ON THE STRUCTURE OF A-FREE GRAPHS: PART II

M. Kano and S.D. Nikolopoulos

25-99

Preprint no. 25-99/1999

Department of Computer Science
University of Ioannina
451 10 Ioannina, Greece

On the Structure of A-free Graphs: Part II

M. Kano‡ and S.D. Nikolopoulos*

*Department of Computer and Information Sciences, Ibaraki University, Hitachi 316-8511, Japan.

*Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece.

emails: kano@cis.ibaraki.ac.jp, stavros@cs.uoi.gr

Abstract — A graph G is called an A-free graph if for every edge (x, y) of G, we have $N[x] \subseteq N[y]$ or $N[x] \supseteq N[y]$, where N[x] denotes the closed neighbourhood of x. We first show that an A-free graph G has some interesting properties, for example, $\{x \in V(G) \mid N[x] = V(G)\}$ is not an empty set, and a graph H is an A-free if and only if H has no induced subgraph isomorphic to P_4 or C_4 . Then by making use of these properties, we obtain important structural and algorithmic properties. Based on these results, we show the relationships between A-free graphs and several classes of perfect graphs known as chordal graphs, cographs, comparability, cocomparability, interval, permutation, ptolemaic, distance-hereditary and (t, c, s)-perfect.

1. A-free Graphs and their Structures

In this paper we consider an undirected simple graph G with vertex set V(G) and edge set E(G). Then hereafter we can call G a graph instead of a simple graph. The *neighbourhood* of a vertex x is the set $N(x) = N_G(x)$ consisting of all the vertices of G which are adjacent with x. The *closed neighbourhood* of x is defined by $N[x] = N_G[x] := \{x\} \cup N(x)$. The subgraph of a graph G induced by a subset $S \subseteq V(G)$ is denoted by G[S]. Let X and Y be two subsets of a certain set. Then $X \subset Y$ means that X is a proper subset of Y, and if $Y \subseteq X$, then let X - Y denote $X \setminus Y$.

Given a graph G, an edge (x, y) = (y, x) of G is classified as follows according to relationship of closed neighbourhoods [6, 10].

```
(x, y) is free if N[x] = N[y];

(x, y) is semi-free if N[x] \subset N[y], (in particular N[x] \neq N[y]); and

(x, y) is actual if N[x] \setminus N[y] \neq \emptyset and N[y] \setminus N[x] \neq \emptyset.
```

Obviously E(G) can be partitioned into the three subsets of free edges, semi-free edges and of actual edges, respectively.

A graph G is called an A-free graph if every edge of G is either free or semi-free. Thus G is an G-free graph if and only if for every edge (x, y) of G, we have $N[x] \subseteq N[y]$ or $N[x] \supseteq N[y]$. The graph G in Figure 1 is an G-free graph, while the graphs G and G in the same figure are not G-free graphs.

For a vertex subset S of a graph G, we define G - S by G[V(G) - S]. The following lemma follows immediately from the fact that for every subset $S \subset V(G)$ and for a vertex $x \in S$, we have $N_{G[S]}[x] = N[x]$ and that G - S is an induced subgraph.

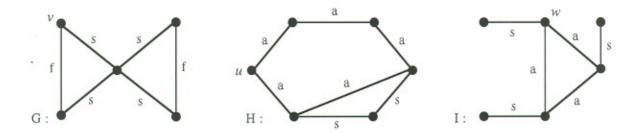


Figure 1. Three undirected graphs. Free, semi-free and actual edges are denoted by f, s and a, respectively.

Lemma 1 If G is an A-free graph, then for every subset $S \subset V(G)$, both G[S] and G - S are also A-free graphs.

The following results provide important properties for the class of A-free graphs. Let P_4 and C_4 denote the path and the cycle of order four, respectively. For convenience, we here define

$$cent(G) = \{x \in V(G) \mid N[x] = V(G)\}.$$

Theorem 1 Let G be a simple graph. Then the following three statements are equivalent.

