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Abstract

We consider subspace-based methods for blind symbol estimation when the “known channel order”
assumption iz violated; the estimated channel length is [, while the true channel length is L, with
L = 1. Using the concepts of the length-l significant part and the unmodeled fails, we show that if the
size of the unmodeled tails is small with respect to the diversity of the length-{ significant part, then
the algorithm performs well; otherwise, it may perform poorly. The generically ill-conditioned case of
effective overmodeling results when our channel model attempts to model “small” leading and for trailing

channel terms.
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1 Introduction

Many methods have appeared recently, claiming perfect blind signal recovery in the single-
input/multi-output channel context. under the so-called zero-forcing conditions [1]-[4]. How-
ever, the validity of the zero-forcing conditions is very difficult to guarantee in a “real-life”
scenario. In particular, the assumption that the true channel be FIR of known order is rarely
true. Taking into account that most of the algorithms so derived are very sensitive to the true
channel order, a theoretical analysis of the behavior of the algorithms under realistic conditions

seems of great importance.

We consider the so-called row-span methods for blind symbol estimation [3], [4], when the
“known channel order” assumption is violated; the estimated channel length is [, while the true
channel length is L, with L > [. Using the concepts of the length-l significant part and the
unmodeled tails [5], we show that if the size of the unmodeled tails is small with respect to the
diversity of the length-l significant part. as measured by the smallest nonzero singular value of
a certain filtering matrix, then the algorithm performs well; otherwise, it may perform poorly.
The generically ill-conditioned case of effective overmodeling appears when our channel model
attempts to model “small” leading and/or trailing channel terms. These results show a striking

similarity to those concerning subspace-based blind channel identification methods [3].

2 Row-span methods

We consider a single-input/two-output baseband FIR channel model; extension to the single-
input /p-output case, with p > 2, is trivial. If the true channel length is L, then the 2-dimensional
output X, is given by the convolution x,, = i:& hy $,_k, where { hk}ﬁ':_& is the channel impulse
response and {s } is the scalar-valued input sequence. We denote the entire channel parameter

A ;
vector as h = [h] -+ hI_, |7, where superscript 7 denotes transpose.

The subspace-based methods of [3] and [4] exploit the structure of the 2m x (N —m + 1)



data matrix
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which can be expressed as X'(h) = #(h) S;rfjl, where
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with dimensions 2m x (L+m—1) and (L+m—=1) x (N —=m+1), respectively. If the subchannels
of h do not share common zeros and m > L — 1, then #H(h) is a tall full-column rank matrix.
Consequently, row( X (h)) = row (S;E 'lr) where row(.A) denotes the row space of matrix A,
enabling the identification of the input sequence sy*7! =2 P W |

In the sequel, we focus on the subspace intersection method of [4]. However, our results apply
to the null space union method of [3], as well, because the two methods are equivalent, even in
the presence of noise [4]. At first, one performs an SVD of X'(h), A(h) = UZV, and obtains V',
whose rows form an orthonormal basis for row(A(h)). Under sufficient richness conditions on
the input, row(A'(h)) is an (L 4+ m — 1)-dimensional subspace. Setting n=L+m —1, V) is

constructed as

it 0O Vv 0
Vrm 2| with V2| p o o (1)
yin I

and the input sequence s;,ﬂ'l is identified, to within a scaling factor, as the right singular vector

of Vi, associated with its largest singular value.
However, in practice, the true channels are usually long, i.e., L > m, and they are composed

of a significant part and “small” leading and trailing feils. In such a case, H(h) is not a tall



full-column rank matrix and row(A(h)) # mw[S}i}ETl). Thus, is it possible, in such cases, to

use row( X' (h)) to identify or, at least, estimate the input sequence?

