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Abstract — A graph G is called an A-free graph if for every edge (x, ¥) of G, we have
N[x] < N[y] or N[x] = N[y], where N[x] denotes the closed neighbourhood of x. We first show
that an A-free graph G has some interesting properties, for example, {x € V(G) | N[x] = V(G)} is
not an empty set, and a graph H is an A-free if and only if # has no induced subgraph
isomorphic to P4 or C4. Then by making use of these properties, we obtain important structural
and algorithmic properties. Based on these results, we show the relationships between A-free
graphs and several classes of perfect graphs known as chordal graphs, cographs, comparability,
cocomparability, interval, permutation, ptolemaic, distance-hereditary and (1, ¢, s)-perfect.

1. A-free Graphs and their Structures

In this paper we consider an undirected simple graph G with vertex set V(G) and edge set E{(G). Then
hereafter we can call G a graph instead of a simple graph. The neighbourhood of a vertex x is the set
N(x) = Ng(x) consisting of all the vertices of G which are adjacent with x. The closed neighbourhood
of x is defined by N[x] = Ng[x] := {x} w N(x). The subgraph of a graph G induced by a subset § ¢
V(G) is denoted by G[S]. Let X and ¥ be two subsets of a certain set. Then X = ¥ means that X is a
proper subset of ¥, and if ¥ c X, then let X - ¥ denote X \ Y.

Given a graph G, an edge (x, y) = (y, x) of G is classified as follows according to relationship of
closed neighbourhoods [6, 10].

(x, ¥) is free if N[x] = N[yl
(x, v) is semi-free if N[x] = NI¥], (in particular N[x] # N[v]); and
(x, ¥) is actual if N[x]\ N[y] # @ and N[¥] \ N[x] = &.

Obviously E(G) can be partitioned into the three subsets of free edges, semi-free edges and of actual
edges, respectively.

A graph G is called an A-free graph if every edge of G is either free or semi-free. Thus G is an
A-free graph if and only if for every edge (x, ¥) of G, we have N[x] < N[v] or N[x] 2 N[y]. The graph
G in Figure 1 is an A-free graph, while the graphs H and 7/ in the same figure are not A-free graphs.

For a vertex subset § of a graph G, we define G - S by G[V(G) - 5]. The following lemma follows
immediately from the fact that for every subset S = V((G) and for a vertex x € S, we have Ngislx] =
N[x] and that G - § is an induced subgraph.



Figure 1. Three undirected graphs. Free, semi-free and actual edges are

dencted by f, s and a, respectively.

Lemma 1 If G is an A-free graph, then for every subset § < V(G), both G[5] and & - § are also
A-free graphs.

The following results provide important properties for the class of A-free graphs. Let P4 and Cy4
denote the path and the cycle of order four, respectively. For convenience, we here define

cent(G) = {x e V(G) | N[x] = V(G)}.

Theorem 1 Let G be a simple graph. Then the following three statements are equivalent.
(i) G is an A-free graph;

(i) G has no induced subgraph isomorphic to P4 or Ca;

(iii) Every connected induced subgraph G[S], § ¢ V(G), satisfies cent(G[S]) # @.

Proaof. (1) = (iii) Suppose that there exists a connected induced subgraph G[S] such that cent(G[5]) =
&. We now consider the graph G[S], which is an A-free graph by Lemma 1 and whose vertex set is 5.
It is clear that | S| = 4. Let x be a vertex of G[5] with maximum degree. Then Ng5[x]# S by
cent{G[5]) = &, and so we can find two vertices y and w such that y € Ngglx] and w € Nggly] \
Ngisilx]. Since w e Ngig[v] \ Ngiglx] and G[S] is an A-free graph, we have Ngglx] © Ngisly]l, which
implies that the degree of y is greater than that of x. This contradicts the choice of x.

(ii1) = (ii) Suppose that there exists an induced subgraph G[5] isomorphic to P4 or Cy4. Then
cent{G[S]) # &, a contradiction.

(il) = (i) Suppose that G is not an A-free graph. Then G contains an actual edge, say (x, y). Then
there exist two vertices u € N[x] '\ N[v] and v € N[v] \ N[x]. Hence the induced subgraph G[{u. x v v}]
is isomorphic to P4 or Cy4, a contradiction. [

Lemma 2 The following two statements hold.
(1) A graph & is an A-free if and only if G-cent(G) is an A-free graph.
(ii) Let G be a connected A-free graph. Then cent(G) # &@. Moreover, if G - cent(G) # &, then
G - cent(G) contains at least two components.

Proof. (i) By Lemma 1, G-cent(G) is an A-free graph. Conversely, we assume that G-cent(G) is an A-
free graph but not & is. By Theorem 1, G has an induced subgraph G[S5] isomorphic to Py or Cy.
Then S ™ cent(G) = @, and thus S € V(G - cent(G)), which implies (G - cent{G))[5] = G[S5] is
isomorphic to P4 or C4. This contradicts (ii) of Theorem 1.