- (i) G is an A-free graph;
- (ii) G has no induced subgraph isomorphic to P_4 or C_4 ;
- (iii) Every connected induced subgraph G[S], $S \subseteq V(G)$, satisfies $cent(G[S]) \neq \emptyset$.

Proof. (i) ⇒ (iii) Suppose that there exists a connected induced subgraph G[S] such that $cent(G[S]) = \emptyset$. We now consider the graph G[S], which is an A-free graph by Lemma 1 and whose vertex set is S. It is clear that $|S| \ge 4$. Let x be a vertex of G[S] with maximum degree. Then $N_{G[S]}[x] \ne S$ by $cent(G[S]) = \emptyset$, and so we can find two vertices y and w such that $y \in N_{G[S]}[x]$ and $w \in N_{G[S]}[y] \setminus N_{G[S]}[x]$ and G[S] is an A-free graph, we have $N_{G[S]}[x] \subseteq N_{G[S]}[y]$, which implies that the degree of y is greater than that of x. This contradicts the choice of x.

- (iii) \Rightarrow (ii) Suppose that there exists an induced subgraph G[S] isomorphic to P_4 or C_4 . Then $cent(G[S]) \neq \emptyset$, a contradiction.
- (ii) \Rightarrow (i) Suppose that G is not an A-free graph. Then G contains an actual edge, say (x, y). Then there exist two vertices $u \in N[x] \setminus N[y]$ and $v \in N[y] \setminus N[x]$. Hence the induced subgraph $G[\{u, x, y, v\}]$ is isomorphic to P_4 or C_4 , a contradiction. \square

Lemma 2 The following two statements hold.

- A graph G is an A-free if and only if G-cent(G) is an A-free graph.
- (ii) Let G be a connected A-free graph. Then cent(G) ≠ Ø. Moreover, if G cent(G) ≠ Ø, then G cent(G) contains at least two components.

Proof. (i) By Lemma 1, G-cent(G) is an A-free graph. Conversely, we assume that G-cent(G) is an A-free graph but not G is. By Theorem 1, G has an induced subgraph G[S] isomorphic to P_4 or C_4 . Then $S \cap cent(G) = \emptyset$, and thus $S \in V(G - cent(G))$, which implies (G - cent(G))[S] = G[S] is isomorphic to P_4 or C_4 . This contradicts (ii) of Theorem 1.

We next prove (ii). It is clear that $cent(G) \neq \emptyset$ by (ii) of Theorem 1 with S = V(G). Next assume that $G - cent(G) \neq \emptyset$ and G - cent(G) is connected. Then since G - cent(G) is an A-free graph, $cent(G - cent(G)) \neq \emptyset$. But it follows that $cent(G - cent(G)) \subset cent(G)$, which is a contradiction. Hence G - cent(G) is not connected. \square

Let G be a connected A-free graph. Then $V_1 := cent(G)$ is not an empty set by Lemma 2. Put $G_1 = G$, and $G - V_1 = G_2 \cup G_3 \cup ... \cup G_r$, where each G_i is a component of $G - V_1$ and $r \ge 3$. Then since each G_i is an induced subgraph of G, G_i is also an A-free graph, and so let $V_i := cent(G_i) \ne \emptyset$ for $1 \le i \le r$. Since each component G_j of G_i -cent G_i is also an A-free graph, we can continue this procedure until we get an empty graph. Then we finally obtain the following partition of V(G).

$$V(G) = V_1 + V_2 + ... + V_k$$
, where $V_i = cent(G_i)$.

Moreover we can define a partial order \leq on $\{V_1, V_2, ..., V_k\}$ as follows:

$$V_i \le V_i$$
 if $V_i = cent(G_i)$ and $V_i \subseteq V(G_i)$.

It is easy to see that this partition possesses the following properties.

