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Abstract

The problem of ferromagnetic resonance in magnetic microspheres is revisited
due to related experiments in this size range. The eigenfrequency spectrum
is examined more rationally compared to previous numerical computations,
due to proper selection of the radial dependence of the solution. The cylin-
drically symmetric modes studied agree with experiments on Ni micrometer
size particles for an exchange constant 4 = 2 x 1077 erg/cm, while the error

is less than 9% for the well known value of 4 = 3.4 x 1077 erg/cm.
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I. INTRODUCTION

Understanding of the behavior of nano and micro-scale ferromagnetic particles in the
presence of an externally applied magnetic field is of great importance due to variety of
application in diverse fields. Nanoscale ferromagnetic particles have been detected in the
human brain and can shed some light on controversial questions of whether weak electro-
magnetic fields might have biological effects, including cancer [1]. Furthermore, among the
new methods of drug delivery is the use of vesicles that contain magnetic microspheres and
can target drugs to specific location inside the human body via externally applied magnetic
fields, in order to destroy cancer tumors [2,3]. Recently. magnetically generated gene transfer
and DNA extraction with the aid of ferromagnetic nano- and microparticles was reported [4].
Colloidal suspensions of ferromagnetic nanoparticles in a liquid carrier, well known as mag-
netic fluids or ferrofinids [5], find a lot of technological (sealing, bearing, sensing, pumping,
ink jet printing) [6] and medical applications (eve surgery [7]. cancer therapy via magnetic
hyperthermia [3,8-11]). The mathematical description of such phenomena in ferromagnetic
solids is based on the phenomenological theory of micromagnetics [12]. Extended literature
on the subject can be found in a recent monograph [13].

Magnetostatic resonance modes interpret experimental observations in spherical and el-
lipsoidal particles with diameters above 1mm [14]. In these modes magnetostatic forces
dominate over exchange interactions. On the other extreme, for particles with diameters
below 1um, the resonance frequency depends on the size of the particles (o« R~?) as well as
on the roots of the derivatives of spherical Bessel functions. These two originally theoreti-
cally predicted features of the modes could explain qualitatively [15-17] and in some cases
quantitatively [18,19], related experiments. They were given the name exchange resonance
modes [20], since the exchange energy in much larger than the magnetostatic one. Correc-
tions to the theory in order to account for the experimentally observed size dependence were
performed in Ref. [21], by introducing surface anisotropy effects. Similar considerations

have also been proposed in Ref. [22] in order to explain resonance experiments in ferrite
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nanoparticles [23.24], but the presented solutions were limited to quasiuniform perturbation
resonance modes, where the magnetostatic problem can be treated rather easily. When
both magnetostatic and exchange interactions are of the same order of magnitude there is a
mixing of the modes for particles above the size of about 1 um. Such calculations have been
performed for cylindrically symmetric modes [25], with the material parameters of magnetite
and were extended to the case where damping effects are present [26]. In those calculations
it was also possible to compute the modes of precession.

The present study focuses on the eigenfrequency spectrum of ferromagnetic microspheres
(d Z 1pm). The proposed mathematical analysis is more rational compared to previous
calculations [25,26], due to the proper selection of the radial dependence of the solution. Only
cylindrically symmetric modes are concerned. Since ferromagnetic resonance has always been
considered as the most accurate method of measuring the exchange constant A, quantitative
agreement between numerical computations for Ni microspheres and experimental data for
Ni microparticles [15-19] is obtained for A = 2 x 10~7 erg/em, while the error is less than

9% for the well known value A = 3.4 x 10~" erg/em [27].

II. PROBLEM FORMULATION

The motion of the magnetization in an external field is studied by the Landau-Lifshitz

equation (in CGS units):

dv
E=’TGUXHE1?1 (lj

where

C . 1 dw

= —Vv—-——+ 2)
M, YT M, o (2)
is the effective field, (8/dv), = 8/0v;, (i = z,y,2), v is a unit vector parallel to the mag-
netization, C = 24 is the exchange constant, w, is the anisotropy energy density, M, is

the saturation magnetization, t is time, =, is the gyromagnetic ratio and H = Hy+ H' is



the magnetic field which is composed of the applied field Hg and that, H ', created by the
volume and surface charges of the magnetization distribution. The boundary conditions for

the set of equations (1) are

dv
_— 3
» -0, ©

where 8/0n = n -V and n is the outward normal to the particle surface. The self-field

H' = —VV, is determined from the potential problem [12]

V2V, = 47V - M inside the particle

(4)
VW =10 outside the particle.
with the following boundary conditions on the particle surface
T‘;m - L;cuut (5]
51’?:1 V.
a_'-"l = ?:ﬂ + dxM.n - v.

