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Abstract

Previous work on magnetic hysteresis modeling using the Preisach formalism forms the basis of this
work which proposes a 2-D Preisach-type model for anisotropic inhomogeneous RE-TM magnets. The
model deals with the two phases in a statistical sense and is not constrained by the specific geometry or
the number of soft inclusions, The probability density function of the coercivities is taken to be the
weighted sum of two densities, one for each phase. The effect of interactions is accounted for by a third
probability density function the shape of which depends on the nature of interactions, exchange or
magnetostatic. The effect of misaligned grains is modeled by a fourth distribution. The vector operator
used is based on the Stoner-Wohlfarth model of coherent rotation that is rather inadequate but the only
one available at the moment The material properties are related to the parameters of the statistical
distributions used by the model and an attempt has been made to make the identification procedure
more systematic. The model is identified for a single phase Sm;Fe,4Ga;C; sample and a two-phase
exchange-coupled Sm.Fe,sGas;Co/u-Fe sample. Calculated major and first order minor loops are

compared against existing experimental data for the two samples.



L INTRODUCTION

Modeling of the non-linear behavior is always a challenging task. This is particularly true in the case of
hysteresis, in general and magnetic hysteresis more specifically. In systems exhibiting hysteresis, the
present output is a function not only of the present input but also of the sequence of inputs the system
has accepted so far. This is evident in the magnetization/field relationship. the stress/strain relationship,
or the output/input relationships of economic systems even. Therefore, a model of hysteresis should
first of all keep track of the history of the system and adjust the output accordingly. In the case of
magnetic hysteresis, the model must also exhibit good vector properties and reproduce both the
reversible and the irreversible part of the magnetization response (output) to an applied field sequence
(input). It should account for the fact that the reversible component is due to rotation while the
irreversible component is due to the switching of the magnetization vector. Both rotation and switching
depend on the intrinsic properties and microstructure of the magnet as well as the interactions
developed in it. The identification process of such a model must link these material properties to the
model parameters. In the case of inhomogeneous systems/magnets, the model must also account for the
different properties of and interaction between the two phases.

Using the above as rough guidelines, the Preisach formalism' stands out as a good vehicle for the
design of a hysteresis model for inhomogeneous magnets. Models using the Preisach formalism record
and take into account the history of the material in an elegant and simple manner. Scalar in nature, they
are able to reproduce only irreversible processes in which case the reversible component of the
magnetization has to be added on. Vector Preisach-type models for homogensous magnetic materials
have also been designed” that are able to account for both rotation and switching of the magnetization.
The identification of these models is based on bulk measurements of macroscopic material properties.
The identification process consists of establishing a well-defined method of linking the material
properties to the model parameters and it is usually a challenge,

In this work. we first give a brief overview of the Preisach formalism and proceed with the description
of the new model. In an attempt to make the identification process more systematic and test the
properties of the new model. the latter has been identified for both a single-phase Sm-Fe,,Ga;C- and a

two-phase exchange-coupled Sm.Fe, .Ga:Co/u-Fe magnet.



IL. DESCRIPTION OF THE MODEL

According to the Preisach formalism (scalar case), a system exhibiting hysteresis can be described by a
characteristic probability density function p(H..H_) defined over a triangular plane, called the
Preisach plane (see Fig. la). H and /1 _are the upper and lower turning points of elementary square
loop operators, ;v'(H+ . } =+], like the one shown on Fig. 1b. In the case of a magnetic material, we
can think of an elementary loop as the switching characteristic of a collection of grains or particles that
for convenience will be referred to as a “pseudoparticle”. The total magnetization contained in this
pseudoparticle is given by the value of the density function p{H ., H_) at the point (H_,H_)on the
plane. When the sum of interactions the elementary loop “experiences” is zero, the loop is centered at
H=0and ., =H_=H_. H_ inthis case is not the coercivity of the magnet but the “coercivity” of
the “pseudoparticle” represented by the elementary square loop. When the sum of interactions, f, . is
not zero, the loop is shifted to the lefi or to the right according to the direction of the resultant
interaction force. thus making it easier or harder to switch. The plane is bounded by H_ =0,
H =H_and H_ =-H_ where H_ is the field needed for saturation Note that
plH_.H )=p(H,..H,). On the assumption that the two variables H_and H are independent, the
bivariate density function can be written as a product of two probability density
functions p(f_ )p(#,). The effect of any sequence of fields on the magnetization of the material is
retained in the form of a “staircase™ boundary separating the regions of positive and negative
magnetization (see Fig. 1a). The magnetization as a function of the applied field M(H) is then given
by the integral of the characteristic material density over the Preisach plane.

The scalar Preisach model keeps track of the history of the medium in a rather elegant manner and can
be implemented by fast and rather simple algorithms. A major drawback is its inability to reproduce
reversible processes because of the switching characteristic adopted through the scalar operator
y(H .. H_). Vector Preisach-type models that replace the scalar operator ¥ (H _, H_ )by a vector one
I(H_..H_) have been able to account for the reversible component without further processing. Such

an operator is the 2D Stoner-Wohlfarth model’ (see Fig. 1c) which is also used in this work. In the

vector case, the boundary, serving as the “memory™ of the system, no longer consisis of vertical and



horizontal segments only. Rotation makes switching easier and the boundary is curved in such a way as
to allow for more switching.