We next prove (ii). It is clear that cent(G) # & by (ii) of Theorem 1 with § = V(). Next assume
that & - cent(G) # @ and G - cent(G) is connected. Then since G - cent(G) is an A-free graph,
cent{ G - cém{(}'}} # &. But it follows that cent(G - cent{(G)) = cent((G), which is a contradiction. Hence
G- cent( &) 1s not connected. [

Let G be a connected A-free graph. Then V| := cent(G) is not an empty set by Lemma 2. Put
G=G,and G- V=G v Gyu ... u G, where each Gj is a component of G - V; and r 2 3. Then
since each Gj is an induced subgraph of G, G;is also an A-free graph, and so let V; := cent{G;) = @ for
I =i<r. Since each component Gj of Gij-cent(Gj) is also an A-free graph, we can continue this
procedure until we get an empty graph. Then we finally obtain the following partition of V(G).

VIG) =V, + Vo + ..+ Vi, where V= cent(G;).
Moreover we can define a partial order = on { V1, Vi, ..., Vi as follows:

Vi Vj if Vi=cent(G;) and Vj c V(G
It is easy to see that this partition possesses the following properties.

Theorem 2 Let G be a connected A-free graph, and let V(G) =V, + V3 + ... + Vi be the partition
defined above, in particular, Vy := cent(G). Then this partition and the partially ordered set ({V}}, £)
have the following properties:

(P1) If Vi< Vj, then every vertex of Vjand every vertex of V; are joined by an edge of G.

(P2) For every V;, cent(G[{UV; | Vi 2 Vil =Vi.

(P3) For every two V, and V; such that V£ V;, G[{UV; | Ve = Vi = Vi}] is a complete graph.
Moreover, for every maximal element V; of ({V;}, <), G[{WV; | Vi = ¥; = V{}] is a maximal
complete subgraph of G.

(P4) Every edge with both endpoints in V; is a free edge.

(P5) Every edge with one endpoint in V; and the other endpoint in Vj, where V;# Vj, is a semi-free
edge.

The results of Theorem 2 provide algorithmic and structural properties for the class of A-free graphs.
A typical structure of such a graph is shown in Figure 2. We shall refer to the structure which meets
the properties of Theorem 2 as cent-tree T.(G). The cent-tree is a rooted tree with root Vy; every node

Vi of To(G) is either a leaf or has at least two children. Moreover, Vg £ V,if and only if Vis an
ancestor of V.

If V; and Vj are disjoint vertex sets of an A-free graph G, we say that V; and V; are cligue-adjacent
and denote Vi= Vj if Vi< VJ or Vj = Vi

Let us now examine the effect of property (P3) of Theorem 2 on the structure of an A-free graph.
This property ensures that all the edges with both endpoints in a vertex set V; are free edges, 1<i<k.
A consequence of this property is that the vertex set ¥y w Vj is not always a maximal clique. We can
easily see that Vyw V] is not a maximal clique if there exists a vertex set Vj such that Vi = Vj, 2<j<k



TC{G} :

Figure 2. The typical structure of an A-free graph; that is, the cent-tree To(G). A line between cells V; and V;
indicates that Vj=Vj. All edges in V] are free edges; All edges between cells are semi-free edges.

Let V=V, + V,+ ... + Vi be a partition of V such that V| = cent{G). Let § = {v, vie1, ... v} be a
stable set such that v; £ V{ and V) is a maximal element of ({V;}, £) or, equivalently, V| is a leaf node
of T.(G). It is easy to see that § has the maximum cardinality a(G) among all the stable sets of G. On
the other hand the sets {UV; | V; s V; <V}, for every maximal element V; of ({V}, £), provide a
clique-cover of size #(G) which has the property to be a smallest possible clique cover of G; that is
a(G) = #(G). Based on the Theorem 2 or, equivalently, on the cent-tree of G, it is easy to show that the
cliqgue number @x(G) equals the chromatic number x(G) of G; that is, a{G) = 3(G). Thus, the following
results are obtained.

Theorem 3 Let G be an A-free graph. Let p be the number of maximal elements of ({V;), £) and
let g be the number of vertices in a complete subgraph of G with maximum order. Then

(1) p=alG)=xG), and
(i) g =w(G) = x(G).

If G is an A-free graph, then for every subset S — V(G), G[S] is an A-free graph, and each component
H of G[5] satisfies Theorem 3, which implies that a(H) = #(H) = the number of maximal element V;
of the partially ordered set obtained from H and that ¥(H) = w(H) = the number of vertices in a
complete subgraph with maximum order in H. Thus, we obtain the following result.

