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Abstract

The furzy min-max neural network constitutes a neural architecture that is based
on hyperbox fuzey sets and can be incrementally trained by appropriately adjusting the
numhber of hyperboxes and their corresponding volumes. An extension to this network
has been proposed recently, that is based on the notion of random hyperboxes and is
suitable for reinforcement learning problems with discrete action space. In this work, we
elaborate further on the random hyperbeox idea and propose the stochastic fuzzy min-max
neural network, where each hvperbox is associated with a stochastic learning automaton.
Experimental results using the pole balancing problem indicate that the employment of
this model as an action selection network in reinforcement learning schemes leads to su-
perior learning performance compared with the traditional approach where the multilayer
perceptron is employed.

Keywords: Fuzzy min-max neural network, reinforcement learning, stochastic automaton,

pole balancing.

1 Introduction

In the general framework of reinforcement learning, a system accepts inputs from the envi-
ronment, selects and executes actions and receives a reinforcement signal r that is usually a
scalar value rewarding or penalizing the selected actions. A popular approach to deal with
such problems is the adaptive heuristic critic method (AHC) based on the method of temporal
differences (2, 3, 6]. This method employs two networks: the action selection network which
provides the action to be executed at each step and the evaluation netwerk (or critic) which
provides as output a prediction rp..q of the evaluation of the current state. The evaluation
network is usually a feedforward network that is trained using the error values specified by the
method of temporal differences [15]. The action network accepts as input the current prob-
lem state and provides the action probabilities p; (i = 1,..., K} (when K distinct actions are
assumed) with which the action to be executed is selected [10].

In the AHC framework, training of the action selection network is based on the following

idea. Consider that, for a given state, action j has been selected, ryyeq is the output of the



evaluation network and r is the corresponding reinforcement signal provided by the environ-
ment. Then training is carried out using on-line learning with the error based on the quantity
T = Tpred. 1f 7 — rpreq > 0, the action selection is considered successful and the action network
weights are adjusted to increase the probability p;. If r — rprea < 0, the action selection
is considered unsuccessful and the action network weights are are modified to decrease the
probability p;. The most widely used model of action selection network is the multilayer
perceptron with stochastic output units. Other types of networks have also been proposed
belonging to the neurofuzzy family like the fuzzy-ART network [11].

In [9]. the fuzzy min-max neural network [13, 14] has been proposed as a model for
the action network in the case of reinforcement problems with discrete action space. The
operation of the network was suitably adapted in order to be able to cope with the specific
requirements imposed by the reinforcement learning framework. For this reason, the notion
of random hyperbox was introduced, to deal with states of high uncertainty. In the present
work, we extend the idea of the random hyperbox and present the stochastic fuzzy min-max
network where each hyperbox is associated with a stochastic automaton. More clearly, in
the original formulation of the fuzzy min-max network, each hyperbox is characterized by its
location and the corresponding class (or action) label. In the proposed extension, the class
{or action) label is replaced by a stochastic automaton whose probability vector determines
the corresponding action through random selection. Reinforcement learning in the stochastic
fuzzy min-max network consists in adjusting not only the location and the boundaries of each
hyperbox, but also the probability vector of each stochastic automaton. Details concerning

the training of the network are presented in the next section.

2 The Stochastic Fuzzy Min-Max Network

The fuzzy min-max classification neural network [13] is an on-line learning classifier based
on hyperbor fuzzy sets. A hyperbox constitutes a region in the pattern space that can be
completely defined once the minimum and the maximum points along each dimension are
given. Each hyperbox is associated with exactly one from the pattern classes and all patterns
that are contained within a given hyperbox are considered to have full class membership. In
the case where a pattern is not completely contained in any of the hyperboxes, a properly
computed fuzzy membership function (taking values in [0,1]) indicates the degree to which
the pattern falls outside of each of the hyperboxes. During operation, the hyperbox with the
maximum membership value is selected and the class associated with the winning hyperbaox
is considered as the decision of the network. Learning in the fuzzy min-max classification

network is an on-line incremental erpansion-contraction process that consists of partitioning



the input space by creating and adjusting hyperboxes (the minimum and maximum points
along each dimension) and also associating a class label to each of them. Details concerning the
learning process are provided in [13]. An important issue is that there is only one parameter
# (maximum hyperbox size) that must be specified at the beginning of the learning process.
On the other hand, performance is sensitive to the choice of this parameter, which must be
empirically specified.

