27].

The work in this paper is complementary to broadcast scheduling. In fact, our theory is independent
of the particular schedule in use. The question we address is, given a broadcast program, what kind of
currency and consistency guarantees can be provided for the values read by clients and what is a general
framework for enforcing them. Thus, when we talk about the time of a read operation we refer to time
t.. Let us consider first, what value is placed on the broadcast for an item z. Our first assumption is
that only values produced by committed transactions appear on the broadcast. Besides that, there are
two reasonable choices.

o Latest value scheduling: When an item r is scheduled to appear on the broadcast at time t, the
value that the server places on the broadcast channel at time ¢ is the most recent value of z (that
is the value of z produced by all transactions committed at the server by t).

e Periodic update scheduling: Data values on the broadcast change at pre-specified intervals called
currency intervals. In particular, the value of item z that the server places on the broadcast at
time ¢ is the value of x produced by all transactions committed at the server by the beginning of
the current currency interval (this may not be the current value of z at the server). Let ¢ be the
duration of the currency interval. For instance, ¢ may be equal to the duration of a broadcast
cycle. In this case, the value broadcast for each item during the cycle is the value of the item at
the server at the beginning of the cycle. In periodic update scheduling, we may need to keep two
versions for some items.

For a uniform treatment of latest value and periodic update scheduling, we assume that a latest
value schedule is a periodic update schedule with ¢ = 0.

2.3 The Readset of a Transaction

The readset of a transaction R denoted RS(R) is the set of items it reads. In particular,

Definition 1 (Readset) The readset of a transaction R, denoted RS(R), is the set of ordered pairs
of data items and their values that R read. The readset always includes only one pair (item, value) per
item. In the case in which a transaction reads the same item more than once, the readset includes the
value read last.

A database state is typically defined as a mapping of every data to a value of its domain.

Definition 2 (Database State) A databases state, denoted DS, is a set of ordered pairs of data items
and their values.



In a database, data are related by a number of integrity constraints that express relationships of values
of data that a database state must satisfy.

Definition 3 (Consistent Database State) A database state is consistent if it does not violate the
integrity constraints [8].

Definition 4 (Consistency of a Subset of a Database State) A subset of a database state is
consistent if it is a subset of a consistent database state [23].

A readset is a subset of database state. We define two properties for the readset:
s currency: how current are the values in the readset with respect to the values at the server

» consistency: whether the readset is a subset of a consistent database state, Le.. whether it satisfies
the integrity constraints.

In periodic update scheduling, the content of the broadcast at each currency interval is a subset
of the database state at the server as of the beginning of the interval. We would like to ensure that
the content of the broadcast at each currency interval is consistent. Note, that in the case of latest
value scheduling, this trivially holds. One way to ensure consistency is by enforcing the content of
each currency interval to be a subset of a database state produced from the serializable execution of a
number of transactions. This is the case with strict schedules. A schedule is strict if the commit order
of transactions is compatible with the serialization order. Thus, if at each currency interval, the values
broadcast are the values produced by all transactions committed at the server by the beginning of the
currency interval, then the content of the broadcast during each interval is a subset of the database
state produced from the serializable execution of these transactions. Thus:

Proposition 1 In the case of strict schedules, the content of the broadcast at each currency interval is
consistent.

There is a trade-off between currency and consistency. The largest the currency interval, the worst
the currency; the largest the probability to read all data from the same currency interval and thus from
the same consistent database state.

Let fpegin and teommie be the time R performs its first read operation and the time it commits
respectively.

Definition 5 (Lifetime) The lifetime of R, denoted lifetine(R) is the time interval [tpegin, teommat)-

3 DModels of Consistency

In general, a client transaction R reads values that correspond to different currency intervals and thus
its readset may not be consistent even in the case of strict schedules.

Definition 6 (Readset Consistency Requirement) The consistency requirement for a read only
transaction R is expressed as follows: RS(R) C DS, where RS(R) is the readset of R and DS is a
consistent database state.