Theorem 2 Let G be a connected A-free graph, and let $V(G) = V_1 + V_2 + ... + V_k$ be the partition defined above, in particular, $V_1 := cent(G)$. Then this partition and the partially ordered set $(\{V_i\}, \leq)$ have the following properties:

- (P1) If $V_i \le V_j$, then every vertex of V_i and every vertex of V_j are joined by an edge of G.
- (P2) For every V_i , $cent(G[\{ \cup V_i \mid V_i \ge V_i \}]) = V_i$.
- (P3) For every two V_s and V_t such that V_s ≤ V_t, G[{∪V_i | V_s ≤ V_i ≤ V_t}] is a complete graph. Moreover, for every maximal element V_t of ({V_i}, ≤), G[{∪V_i | V₁ ≤ V_i ≤ V_t}] is a maximal complete subgraph of G.
- (P4) Every edge with both endpoints in V_i is a free edge.
- (P5) Every edge with one endpoint in V_i and the other endpoint in V_j, where V_i ≠ V_j, is a semi-free edge.

The results of Theorem 2 provide algorithmic and structural properties for the class of A-free graphs. A typical structure of such a graph is shown in Figure 2. We shall refer to the structure which meets the properties of Theorem 2 as cent-tree $T_c(G)$. The cent-tree is a rooted tree with root V_1 ; every node V_i of $T_c(G)$ is either a leaf or has at least two children. Moreover, $V_s \le V_t$ if and only if V_s is an ancestor of V_t .

If V_i and V_j are disjoint vertex sets of an A-free graph G, we say that V_i and V_j are *clique-adjacent* and denote $V_i \approx V_j$ if $V_i \leq V_j$ or $V_j \leq V_j$.

Let us now examine the effect of property (P3) of Theorem 2 on the structure of an A-free graph. This property ensures that all the edges with both endpoints in a vertex set V_i are free edges, $1 \le i \le k$. A consequence of this property is that the vertex set $V_1 \cup V_i$ is not always a maximal clique. We can easily see that $V_1 \cup V_i$ is not a maximal clique if there exists a vertex set V_j such that $V_i \approx V_j$, $2 \le j \le k$.

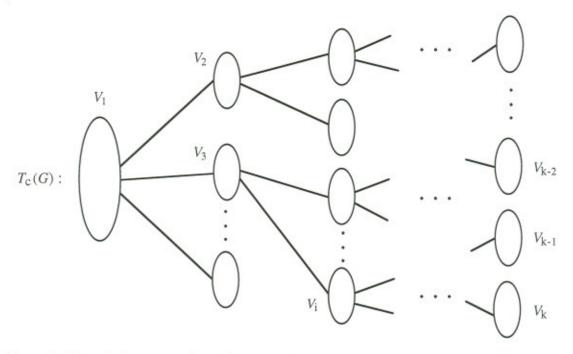


Figure 2. The typical structure of an A-free graph; that is, the cent-tree $T_c(G)$. A line between cells V_i and V_j indicates that $V_i \approx V_i$. All edges in V_i are free edges; All edges between cells are semi-free edges.

Let $V = V_1 + V_2 + ... + V_k$ be a partition of V such that $V_1 = cent(G)$. Let $S = \{v_t, v_{t+1}, ..., v_S\}$ be a stable set such that $v_t \in V_t$ and V_t is a maximal element of $(\{V_i\}, \leq)$ or, equivalently, V_t is a leaf node of $T_c(G)$. It is easy to see that S has the maximum cardinality $\alpha(G)$ among all the stable sets of G. On the other hand the sets $\{\cup V_i \mid V_1 \leq V_i \leq V_t\}$, for every maximal element V_t of $(\{V_i\}, \leq)$, provide a clique-cover of size $\alpha(G)$ which has the property to be a smallest possible clique cover of G; that is $\alpha(G) = \alpha(G)$. Based on the Theorem 2 or, equivalently, on the cent-tree of G, it is easy to show that the clique number $\alpha(G)$ equals the chromatic number $\alpha(G)$ of G; that is, $\alpha(G) = \alpha(G)$. Thus, the following results are obtained.