Since the inhomogeneous permanent magnets are RE-TM alloys consisting of a hard and a soft
magnetic phase interacting with each other, the new model, in the spirit of the Preisach formalism,
takes into account the different characteristics of the two phases in a statistical sense. The density of
coercive fields p(H_) is taken to be the weighted sum of two densities p,(H ;) and p,(H,,,)for
the soft and hard phases respectively. The weight attached to each function depends on the %o content
of the soft phase, w . The characteristic density is then written as:

p(H . H_)= p(H,.H,)= p(H,)p(H,) = [wpo, (H .0) + 1= w)p, () |os (H,) m

The angular dispersion of the misaligned grains is accounted for by the superposition of the response of
Preisach planes dispersed according to a fourth distribution p,(a@) where @ is the angle a plane

forms with the easy axis’.

For an appropriate vector swilching mechanism, I'(f, /), the magnetization response of the

magnet to a sequence of applied fields /¢ = 0,1,2,....is then given by:

52 Hg H
M'{.H;.} = j -[ JP.Ia#. (ﬂjpi EIEJ ][H'Ip! {H ulsq.ﬂ}-i-{.l_w].ﬂl {.Hc_hurd.}]r{.H-l-:lH. }dH-a.dH-da (1}
—xf2=-Hy H;

The identification of such a model is not a straightforward process. The parameters of the four

probability density functions p,, with j=123.4, must be related to macroscopic properties of the
material, such as the coercivity / _, the saturation magnetization M _, the squareness, .5, and

coercivity 8" . of the allov as well as and the percentage content of each ;
¥ Squarcness, i pe g2C

IIL RESULTS AND DISCUSSION

In order to test the model, all four probability densitv functions were assumed to be normal
‘hr'-LI“UE J and the effect of the densities’ parameters on the shape of the M-H curve was first
studied.

To take care of the angular dispersion, Preisach planes were dispersed around the easy axis in steps of
5° (-90° <@ <+90°). Each Preisach plane was discretized into 50 cells that were assigned weights
according to the characteristic density. Each cell corresponds to a “pseudoparticle” obeying to the

switching and rotation mechanism of the Stoner-Wohlfarth model. The orientation of the magnetization



vector is calculated for each cell The sum of the weighted contributions of each cell yields the
magnetization response of each Preisach plane to the applied field. The superposition of the responses
of all the Preisach planes vields the total magnetization.

Since all the probability density functions are normal, eight parameters need to be determined for the
identification of the model: four mean values, ., and four standard deviations, o, , i =123 4 Since
the misaligned grains are taken to be symmetrically dispersed around the matenial easy axis, the
function of the angular dispersion p, (@) is centered at 0 degrees. u, =0. The squareness S of the
major loop is controlled solely by the standard deviation®, &, . The function of interactions p,(H,) is
also centered at zero field on the assumption that the average interaction field experienced is zero,
(,;:3 =(}}. The standard deviation . is controlling the slope of the major loop around the coercivity:
the wider the distribution is the lower is the slope. The parameters u,. 4,.o,,o, of the two coercivity
functions affect mainly the coercivity of the loop and are the most difficult to determine.

Experimental data of single-phase Sm.Fe,sGa;C; and two-phase exchange-coupled Sm-Fe,,GasC./a-
Fe, as reported by Feutrill ef. al. *, was used 1o test the hysteresis behavior of the model. The two sets
of model parameters used for the two samples are shown in Table I. The percentage content of the soft
phase, w, is 40%.

Fig. 2 shows major loop curves calculated by the model for both sets of parameters. In the single-phase
case, the coercivity is roughly 4 times larger and can be empirically expressed as /. = 3x u, while in
the two-phase case, H_ = 3x(wx g, +(1-w)x g, ). The standard deviation of the interactions density
in the exchanged-coupled case is 2.5 times larger than that in the single-phase which is reflected in the
coercivity squareness of the two loops. This suggests a way to distingnish between exchange and
magnetostatic interactions since exchange-coupled magnets exhibit higher coercivity squareness.

A comparison between measured and calculated major and minor loops curves is shown in Figs. 3-4,
The agreement between theoretical and experimental curves is better in the single-phase case. It has
been found that the reversible susceptibility of the two-phase magnet has two peaks, one for each phase
while in the single-phase case there is only one peak, at the coercivity’. This kind of behavior was not
possible to be reproduced by the model. There are two possible explanations for that. First. the S-W
model assumes coherent rotation of the magnetization of a magnetically isolated ellipsoid with uniaxial

anisotropy. However. it has been found that inhomogeneous magnets do not rotate coherently®. A



vector operator more appropriate for inhomogeneous materials is currently the subject of work in
progress. Second. when the magnetization becomes negative in the descending branch of the loop the
model predicts “less switching™ than in the measured curve. On the assumption that as the applied field
becomes more negative the effect of the stray ficlds becomes more prominent and assists the switching
process, the probability density function of the interactions need not symmetrical, Current work also
involves a study of alternative choices of probability density functions and the development of an

algorithm for the identification process.
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TABLE I: Model parameters for the single-phase Sm,Fe, sGa:C; and two-phase exchange-coupled
Sm;Fe, sGa;Co/a-Fe samples.

Single-phase  Two-phase
300

W (kOe) na

oy (kOe) n/a 500
wz (kOe) 5500 1200
o (kOe) 2000 700
B3 (kOe) 0 0
s (kOe) 800 2000
Ha (degs) 0 0
74 (degs) 0 60
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