In experimental studies of resonance, a large dc field H is applied; its direction is identified
here with the z—axis. The field H keeps the magnetization almost parallel to the z—axis so
that v, and v, are small. To a first order in these small quantities, the differential equations

(1) for steady-state solution, ( )e™*, become
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where Vi, is the potential due to the transverse magnetization m = M, (v.i +v,J) and
«w is the resonance frequency. We note here that we keep the same symbols for the time
independent components of v and for the potentials to avoid confusion. The potential due
to the z component is included in H., which for the case of the sphere studied here, has the

form
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where K, is the anisotropy constant. For the linearized problem, cubic or uniaxial

anisotropies lead to the same contribution in H,, provided that the z is an easy axis.

III. PROBLEM SOLUTION - FREQUENCY EQUATION

We are interested only in cylindrically symmetric solutions. That is we assume that v
does not depend on the coordinate ¢. We use the components of v in a cylindrical coordinate
system (p, ¢. z) but express the spatial dependence in spherical coordinates (r, 8, ¢). We

introduce the dimensionless quantities

H w
T= l'. h = —21 h]' _ }
R 2 M, 2 M,
JEJ:L.n:u:lt}l R
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where R is the radius of the sphere and

VA
M,

R, = (A=C/2), (9)

the exchange length.

Equations (6) and (4) are written as

(v“* s 7.-52};) ve +imS?hyv, = 0,
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for r = 1.

The boundary conditions (3) and (5) reduce to:

du,

e

5'1."3,

= |l

ot

u = Uaut
sy auoul:
i + 25v,,

gt 7 =1.

We expand the solution of the BVP (10-12) in a double series of the form
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where P! is the Legendre function, F, is the Legendre polynomial, j,(z) is the n—th order

spherical Bessel function and a, g, by g, ¢np and pg, are unknown coefficients.

Note that

(13d) is the most general solution of equation (11) that satisfies the boundary condition

(12c). Substitution of the above trial solution into equations (10} leads to

o
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Similarly substitution of the trial solution (13) into the boundary conditions (12) leads to

= L ke S
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where the prime denotes differentiation with respect to the argument. So far the solution
procedure is identical to that followed in previous studies [25,26]. The difference in the
present solution procedure is on the proper selection of the pp, and thus the radial de-
pendence of the solution. The (arbitrary) definition used in Refs. [25.26] was the set of
zeros of j}(z) = 0. Though from physical reasoning we would like to select the pg , such that
j! (ftg.n) = 0 in order to compare our results with the limit of exchange resonance modes [20],
this is not feasible since in such a selection we can no longer make use of the orthogonality

of spherical Bessel functions, which is of the form:

i
[} 7250 (ke nT ) in (g7 )dT = Ij Sge, (16)
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where 7; = 222 [j! (z.0)]° , for ay = 0 and I = 3~ [(g;) +pi,— (n+3) 1 Bakessll,

for a; 0, n+ ; = —1 and p; , the k first positive roots of
Qs . ;
NE [(&1 + ?2) Jnlz) + crgzj.r:l[z]] =1, (17)

with oy, s real constants. In the following we will consider the case where as = 0 and thus

for z # 0 equation (17) results in
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Use of the orthogonality relation (16) with cz = 0 in Egs. (14) results into

7Stk — (Uf o+ 7S*R) bap = 0,021, k> 1
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Before proceeding to the further solution some elementary cases will be discussed.

Case I (uena =10, V&, n);

(18)

(19a)

(19b)

(19c)

(20a)

(20b)

(20¢)

Then the BCs (15) are satisfled and (14) results in h, = Lh, for a,;, h # 0 and the

magnetization precesses uniformly.

Case 2 (py. solutions of Eq. (18)):

For n = 0 Eq. (14.3) gives ¢pr = —45 a4 /3up o and (15.3) is automatically satisfied. For

n>land k=1 =0,%n > 1 and (14) results in “uniform like” precession modes, with

hil™ = +h for a, 1, h # 0. But keeping only one term in the expansion is meaningless since
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it results in zero magnetization. Thus we just have to examine the case where n > 1 and
k > 2. Then by solving (20a) for b, and (20c) for ¢, and substituting the results into

(20b) we obtain the following recurrence relation
Ontak = .ﬁﬂ.kﬂ‘ﬂ.k T Tnk@n-2ky T :3 1: k = 21 (21}

with
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= Mkt (n—=1){n—2)(2n+ 3)(2n + 5) (23)

Pkn-1 (2n —1)(2n = 3)(n + 2)(n + 3)

and a_,x = 0. ¥n > 1. After solving (20¢) for ¢, and substituting the result into (19¢)
we see that the later is automatically satisfied. Thus for this case we just have to satisfy

(19a-19b), which are rewritten as

Z Tn ke Bk Jns1 (Pen) = 0,

k=1
(24)
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From the recurrence relation (21} it is not difficult to show that
age_1x = Fas_ypoqp, V€21, k>12
(25)
Qe = Foppage, VE21, k22,
with
Fov=Bavelacant Pcapmaimn23ck 22, (26)



and Fip = Fop = 1, For = F_1x = 0. Then substitution of (25) into the boundary

conditions (24) results in the linear system:

o

Y Edn=0, R,
k=2

(27)
ZGEJJ.]:%& = £zl
4 =:1; 2. with
EpY) = For_ vk it ze-1 Jae (e 2e-1)
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Gyt = Forje 26 Joerr (e,20)
(28)
2y _ w52k, [1}
Et'k n *'*'é.zz—l"'f"SzhE
2 =5t (1
GH = ;ﬁﬁgag-
The infinite linear system (27) can be written in the form
E 0 faq 0
= (29)
0 G Ao 0

with Eas_1x = EX, oy = B2, Gy = GY), Gasre = G2 £, k > 1. The fact that & > 1
does not mean that we take into account the first root of Eq. (18). In order for the system

to have non-trivial solution the following condition has to be satisfied.