Theorem 3 Let G be an A-free graph. Let p be the number of maximal elements of $(\{V_i\}, \leq)$ and let q be the number of vertices in a complete subgraph of G with maximum order. Then

- (i) $p = \alpha(G) = \varkappa(G)$, and
- (ii) $q = \omega(G) = \chi(G)$.

If G is an A-free graph, then for every subset $S \subseteq V(G)$, G[S] is an A-free graph, and each component H of G[S] satisfies Theorem 3, which implies that $\alpha(H) = \varkappa(H) =$ the number of maximal element V_i of the partially ordered set obtained from H and that $\chi(H) = \omega(H) =$ the number of vertices in a complete subgraph with maximum order in H. Thus, we obtain the following result.

Lemma 3 Every induced subgraph H of an A-free graph G is also an A-free graph having $\alpha(H) = \kappa(H)$ and $\omega(H) = \kappa(H)$.

A graph G is said to be *perfect* if it satisfies the following two properties: the χ -Perfect property: $\chi(G[A]) = \omega(G[A])$ for all $A \subseteq V(G)$, and the α -Perfect property: $\alpha(G[A]) = \kappa(G[A])$ for all $A \subseteq V(G)$,

where $\chi(G[A])$, $\omega(G[A])$, $\alpha(G[A])$ and $\kappa(G[A])$ are the chromatic, clique, stability and clique-cover number of G[A], respectively [5]. Thus an A-free graph is a perfect graph.

2. Relationship between A-free and Perfect Graphs

In this section we show some relationship between A-free graphs and many other perfect graphs.

A graph G is called a diagonal graph if for every path in G with edges (x, y), (y, z), (z, w), the graph G also contains at least one of edges (x, z) and (y, w). It was mentioned in [12] that a graph is diagonal if and only if G has no induced subgraph isomorphic to C_4 or P_4 . Thus the diagonal graphs are precisely the A-free graphs.

A graph is called a cograph it contains no induced subgraph isomorphic to P_4 [4]. Then an A-free graph is a cograph, which implies that an A-free graph is a distance-hereditary graph and a parity graph because a cograph is distance-hereditary [3, 7, 8] and a distance-hereditary graph is a parity graph [1, 4, 9]. An important class of perfect graphs, known as ptolemaic graphs [8], forms a ptolemaic graph if and only if it is ptolemaic graph if and only if it is ptolemaic graph. Thus, if ptolemaic graph then ptolemaic graph.

A graph is called a *chordal* graph if every cycle of length greater than 3 has a chord [5]. Then the A-free graphs are exactly the chordal cographs.

A sun of order p, or p-sun $(p \ge 3)$ is a chordal graph on vertex set $\{x_1, x_2, ..., x_p, y_1, y_2, ..., y_p\}$, where $\{y_1, y_2, ..., y_p\}$ is an independent set, $(x_1, x_2, ..., x_p)$ is a cycle, and each vertex y_i has exactly two neighbours, x_{i-1} and x_i . By definition, $cent(p-sun) = \emptyset$ and so p-sun is not an A-free graph $(p \ge 3)$.

A graph G is called *strongly chordal* if G is chordal and G contains no sun, G is called *balanced chordal* if G is chordal and G contains no sun of odd order, and G is called *compact* if G contains no sun of order 3. We have showed that an A-free graph is a chordal graph and it contains no induced subgraph isomorphic to a p-sun, $p \ge 3$. Thus, we can prove that if G is an A-free graph then G is a strongly chordal graph, a balanced chordal graph and a compact graph.