Various consistency guarantees stronger than correspondence fo a consistent database state have
been defined based on serializability [10, 15, 25]. All guarantee that a read-only client transaction sees
a consistent database state. In Table 1, we survey such criteria. For each definition of consistency,
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Table 1: Definitions of consistency

there are three versions. The first is the strongest one and requires serializability of all read-only client
transactions with server transactions. This means that there is a global serialization order including
all read-only client transactions and a subset of server transactions. The second version requires seri-
alizability of each read-only client transaction individually. The last version requires serializability of
some subset of client read-only transactions. This subset may for example consist of all transactions at
a given client site.

Note that if all read-only client transactions are C4-I consistent then C4 and C4-5 consistency also
hold. The global serialization order is compatible with the commit order of server transactions and the
order in each C4- schedule since the read-only transactions do not conflict with each other.

The database state DS of Definition 6 seen by a read-only client transaction is not necessarily a
database state that appears at the server as the following example shows. We use || to denote the
beginning of each currency interval. The notation w;, r; and ¢; stands respectively for the write, read
and commit operation of transaction T;.

Example 1 Assume two server transactions T} and T3, one client read-only transaction Tr and the
following schedule:

rr(z) || wilz)erwsa(y)ez || rr(y)er
R sees the results of T5 but not of Ty. O

The example above also shows that the assumption that the schedule of all server transactions is
strict does not mean that the schedule including one or more read-only client transactions is also strict.
The commit order of server transactions T} and T3 (T} — T3) is compatible with the serialization
order of the schedule of server transactions. However, the commit order of the schedule including the
read-only transaction Tg is not compatible with the serialization order (T — T — T1).

4 Models of Currency

Each client sees a snapshot of the database state. We are interested in how current this state is. We
first define the currency of a single item read by a client.

Definition 7 (Currency of an Item) The currency of an item x in the readset of a transaction R,
denoted Currency(z, R), is the commit time of the transaction that wrote the value of = read by R.

Let DS, be the database state at the server at time ¢. In the case that the client sees an actual
database, we define strict currency as follows



Definition 8 (Strict Readset Currency) In the case that the readset RS(R) of a read-only trans-
action R corresponds to an actual database state DS, at the server at some time t (RS(R) C DS,) the
strict currency of transaction R, denoted Strict_Currency(R), is 1.

F sees data values as they existed at the server at some previous given point ¢. In other words, R
sees the results of all transactions committed prior to ¢ and not after ¢; that is R is a -vinfage [15]
transaction. Let £y € lifetime(R). We define currency relative to .

Definition 9 (Relative Strict Readset Currency) In the case that the readset RS(R) of a read-only
transaction R corresponds to an actual database state, strict currency of R with respect to time ty €
lifetime(R), denoted R.Strict.Currency(R,ty), is the time lag: tq — Strict_Currency(R).

We say that R is strictly current with respect to time t, if R_Strict.Currency(R.1y) = k + d where
(a) if ¢ > 0, k is such that let mc < tp — d < (m + 1)c, for some m, k = t; — d — me and (b) if
¢ = 0 (latest value update scheduling), ¥ = 0. That is when R is strictly current with respect to
to, It sees data as they existed at time #; at the server subject to communication delays (d) and the
duration (c) of the currency interval. A transaction R sees the latest values when tg = tepmmit, that is
R_Strict_Currency(R, teommit) = k + d. The best such currency is attained when ¢ = 0, that is with
latest value scheduling,

If the readset of a transaction R is not a subset of a single database state DS at the server, then
K may not be a f-vintage transaction. Instead it can be a t-bound [15] transaction: a transaction that
sees the results of all transactions committed prior to ¢ but also of some transactions committed after
t. In this case, we can only provide currency guarantees per item.

Definition 10 (Oldest-Value Readset Currency) The oldest-value currency of R, denoted OV_Currency(R),
is the largest t such that:
¥ (z,v) € RS(R), Currency(z.R) >t

Definition 11 (Oldest-Value Relative Readset Currency) The oldest-value currency of R with
respect to time 1y of R is the time lag: {y — OV _.C'urrency(R).

Similarly we can define a transaction as being oldest-value current with respect to time #5. Oldest-
value currency reduces to strict currency when the readset of a transaction corresponds to an actual
database state.