E 0
det =1 (30)
0 G

IV. NUMERICAL RESULTS AND DISCUSSION

Equation (30) is the frequency equation. It is solved numerically using a matrix deter-

minant computation routine along with a bisection method to refine steps close to its roots.
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Since the infinite system is truncated into a finite one, an iterative convergence method is
employed. The convergence criterion used is |h%" — pl*=1m| < 1073, All the computations
were performed for 2< k<fand 1<n<2with{=1,23,..., 34

Computations have been performed for the material constants of Ni (see Table I}, for
varying sphere radius R € [0.5, Jum. The gyromagnetic ratio was assigned the value
Vo = g % 8.7939 x 10~3GHz/Oe, with g ~ 2.2. Calculations for Co-Ni microspheres will be
presented in a future investigation. The first seventeen dimensionless eigenirequencies, b,
are cited in Table II, for the (k,n)=(34,68) mode. For Ni microparticles, with K = 0.7 um,
the experimentally measured dimensionless resonance frequency he™ = 2.2468 [15,17,19]
differs less than 9% from the 11'P eigenfrequency h3458) = 2.4636 of Table II. Since,
in general, the exchange constant is not very well defined, and usually is determined from
resonance experiments, the present theory can be fitted to experimental data for that pur-
pose, Thus assuming for Ni microspheres, an exchange constant of A = 2 x 10-Terg/em
the disagreement with experiment is removed for the 12th eigenfrequency h(2448) = 22496
of Table III (error ~ 0.1%).

The size dependence of the resonance modes for Ni microspheres is plotted in Figure
1. for the eigenfrequencies (7-12) of Table II. The dot corresponds to the experiments
of Ref. [15,17,19]. Though for each mode is not different from the size dependence of the
exchange resonance modes (h, x S7%) it differs from that law due to the mixing of the

modes. The problem of non-cylindrically symmetric modes is also under investigation.
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FIGURES

LA =3.4 X 10 erglem ‘

35 40 45 50 55 60 65 7.0

FIG. 1. h, as a function of § for Ni microspheres (eigenfequencies 7-12). The dot corresponds

to experiments of Refs. [15,17,19].
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TABLES

TABLE 1. Material constants for Ni [27].

Alerg/cm) 47 M, (Gauss) K, (erg/em?®)

410" ROS.8 —4.26 x 104

TABLE II. Dimensionless eigenfrequencies h, as a function of sphere radius R, for the

(k,n}=(34,68) mode.

R =0.5pum R=06pum R=0.7pm R=0.8pm R=09um R=1.0pm

1 1.4061 1.2310 0.9276 0.7152 0.4564 0.2736
2 1.4882 1.3174 1.0642 0.8524 (0.5857 0.4233
3 1.7047 1.3973 1.1755 0.9857 0.7654 0.5317
4 1.7447 1.4631 1.2323 1.0942 0.8741 0.6782
5 1.8488 1.5475 1.2091 1.1754 0.9406 0.7978
G 1.9335 1.6186 1.3744 1.2142 1.0098 (.8695
7 2.0403 1.7123 1.4644 1.2750 1.0973 0.9573
8 2.1729 1.8356 1.5770 1.3721 1.2049 1.0660
9 2.3592 2.0094 1.7446 1.5373 1.3703 1.2332
10 2.5786 2.2001 1.9315 1.7156 1.5429 1.4017
11 3.3335 20814 2.4636 2.1621 1.9213 1.6830
12 3.5424 3.1764 2.6653 2.3419 2.1016 1.9004
13 3.6358 3.3217 2.8407 2.4739 2.1525 1.9511
14 3.7817 3.4332 2.9318 2.5326 2.2143 2.0019
15 3.9280 3.5792 3.0420 2.6160 2.2788 2.0650
16 4.1016 3.7806 3.1663 2.7119 2.3539 2.1314
17 4.3246 4.0113 3.3444 2.8309 2.4434 2.2176
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TABLE III. The first seventeen dimensionless eigenfrequencies h, for B = 0.7um and

A=2x10""erg/cm for the (k,n)=(24,48) mode.

1 0.6629
2 0.7506
3 0.8008
4 (.8543
5 0.9208
§ 1.0782
7 1.1857
8 1.3514
9 2.0717
10 2.1253
1il 2.1860
19 2.2496
13 2.3240
14 2.4126
15 2.5234
16 2.6902
17 2.8725
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