In [9] a modification has been proposed so that the fuzzy min-max network can be used as
an action selection network in reinforcement learning problems with discrete action space. A
brief description of that approach is provided next in order to clearly illustrate its differences
with the proposed stochastic fuzzy min-max network. In [9], two types of hyperboxes are
considered: deterministic, which are associated with a specific action label, and random, in
which the corresponding action is selected through uniform random selection. The introduc-
tion of randomness is necessary in the action selection process, because in the case where an
action has been penalized, alternative actions must be explored that may lead to rewarding
states. Using the notion of the random hyperbox, the learning process (expansion, overlap

test, contraction) [13] of the classical fuzzy min-max network takes the following form [9]:
e In the case of reward (r — rpreq > 0),

— if the action has been derived from a deterministic hyperbox then we proceed as

in the classical fuzzy min-max case.

— if the action has been derived from a random hyperbox then this hyperbox is
marked deterministic and is associated with the corresponding rewarded action.
Moreover, hyperbox overlap test followed by hyperbox contraction (if necessary)

are performed.
e In the case of penalty (r — rpreq < 0),

— if the action has been derived from a deterministic hyperbox, then a new random
hyperbox is created centered at the input point and consequently the conventional
learning process takes place to adjust the parameters of the neighboring hyper-
boxes. It must be noted that the action associated with the initially selected
hyperbox (which was penalized) does not change, only its volume is contracted

due to the creation of the new random hyperbaox.

— if the action has been derived from a random hyperbox, no learning takes place,
since it is necessary to maintain stochasticity until a rewarding action has been

discovered for the selected hyperbox.



Therefore, learning in the reinforcement case can be considered as a process of adding random
hyperhoxes that later become deterministic as learning proceeds. After an adequate number
of steps it is expected that no random hyperboxes will exist any more. Random hyperboxes
give the learning system the ability to explore the discrete output space to discover the best
action. When such an action is found (according to the evaluation of the critic) it is assigned
to the random hyperbox which now becomes deterministic.

In the proposed stochastic fuzzy min-max network, all hyperboxes are considered to be
random and there is a stochastic automaton associated with each hyperbox. The role of
the automaton is to control the degree of randomness in the action selection process. If K
distinet actions are assumed, the automaton i corresponding to hyperbox ¢ is characterized
by a probability vector p; = (pi1,....pir) (with Z;‘:‘;l pij = 1). If at a specific time instance
the winning hyperbox is i, then the output of the network is determined through random
selection using the probability vector p;.

In order to update the action probabilities of a stochastic automaton i, we have selected
the linear reward-penalty (Lg—p) reinforcement scheme [12]. Assuming that at time instant £,
the decision of network is the action k provided from automaton i (ie. the winning hyperbox
is 1), then the probability vector p; is updated as follows:

In the case where the action is rewarded:

N | p®) +a(l —pi5(t)) fi=k
py(t+1) = { (1 — a)pi;(2) 7L ()
In the case where the action is penalized:
(1 — B)ps;(t) ifj=%k
it + 1) = . Sy 2
D { 2+ (1= Bpslt) £j#k @

It holds that 0 < a,3 < 1. Moreover, it must be noted that only the parameters of the
winning automaton ¢ are modified at step £.

The above probability update equations increase the probability of the selected action in
the case of reward and tend to make all actions equiprobable (equal to 1/K) in the case where
penalty is received, since, in the latter case, we actually don’t know which is the appropriate
action to be reinforced. The parameters a and J control the magnitude of the updates. In the
case where their values is close to one, the probabilities are adapted in a fast way following the
reinforcement signals, while low values of the parameters lead to slower but more consistent
action learning.