The above requirements focus on a single client transaction. In general, multiple client transactions
may originate from the same or different client hosts. We would like to ensure that if the execution of
a read-only transaction R; follows the execution of a read-only transaction R;, then the values read by
Ry are more current than the values read by R;.

Let e be a distinct event in the lifetime of a transaction, for instance e may be the first read operation
or the commit point. Let time(e, R) be the time that the event e of transaction R occurs.

Definition 12 (Precedes) Transaction R; precedes Ra with respect to event e, if time(e, By) <
time(e, Ra).

Then, we say that

Definition 13 (Temporal Order) The temporal order between transactions By and Ry with respect
to event e is preserved if whenever one, say Ry, precedes the other with respect to event e, Currency(R;)
= Currency(Ra).

Proposition 2 If R, is strictly current with respect to time(e, Ry) and Ry is strictly current with
respect to time(e, Ra) then the temporal order between Ry and Rs with respect to event e is preserved.



5 Currency Control

It is easy to see that:

Proposition 3 If a read-only transaction R reads items from the broadcast channel {without any ad-
ditional information), then RS(R) is oldest-value current with respect fo the time that transaction R
performed its first read operation.

To achieve better currency, the server must inform the client of updates by broadeasting a report
that includes information about the items that have been updated. This report may be sent immediately
after the update is performed or periodically. In the former case, the client must listen to the broadcast
continuously. In the latter case, the report may be broadcast at the beginning of each interval or at
other points. Let us assume that the report includes a list of the items that have been updated and
that it is broadcast at the beginning of each currency interval.

Theorem 1 (The Invalidation Theorem) Let (x,u) € R5(R), = be read af time t; and t.4 = t; -
d. Let IRy, be the report that was broadcast at fime m and IR be the sef of all such reports that were
broadcast during the lifetime of R, IR = {IR,, : m + d € lifetime(R)}. R is strictly current with
respect fo time ty, iff:

a) iftzqg < &y then z ¢ IRy, tzg < m < iy, and
(b) ifteg > tp thenz @ IRy, fp <m <ty

Proof. In the Appendix.

An interesting case is when #; = t.omm:. Then, to get strict currency with respect to commitment, an
item read at ¢; must not appear in any subsequent report. Another interesting case is when # = tjegin.
i.e., the client gets the view as of its first read. Then each item read at time ¢; must not have been
updated prior to t; and after tyegin.

Corollary 1 To achieve oldest value currency, it suffices to ensure condition (a) of the Invalidation
Theorem.

Invalidation Reports. Consider a report that includes just a list with the (identifiers of the) items
that have been updated. We describe next a protocol to achieve strict currency with respect to t; based
on the Invalidation Theorem. The client tunes in and reads the invalidation reports. Two lists are
maintained, an I'nvalidation_Set list that includes the items that appeared in an invalidation report
broadecast after £, and the Read_Set list that includes the items read so far. The protocol runs in two
phases. Up to time i, when a client reads a new invalidation report IR,, (m < {;), it checks whether
an item in Read_Set appears in TR_m and aborts R, if it does. After #g, for each item read, the client
checks whether it appears in the Invalidation_Set, and aborts R, if it does.

Propagation Reports. Another possibility is for the report to include both the items updated and
their new values. We call such reports propagation reports. Anitem may be re-read from the propagation
report.

Algorithm 1 Let (z,u) € RS5(R), = be read at time t; and t;g = t; - d. Let PR,, be the propagation
report that was broadcast at time m and PR be the set of all such reports that were broadcast during the
lifetime of R, PR = {PRm : m+ d € lifetime(R)}. The following protocol ensures that R is strictly
current with respect to time t;.



(a) If an item is read prior to ty and it appears in any PRy, after t.q and prior to ty (tzg <m < t)
replace the item in the readset (i.e., re-read the item) with the value of the item that appears in
the latest such propagation report (i.e., the report with the largest m).

(b) if an item is read after t; and appears in any PRy, broadcast prior to tyq and after ty, [t <m <
teq) abort R.