To answer this question, we shall describe a more realistic implementation of the method.
In practice, one first estimates the effective rank r (r < 2m) of data matrix X'(h), by adopting,
e.g., the criterion developed in [6]. The truncated rank-r data matrix X(h) and matrix Vv,
whose rows form an orthonormal basis for V = row(X(h)), are related through X(h) = T EV,
where the variables with the hats are associated with the r largest singular values of A'(h). The

effective channel length [ is estimated as [ = v —m + 1. Then, we may write

X(h) = H(h®) S5ET1 +£, with € 2 %(h — h®)S5E1,
X (h*)
where h* is the zero-padded length-I significant part of the true channel, with the nonzero terms
lying between positions ml and m2 (see [5, egs. (3)-(6)]), and X'(h*) is the associated rank-r
data matrix. Since m > [ — 1, the 2m x ([ + m — 1) filtering matrix H(h*®), associated with
the truncated length-l significant part of the channel h® (see [3, eq. 7]), is a tall matrix. If the

subchannels of h® do not share common zeros, then H(h%) is of full-column rank. As a result,

V* £ row(X (b)) = row (H(h®) Sy 1") = row (H(b%)S3T2,_,) = row (S37%:,) -

—ml=1

Thus, if row(X(h*)) were known, the subspace intersection method of [4] would permit the

identification of the input sequence SErn_-l;_;l_l? through the sequence of computations:

5 = 8 5 —m2 fiall
X{h :I ¥ = vT[r} *E8N_m1-1 =5

where the rows of matrix V* form an orthonormal basis for V* and V..,

is built from V&, as
in (1). Note though that row(A(h®), which has been introduced just for analysis purposes, is
unknown. However, by continuity arguments, one would expect that if £ is “sufficiently” small,

then knowledge of mw{f (h})) may permit an approximation to 5;”_“,2,“ 11 through

Xh) =V =V =V, =872, =5



In the sequel, we provide an upper bound for the sine of the angle between the unit 2-norm
vectors s and §, revealing, in this way, the factors that govern the behavior of the subspace
intersection method.

Recall that V* = row{ A (h*)) and V= raw(:’t’h (h}) are r-dimensional subspaces associated
with the r largest singular values of matrices A'(h*) and A'(h), respectively. These matrices

are related through perturbation £. Thus, as shown in [8] (see also [7, p. 261])

o €le
2h T < =B 2
Isio WV V0le S =) e ~ N

where sin /(V,V®) is the diagonal matrix with elements the sines of the canonical angles &;
between subspaces V and V5, || - || and || - |2 denote the matrix Frobenious and 2-norm,
respectively, and opin(A) denotes the smallest nonzero singular value of matrix 4.

If the rows of matrix V® form an orthonormal basis for V*, then we can find matrix ﬁ whose

rows form an orthonormal basis for V, such that [7, p. 93]

IV = Vo||F < Jzzu —cos8;) < V2B = B,. (3)

i=1
In this case,  and V*® are as close as possible, with respect to the metric associated with the

matrix Frobenious norm. Now. the structure of V%"{r} and (3) imply
”VT[r] - V?}'[r]“f* = JFHV —V¥|p < Vv Ba = Bs. (4)

Finally, since s and § are the largest right singular vectors of V}[r} and {fﬂ_,}, respectively, we
obtain [8]:

IVrp) — Vi llz By

= & '
o1 (Vi) =02 (Vi) = [Vre) = Vil ~ 01 (Vi) = o2(Vi) - 33( )
5

We observe that the perturbation on V?_,.Ir,.} and the gap between the fwo largest singular values

sin £(8,8) <

of V., govern the behavior of the subspace intersection algorithm. If the perturbation is small

with respect to the gap, then the algorithm performs well; otherwise, it may perform poorly.