Lemma 3 Every induced subgraph H of an A-free graph G is also an A-free graph having
a(H) = #(H) and w(H) = x(H).

A graph G is said to be perfect if it satisfies the following two properties: the y-Perfect property:
HG[A]) = w(G[A]) for all A ¢ V(G), and the a-Perfect property: a(G[A]) = #(G[A]) for all A ¢ V(G),



where y(G[A]), X G[A]), a(G[A]) and #(G[A]) are the chromatic, clique, stability and clique-cover
number of G[A], respectively [5]. Thus an A-free graph is a perfect graph.

2. Relationship between A-free and Perfect Graphs

In this section we show some relationship between A-free graphs and many other perfect
graphs.

A graph G is called a diagonal graph if for every path in G with edges (x, ¥), (3, 2), (z, w), the
graph G also contains at least one of edges (x, z) and (y, w). It was mentioned in [12] that a graph is
diagonal if and only if G has no induced subgraph isomorphic to Ca4 or P4. Thus the diagonal graphs
are precisely the A-free graphs.

A graph is called a cograph it contains no induced subgraph isomorphic to P4 [4]. Then an A-free
graph is a cograph, which implies that an A-free graph is a distance-hereditary graph and a parity
graph because a cograph is distance-hereditary [3, 7, 8] and a distance-hereditary graph is a parity
graph [1, 4, 9]. An important class of perfect graphs, known as ptolemaic graphs [8], forms a subclass
of the distance-hereditary graphs. Actually, a graph G is a ptolemaic graph if and only if it is chordal
and distance-hereditary graph. Thus, if G is an A-free graph then G is a ptolemaic graph.

A graph is called a chordal graph if every cycle of length greater than 3 has a chord [5]. Then the
A-free graphs are exactly the chordal cographs.

A sun of order p, or p-sun (p =2 3) is a chordal graph on vertex set {x, x1, ..., Xps ¥1: ¥2s = Ypi+
where {y1, y2. ..., ¥p} is an independent set, (x;, x3, ..., xp) is a cycle, and each vertex y; has exactly two
neighbours, x;_; and x;. By definition, cent(p-sun) = & and so p-sun is not an A-free graph (p = 3).

A graph G is called strongly chordal if G is chordal and G contains no sun, G is called balanced
chordal if G is chordal and G contains no sun of odd order, and G is called cempact if G contains no
sun of order 3. We have showed that an A-free graph is a chordal graph and it contains no induced
subgraph isomorphic to a p-sun, p = 3. Thus, we can prove that if G is an A-free graph then G is a
strongly chordal graph, a balanced chordal graph and a compact graph.

Let (G) and ¢(G) be the domination number and independent domination number of a graph G,
respectively. A graph G is called a domination perfect graph if y(H)=1(H), for every induced
subgraph H of G. The domination number ¥(G) is the minimum cardinality taken over all dominating
sets of G, and the independent domination number «(G) is the minimum cardinality taken over all
maximal independent sets of vertices of G. By Lemma 3, y(H) = ((H) = 1 because cent(H) # &, for
every induced subgraph H of an A-free graph. Thus, an A-free graph is a domination perfect graph.

Let G be a graph. We define C(G) to be the set of all maximal cliques of G and similarly, we define
S(G) to be the set of all independent sets of G. Let F = (V;);j< | be a family of subsets of the set V.
Following the definition in [2], we call a transversal of F a subset T of V such that T intersects the sets
Vi for all i e I; if all these intersections consist of exactly one vertex, we call T a perfect transversal. A
perfect transversal of C(G) (8(G), respectively) will be called a stable (complete, respectively)
transversal of G, since a transversal of C(G) (8(G), respectively) is perfect if and only if it is a
maximal stable set (maximal clique, respectively) of G.

A graph is called c-perfect (s-perfect, respectively) if all its induced subgraphs have a stable
(complete, respectively) transversal. Let V =V, + V5 + .. + Vi be a partition of V such that
Vi = cent(G). Thus, there exists a stable set § = {w, v{+1, ..., vs} such that v, e V; and V, is a maximal

element of ({V;}, <). Since the number of maximal elements of ({V;}, <) equals &(G), we have that § is



a maximal stable set (Theorem 3). Moreover, the set C = {UV; | Vig¥ig Vil is a maximal clique,
for every maximal element V, of ({V;}, £) (Theorem 2). We can easily conclude that § is a stable
transversal and C is a complete transversal of G. Thus, every A-free graph is c-perfect and s-perfect
graph. Moreover, a graph is called r-perfect if for every induced subgraph H of G, a(H) equals the
number of maximal cliques contained in H. By Lemma 3, every induced subgraph H of an A-free
graph G is also an A-free graph having a(H) = »(H). Thus, r-perfect graphs are precisely the A-free
graphs.
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