Although, strict currency is achieved, re-reading items may violate the semantics of a client program.
Consider for example the following client transaction program: if a > 0 read(b) else read(c). What
happens when the value of a was originally positive, b was read, then a was re-read and its value was
found to be negative?

Autoprefetch and Multiversioning. Instead of propagating values of updated items, we can have
a hybrid scheme that combines invalidation reports and propagation. One such method is called aufo-
prefetch and can be used to achieve consistency with respect to the commit point. In this case, every
time an item in the Read_Set list appears in an invalidation report, the transaction is not aborted but
it is instead marked invalidated. A read operation is re-issued for all invalidated items. The items are
re-read from the broadcast channel, the next time they appear. Another method to attain consistency
with respect to a time instance t, prior to commitment is instead of broadcasting one value per item,
to broadcast multiple versions, i.e., the values that the item had at some previous currency intervals.
In this case, when the value of an item appears in an invalidation report, we re-read from the broadcast
the version of the item that corresponds to time tj.

6 Consistency Control

We will show first that we only need to check for violations of consistency only when a read-only
transaction reads a new item.

Theorem 2 (Read-Test Theorem) A consistency criteria may be violated only when a a read-only
transaction reads a new data item if and only if the schedule of server transactions 1s strict.

Proof. In the Appendix.
From the Read-Test theorem we get the following corollary about the type of the read-test.

Corollary 2 Read-Test: Let R reads z from T and let Followg = {T": T’ overwrote an ttem previously
read by R}. The read operation of transaction R succeeds iff there is no path from any transaction T'
that overwrote an item previously read by any transaction T' € Followy.

In general, we need to broadcast enough information so that the client can check whether such a
path occurs. The type of information depends on the type of consistency criteria enforced.

Enforcing Consistency Definitions. The Read-Test takes specific forms depending on the type of
consistency we want to enforce. Let us first consider the individual-transaction version of the criteria
of Table 1.

Corollary 3 Let R reads x from T and let Follow_R = {T': T’ overwrote an item previously read by
R}.

C4-I test Let tmin = mMinyreFoliow_glcommit_timestamp(T')) and t7 = commit_timestamp(T). The C4-I
criterion is satisfied iff t7 < tnin (then there is no path from any T' to T').



C3-I test The C3-I criterion is satisfied iff there is no path from any T' to T in the serialization graph that
includes server transactions.

C2-T test The C2-I criterion is satisfied iff there is no path from any T' to T including only dependency
edges in the serialization graph that includes server tarnsactions.

An interesting case of the subset version of the consistency criteria is the one that requires seri-
alizability of all transactions at the same client. The only difference from the individual-transaction
case is that the path of Corollary 2 besides server tranactions may also include other read-only client
transactions.

Lemma 1 The C4-I test is sufficient to get all versions of C4.

Proof. In the Appendix.

If we want to enforce global serializability, that is to find a global serialization order for all client and
server transactions the only enforcible criteria is C4. Otherwise, we can not ensure that the serialization
orders assumed at different clients are compatible.

Theorem 3 (Global Consistency Theorem) The only enforcible criteria that includes read-only
transactions at more than one client, if we assume no communication between clients or from the server
to the client, is C4.

Proof. In the Appendix.

Consistency and Currency. Consider the C4 criterion. Let R be a client transaction that is C4 consis-
tent. In paricular, let tmin = MiNT e Fotow_r(commit_timestamp(T')) and tmaz = MATT.R reads z fromT
(commit_timestamp(T)). From the C4— I test, we can see that R is serializable after the transaction T
with timestamp tyq. and before the transaction T with timestamp ¢y, that is RS (R) C DS;, where
taz < t < tnin-

Proposition 4 If C4 holds, then each read-only transaction sees an actual database state (t-vintage
transaction).

For the other criteria, we do not necessarily get t-vintage transactions as example 1 shows.

7 Case Studies

We list below a number of protocols proposed in the literature along with the type of consistency and
currency that each provides. For a complete treatment refer to [21].