Let $\gamma(G)$ and $\iota(G)$ be the domination number and independent domination number of a graph G, respectively. A graph G is called a *domination perfect* graph if $\gamma(H) = \iota(H)$, for every induced subgraph H of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all dominating sets of G, and the independent domination number $\iota(G)$ is the minimum cardinality taken over all maximal independent sets of vertices of G. By Lemma 3, $\gamma(H) = \iota(H) = 1$ because $cent(H) \neq \emptyset$, for every induced subgraph H of an A-free graph. Thus, an A-free graph is a domination perfect graph.

Let G be a graph. We define C(G) to be the set of all maximal cliques of G and similarly, we define S(G) to be the set of all independent sets of G. Let $F = (V_i)_{i \in I}$ be a family of subsets of the set V. Following the definition in [2], we call a transversal of F a subset T of V such that T intersects the sets V_i for all $i \in I$; if all these intersections consist of exactly one vertex, we call T a perfect transversal. A perfect transversal of C(G) (S(G), respectively) will be called a stable (complete, respectively) transversal of G, since a transversal of C(G) (G(G)), respectively) is perfect if and only if it is a maximal stable set (maximal clique, respectively) of G.

A graph is called *c-perfect* (s-perfect, respectively) if all its induced subgraphs have a stable (complete, respectively) transversal. Let $V = V_1 + V_2 + ... + V_k$ be a partition of V such that $V_1 = cent(G)$. Thus, there exists a stable set $S = \{v_t, v_{t+1}, ..., v_s\}$ such that $v_t \in V_t$ and V_t is a maximal element of $(\{V_i\}, \leq)$. Since the number of maximal elements of $(\{V_i\}, \leq)$ equals $\alpha(G)$, we have that S is

a maximal stable set (Theorem 3). Moreover, the set $C = \{ \cup V_i \mid V_1 \leq V_i \leq V_t \}$ is a maximal clique, for every maximal element V_t of $(\{V_i\}, \leq)$ (Theorem 2). We can easily conclude that S is a stable transversal and C is a complete transversal of G. Thus, every A-free graph is c-perfect and s-perfect graph. Moreover, a graph is called t-perfect if for every induced subgraph H of G, $\alpha(H)$ equals the number of maximal cliques contained in H. By Lemma 3, every induced subgraph H of an A-free graph G is also an A-free graph having $\alpha(H) = \kappa(H)$. Thus, t-perfect graphs are precisely the A-free graphs.

References

- G.S. Adhar and S. Peng, Parallel algorithms for cographs and parity graphs with applications, J. of Algorithms 11 (1990) 252-284.
- [2] G. Alexe and E. Olaru, The strongly perfectness of normal product of t-perfect graphs, Graphs and Combinatorics 13 (1997) 209-215.
- [3] H-J Bandelt and H.M. Mulder, Distance-hereditary graphs, J. of Comb. Theory, Series B 41 (1986) 182-208.
- [4] D.G. Corneil, Y. Perl and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
- [5] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980.
- [6] F. Harary and S.D. Nikolopoulos, "On complete systems of invariants for small graphs", Inter. J. of Comput. Math. 64 (1997) 35-46.
- [7] E. Howorka, A characterization of distance-hereditary graphs, Quart. J. Math. Oxford Ser. 2 28 (1977) 417-420.
- [8] E. Howorka, A characterization of ptolemaic graphs, J. of Graph Theory 5 (1981) 323-331.
- [9] M. Murlet and J.P. Uhry, Parity graphs, in *Topics on Perfect Graphs*, C. Berge and V. Chvátal, eds, *Ann. Discrete Math.* 21, North Holland, Amsterdam, 1984.
- [10] S.D. Nikolopoulos, Constant-time parallel recognition of split graphs, Inform. Process. Lett. 54 (1995) 1-8.
- [11] W.D. Wallis and J. Wu, Squares, clique graphs and chordality, J. of Graph Theory 20 (1995) 37-45.
- [12] E.S. Wolk, The comparability graph of a tree, Proc. AMS 13 (1965) 789-795.