The stochastic fuzzy min-max network has been derived from the necessity to overcome
some drawbacks of the original formulation based on random hyperboxes. The first drawback

deals with the fact that in a random hyperbox all actions are equiprobable, therefore we



are not allowed to express the favor towards a specific action. Once a rewarded action is
selected, the random hyperbox becomes immediately deterministic and is labeled with the
corresponding action label. This immediate transition from stochastic to deterministic causes
problems in many cases, since the rewarded action may not be the best one or the action may
not be rewarded again in the future. In the proposed approach, the favor over a specific action
(in a given hyperbox) is gradually increased (or decreased) through proper adaptation of the
corresponding probability vector. In addition, there is the flexibility to reduce the selection
probability of a given action in case this action is not rewarded by the environment any more.
On the contrary, in the original formulation [9], there is no available mechanism to change
the action label of a given hyperbox. The only available adaptation mechanism is to create a
new random hyperbox inside the original hyperbox and appropriately shrink both of them to
avoid overlapping. This leads to the construction of an excessive number of hyperboxes with
small volume which are more difficult to be treated by the learning algorithm.

The proposed method completely distinguishes the two procedures that are related with
learning in reinforcement environments. The first is the adjustment of the position and
volume of each hyperbox that is performed using the original expansion-contraction process
(governed by the parameter #) of the fuzzy min-max network. The second is the assignment
of the action label corresponding to each hyperbox. This is based on the adjustment of the
parameters of the associated stochastic automaton using the reinforcement value r provided
by the environment and the evaluation ry..q provided by the eritic. In this way, a penalized
action does not lead to the creation of a new hyperbox, but in most cases leads only to the
appropriate adjustment of the corresponding probability values.

The on-line training algorithm for the stochastic fuzzy min-max network can be summa-
rized as follows: Assume a new input is presented to the network.

Action selection

e If 7 is the winning hyperbox then the action is selected using the probability vector of

the antomaton i.

e If no winning hyperbox is found for that input point (ie. no hyperbox meets the ex-
pansion criterion) then a new hyperbox is added centered at the specific point and the
probabilities of the corresponding automaton are set equal to 1/K. The network output

is selected using these probability values.

Adaptation
Let r be the reinforcement signal provided by the environment and ry,.q the output of the

critic after execution of the selected action.



e if |1 — Tpred| < & (Where 4 is a small value) no learning takes place, since it is not safe

to classify the evaluation of the action as reward or penalty.
e In the case of reward (v — rpreq > ) or penalty (r — rpreq < —9)

— The probability values of the corresponding automaton are adjusted using the

learning equations (1), (2).

— If the winning automaton i has been expanded to include the input point, then the
usual expansion-contraction process for the fuzzy min-max network takes place to

avoid overlapping hyperboxes.

3 Application to the Pole Balancing Problem

The pole balancing problem constitutes the best-studied reinforcement learning benchmark.
It consists of a single pole hinged on a cart that may move left or right on a horizontal track
of finite length. The pole has only one degree of freedom (rotation about the hinge point).
The control objective is to push the cart either left or right with a force so that the pole
remains balanced and the cart is kept within the track limits.

Four state variables are used to describe the status of the system at each time instant:
the horizontal position of the cart (x), the cart velocity (), the angle of the pole (¢) and
the angular velocity [{p] At each step the action network must decide the direction and
magnitude of force F to be exerted to the cart. Details concerning the equations of motion
of the cart-pole system can be found in [2, 11]. Through Euler’s approximation method we
can simulate the cart-pole system using discrete-time equations with time step A7 = (.02
sec. We assume that the system’s equations of motion are not known to the controller, which
perceives only the state vector at each time step. Moreover, we assume that a failure occurs
when |¢| > 12 degrees or |z| > 2.4m and that a cycle has been successfully completed if
the pole remains balanced for more than 120000 consecutive time steps. Two versions of
the problem exist concerning the magnitude of the applied force F. We are concerned with
the case where the magnitude is fixed (equal to 10N) and the controller must decide only
the direction of the force at each time step. Obviously the control problem is more difficult
compared to the case where any value for the magnitude is allowed. Therefore, comparisons
will be presented only with fixed magnitude approaches and we will not consider architectures
like the RFALCON [11], which are more efficient but assume continuous values for the force
magnitude.