Invalidation Method. The invalidation method proposed in [20, 19] and in certification reports [5]
(if we consider only read-only transactions) is an application of the Invalidation Theorem. The protocol
works as follows. The client maintains for each read-only transaction R a list Read_List with the items
that were read so far. The server broadcasts a report with the items that were updated since the
broadcast of the previous report. If an item read (that is an item in the Read.Set list appears in the
report, then transaction R is aborted. It is easy to see that this protocol provides strictly consistent
schedules with respect to the time of the last item read. It also gives C4 consistency.

Periodic Consistency. Periodic consistency proposed in [2] focus on single read operations, there
are no transactional semantics. A combination of invalidation reports with autoprefetch or propagation



reports ensure that each client reads the most current value available. The method provides oldest value
currency with respect to the first value read but there is no consistency guarantees.

Versioning. With the versioning method proposed in [19], along with each item, a timestamp or
version number is broadcast that corresponds to the currency interval at the beginning of which the
item had the corresponding value. Let vy be the currency interval at which transaction R performs its
first read. For each subsequent read, the read-test checks that the items read have version numbers v
< vg. If this does not hold, R is aborted. This gives strict currency with respect to the first item read
and C4 consistency.

BCC-T1. The BCC-T1 method proposed in [18] provides an implementation of the C4-1 test. Each
transaction gets a commit timestamp. The commit timestamp of the transaction that last wrote each
item is also broadcast along with the item. In addition, an invalidation report is broadcast periodically
that includes for each data item r that has been updated since the previous report the pair (z, min_t)
where min_t is the smallest commit timestamp among all transactions that wrote z. For each transaction
we also maintain the set C'urrent_RS(R) that includes the (item, value) pairs read by R so far and a
counter count as follows. When for an item (x, value) € Current_RS(R) the pair (z, min_t) appears
in an invalidation report, we set count equal to min{min_t, count}. For each item read, the Read-Test
checks wether the item read has timestamp t < count. If this does not hold, R is aborted.

The SGT Method. The SGT method proposed in [20] provides an implementation of the C3-1 test. In
particular, the server maintains a serialization graph SG with all transactions committed at the server.
The server broadcasts periodicaly the serialization graph to the clients. Each clients maintains a local
copy of the graph. The Read-Test checks for cycles in the local copy of the graph.

The F-matrix method. The F-matrix proposed in [24] provides an interesting implementation of the
C2-1 test. Along with each item x, an array C with n elements (where n is the number of items in the
database) is broadcast. C[i] provides information regarding the transaction that affected the values of
both items = and 1.

Multiple Versions. With the multiple version method proposed in [19], instead of broadeasting only
the most current value of each item, the values that the item had at the previous k currency intervals
are also broadcast. The method provides C4 consistency and strict currency with respect to various
points in the lifetime of the transaction.

8 Conclusions and Future Work

In this paper, we proposed a general theory for currency and consistency for an extended client /server
environment in which the server broadcasts items of interest to a large number of clients. An interesting
feature of our currency and consistency model that is applicable to non-broadcast systems as well is the
decoupling of currency and consistency. Currency can be enforced in non-transactional settings. We
relate currency and consistency through the definition of strict currency which is the type of consistency
we get in transactional systems. Our model provides the necessary tools for arguing about the correct-
ness and other properties of the various protocols. In addition, it provides the basis for new protocols
to be advanced. The proposed model can be easily extened for the case of a cache being maintained at
the clients. In this case, clients read items from the broadcast channel or from the cache. The theory
is directly applicable if the values in cache are maintained current. It can also be extended for deferred
cache update policies. An interesting line for future research is applying the theory of readset currency
and consistency in the case of warehouses and caches, since both warehouses and caches are subsets of
database states.
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Appendix

Proof of Theorem 1

(The Invalidation Theorem) Let (z,u) € RS(R), = be read at time t; and t,q = t, - d. Let IRy, be
the report that was broadcast at time m and IR be the set of all such reports that were broadeast during
the lifetime of R, IR = {IRy : m € lifetime(R)}. R is strictly current with respect to time ty, iff:

(a) if tzq <ty thenz & IRy, tz0 <m < ty, and

(b) iftyg >t thenz @ IRy, e <m < ity

Proof.