Result (5) is difficult to interpet in terms of channel characteristics and estimated effective
channel length, unless we perform an asymptotic (as V — oc) analysis. In this case, and for
zero-mean, unit-variance, i.i.d. input sequence {s,}, we obtain % 88T 57 [4]. Consequently,

0i(£) = oi(H(h —1*) §) = VN o; (H(h — h*)),
omin (X(B%)) = Omin (H(h™) §) = VN omin (H(b))

where 7;(.A) denotes the 1—th singular value of matrix 4. Bound (2) becomes:

[#H(h = b¥)|p - vm||h — h*||

|| sin £(V, V)| :
s LV VIR < G A (9) — TR~ B#)]> = oman(A)) — Vi b = B[

(6)

Thus, if the size of the unmodeled part [|h — h®®||z is small with respect to the smallest nonzero
singular value of filtering matrix #H(h®), then subspaces V and V5 and, consequently, matrices
{FT{r-j and Vi}{ﬂ are close each other; term opin(H(h*3¥)), relative to the largest singular value
of H(h®), may be interpreted as a measure of diversity of channel h* (see also [3]). Furthermore,
for large N, one may show [4] that o, (V}( r}) = /7 and o2 (V%.{rj) — +/r — 1. Thus, finally,
if ||{"T.:r:, - V%‘gr}” F is small with respect to (/7 — +/r — 1), then estimate § will be “close” to
the true input s.

The above analysis shows great similarity to the one developed in [5], concerning blind chan-
nel identification using subspace techniques. In both approaches, the diversity of the significant
part of the channel and the size of the unmodeled part govern the performance of the methods.
The derived bounds are not tight, in general. However, 1) they provide an indication for the
performance of the method, and 2) making use of theorem 2 of [5], they imply that the effective
channel length or, equivalently, the effective rank of data matrix A'(h), should be chosen in
such a way so that “small” leading and trailing terms be excluded from our channel model;

otherwise, an effective overmodeling case results, leading to potentially poor performance of the

method.



3 Simulation

We illustrate the above concepts by passing a BPSK data sequence sj; through the real part
of the oversampled, by a factor of 2, chang found at hitp://spib.rice.edu/spib/microwave.html;
the data before time instant n = 0 are zero. In Fig. 1, we plot a portion of the subchannels of
chand; intuitively satisfying estimates of the significant subchannel length are 2 or 3. We want
to recover the input sequence using equalizers of length m = 8. In Fig. 2, we plot the effective
rank detection criterion [6] r{g) = o,(X(h))/oge1(X(h)), for ¢ = 1,...,15. The estimated
cffective rank is

r = arg max r(g) = 10,

leading to the effective channel length estimate | = 3. We perform the subspace intersection
method of [4] for channel lengths { = 1,....9. In Fig. 3, we plot the cosine between the original
input sequence s, and the estimated ones, for the various channel lengths. We observe that we
obtain the best performance for channel length [ = 3. For channel length [ < 3, the estimation
is poor due to undermodeling error, while for [ > 3 it is poor due to lack of diversity. The

criterion developed in [6] proves to be useful in practice.

4 Conclusion

We performed a theoretical analysis of the performance of subspace methods for blind symbol
estimation, when the true channel length is L, while the estimated channel length is I, with
L = |. By partitioning the true channel impulse response into the length-{ significant part and
the unmodeled tails we showed that if the size of the unmodeled tails is small with respect to
the diversity of the length-I significant part, then the algorithm performs well; otherwise, it
may perform poorly. Effective overmodeling results when the length-l significant part includes
small leading and/or trailing terms. Such cases are generically ill-conditioned (see also ([5]) and

should be avoided.
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Fig. 1. Portion of the real part of the subchannels of chanf.mat.

Subchannel 2

1.2

Sample value

0.8}
06;
0.4+
0.2t T 1
000000000000 | 04 PER00000a00000

-0.2
0

10

20

Sample index

Effective rank detection criterion

ria)
5
T

Fig. 2. Plot of r{g) = =

VErsus ¢

30



0.8

= = = o=
n =1 ~§ a0

Approximation Parformanca

=
I

02

Il i L L i 1
0_11 2 3 4 5 ] 7 a -]

Candidate channel langth |

. Cosine of the angle between si, and 8§, versus the candidate channel length.

10