Experiments have been conducted to assess the performance of the AHC method with the

stochastic fuzzy min-max network as an action network. For comparison purposes we have



| Number of Cycles

Network | 8 | Success (%) | Best | Worst | Mean | SD | No. Hyperboxes
SFMM | 0.15 100 1852 | 9952 | 4210 | 1350 62
SFMM | 0.25 92 B9 | 10897 | 3450 | 1400 28
SFMM | 0.35 70 40 | 12093 | 2520 | 2130 14

MLP 72 4123 | 12895 | 6175 | 2284

Table 1: Training performance in terms of required number of training cyvcles when the
stochastic fuzzy min-max (SFMM) (for several values of #), and the multilayer perceptron
(MLP) are used as action networks in the AHC framework. Also the percentage of successful
runs and the average number of created hyperboxes are displayed.

also implemented the AHC approach using the multilayer perceptron with stochastic output
units as the action network and we have also used the previous version of the fuzzy min-max
[9] that is based on random hyperboxes. The motion equations, system parameters and the
architecture of the multilayer perceptron were exactly the same with those reported in [1, 2].
In addition, in all approaches we used exactly the same multilayer perceptron network as a
critic. Training speed is measured in terms of the number of cycles required to achieve pole
balancing. A series of 50 experiments were conducted using each method, with each cycle
starting with random initial state variables.

The termination criterion for each experiment was the following: When a successful cycle
(lasting more than 120000 steps) was encountered, the system was placed at the zero initial
state and a new cycle was started. without learning, ie. adaptation of the network parameters.
If this cycle was also successful, then the experiment was terminated, otherwise a new learning
cyele was started from random initial state. This criterion was set to ensure that after training,
the system was able to successfully operate starting from the zero initial state.

In the emploved stochastic fuzzy min-max network we have used the following parameter
values: § = 0.1, & = 0.9 and 3 = 0.9. In addition, at each cycle we start with stochastic action
selection and after 200 steps we switch to deterministic action selection, ie. selection of the
action with highest probability value. This modification has been found to increase learning
performance (7] and has also been used in the experiments with the multilayer perceptron.

Obtained results are summarized in Table 1, for several values of the learning parameter
f of the stochastic fuzzy min-max network. The table provides the percentage of successful
experiments, the statistics of required number of training cycles and the average number of
created hyperboxes. For each method the displayed results concern values obtained consid-
ering only the successful experiments. It is clear that the stochastic fuzzy min-max network

exhibits significantly better performance compared to the multilayer perceptron in terms of



the required number of training cycles. Moreover, it is also clear that performance is sensitive
to the value of parameter 8, which specifies the maximum allowed volume for every hyperbox.
For small values of f (eg. # = 0.13), many hyperboxes are created and the training algorithm
is more reliable, since it always provides a solution. As expected, in order for the position and
volume of many hyperboxes to be adjusted, many training cycles are required and, therefore,
training time is longer. As the value of ¢ increases, less hyperboxes are needed to cover the
state space and this results in an increase in training speed, but training is less reliable and
the number of unsuccessful experiments increases. Therefore, in order to select a value for &,
one has to appropriately weight the above mentioned conflicting aspects.

Finally, it must be noted that the basic characteristic of the fuzzy min-max network is that
it provides a partitioning of the problem input space using hyperboxes and assigns an action
label to each hyperbox. Since each hyperbox actually defines a rule in the input space, the
proposed stochastic fuzzy min-max network can be considered as a technique for deriving rule-
based controllers in reinforcement learning problems. Consequently, the proposed learning
method can be viewed as a rule extraction technique in the reinforcement learning framework.
Since the significance of rule-based model descriptions is widely acknowledged, the proposed
network has an additional advantage over the multilayer perceptron, which needs considerable

postprocessing to achieve rule extraction [3].
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