Let (z,u) € RS(R), x is read at time £..

Case (a): t;qg < 4

We must show that this value was produced by the last transaction T committed by #; that wrote
. Since R read x prior to iy, transaction T committed prior to f;. We must show that r was not
updated between the time it was read (¢;4) and ;. For the purposes of contradiction, assume that z
was updated. Then, r should have been appeared in an IR, that was broadcast after ;4 and prior to
tg, that is 4 < m < 3, which violates condition (a) above.

Similarly we can prove Case (b): f0 > t. O

Proof of Theorem 2

(The Read-Test Theorem) A consistency criteria may be violated only when a a read-only transaction
reads a new data item if and only if the schedule of server transactions is strict.

Proof.

(1) If the schedule of server transactions is not strict then the testing for consistency when an item is
read is not sufficient.

Consider the following schedule that includes four server transactions Ty, Th, Ts, T3 and one read-only
transaction Thy:
woly)eowa(z)ra(z) || wala)r(a)wi(z)eica rr(z)rr(y) || wily)es

The schedule of server transactions is not strict, since the serialization order is Ty —+ T3 — Tb — T,
while the commit order is Ty — T; — T3 — T5. Note that consistency is violated when T3 writes y. R
can not decide whether to commit, since T3 could write an item and violate consistency at any time.
Note that there are only dependency edges among server transactions. O

(2) If the schedule of update transactions is strict, then testing for consistency when a transaction reads
a new item is sufficient.

Let SG be the serialization graph that includes both server and client transactions and SSG be the
subgraph of SG that includes only server transactions.

We assume that there is no cycle in the SG, thus the only cycle possible includes at least one read-
only transaction R and is of the form: T — R —= T' — ... rightarrow T, transaction T' overwrote an
item y previously read by R, and R read an item x from transaction T.
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Assume that SG is acyclic at f and that at some point ¢ > ¢ an operation causes an edge to be
added in the SG. Assume, for the purposes of contradictions that this operation is not a read operation
of a client transaction,

Case (a) The edge is between two server transactions T} and T; and was caused by an operation of T3.
Assume for the purpose of contradiction, that a cycle is formed: T+ R—=+T' - ... o T1 =Tz ... =
T. Ty is committed after T, since T is a transaction that has already committed (since R read a value
produced by T), However T} precedes T in the serialization order which violates the assumption that
the schedule of server transactions is strict.

Case (b) The edge is between a server transaction T and a client transaction R', this means that T}
overwrote an item read by R'. Again T) precedes T which violates the condition that schedules are
strict.

Thus, the only type of edge that can create a cycle is when R reads an item. O

Proof of Lemma 1

Lemma 1: The C4-I test is sufficient to get all versions of C4.

Proof.

We will show that the path for R does not include any other read-only client transactions. For the
purposes of contradiction let us assume that there is such a path that includes another read-only
transaction say R'. Then T = ... T = R =T} ... = T.

From the Read-Test for B,

commit_timestamp(Ty,) < commit_timestamp(Ty), (1)

while from the Read-Test for R,

commit_timestamp(T') < commit_timestamp(T) (2).

From schedules being strict,

commit_timestamp(T') > commit_timestamp(T}), (3)

and

commit_timestamp(Ty,) > commit_timestamp(T')(4). Then

commit_timestamp(T') > commit_timestamp(T}) (from 3)

= commit_timestamp(T') > commit_timestamnp(Ty,) (from 1)

= commit_timestamp(T") > commit_timestamp(T) (from 4)

which viclates the Read-Test for R (inequality 2). O

Proof of Theorem 3

(Global Consistency Theorem) The only enforcible criteria that includes read-only at more than
one clients, if we assume no communication between clients or from the server to the client, is C4.

Proof (sketch)
Lemma 1 shows as that is possible to enforce C4 by enforcing the C4-I test locally at each client.

We need to show that the other criteria are not enforcible. The idea is that at different clients, non-
conflicting server transactions may be ordered in a conflicting way. O.
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