THE MOVING TARGETS TRAINING ALGORITHM
FOR CLASSIFICATION NEURAL NETWORKS

A. LIKAS and L.E. LAGARIS

19-99

Preprint no. 19-99/1999

Department of Computer Science
University of loannina
451 10 loannina, Greece

The Moving Targets Training Algorithm
for Classification Neural Networks

Aristidis Likas Isaac E. Lagaris
Department of Computer Science Department of Computer Science
University of Ioannina University of Ioannina
45110 Ioannina 45110 Ioannina
Greece Greece
E-mail: arly@cs.uoi.gr E-mail: lagaris@cs.uoi.gr
Abstract

The neural network approach to classification based on feedforward networks requires
an encoding of the problem classes in terms of target vectors corresponding to each class.
All the proposed encoding schemes assume that the target vectors are specified at the
beginning and remain fixed during training. We propose the moving targets approach to
classification using feedforward neural networks. By allowing the target values to vary, the
method achieves to significantly ease the training especially in the case of small network
architectures where the optimization task is hard. For these architectures, comparative
experiments using several datasets indicate that the resulting classifiers perform better
than those obtained via the traditional method which assumes fixed target values.

1 Introduction

The conventional neural network approach to classification based on feedforward networks
requires an encoding of the problem classes in terms of target vectors corresponding to each
class [1, 7). This is necessary, since MLPs actually perform regression, therefore in order to
use them for classification the target vectors for each class must be specified. In general,
class encoding aims at separating the classes by maximizing the distance between the target
vectors corresponding to each class. The classification of an input pattern is based on the
nearest neighbor principle: the network output vector is compared with the corresponding
target vectors and the pattern is classified to the class whose target vector has the minimum
distance from the corresponding network output vector.

The most common approach to target encoding is the 1-out-of-K encoding for a prob-
lem with K classes. Other types of target encoding also have been proposed such as error-
correcting codes [2] and "thermometer” coding [7]. A common characteristic of all approaches
is that the target vectors (codes) are fixed from the beginning and do not change during train-

ing.

In the proposed approach, the above restriction is relaxed. There is no reason why the class
target vectors should remain fixed as long as the distance between them does not become very
small. In this spirit, we propose the moving targets approach, where the target encoding is
parametric and the adjustment of the corresponding parameters is part of the training process.
This adds several advantages the main one being the added flexibility for the training. The
parameters of the network are adjusted so that the outputs move towards the targets, but
also the targets may move towards the outputs. However, care must be taken so that the
target vectors remain distinct and the discrimination among the classes is guaranteed.

To implement the idea of moving targets we propose an appropriate formulation of the
error function to be minimized in order to train the network. We consider the case of two
classes C'; and C3 and one network output. The extension to the case of many classes and
many outputs is straightforward. We show that given the distance ¢ between the target
values t; and t; corresponding to each of the two classes, the values of t; and 2 are adjusted
during training and can be specified from the parameters of the network (weights and biases)
using appropriate formulas. Section 2 presents the method and also provides the formulas
for computing the derivatives of the proposed error function with respect to the network
parameters. Section 3 provides comparative results using well-known datasets and, finally,

Section 4 contains conclusions and some directions for further research.

2 The Moving Targets Method

Consider a classification problem with two classes €] and C; and a training set with n
patterns (z1,...,x,), with z; € R%. Let X and X5 denote the sets containing the elements
of X belonging to C; and Cy respectively and let n; and ny denote the cardinality of those
sets.

We wish to use the training set X in order to construct a multilayer perceptron (MLP)
suitable for the above classification problem. More specifically, we assume an MLP with d
inputs, arbitrary number of hidden layers and one output. Let p denote the set of network
parameters (weights and biases) p; (7 = 1,...,P) and N(p,z) denote the output of the
network for an input pattern z. We encode with ¢; the target output value for the patterns
of class C'; and with ty the corresponding value for the patterns of class Cy. The training is
performed by minimizing the error function

E(p,ti,ta) = D (N(p.z) —t1)2+ 3 (N(p,) — t)? (1)
T; EX7 ;e X5
with respect to the network parameters p. Let p* denote the optimal values for the network

parameters. Then, the resulting network N(p*,z) can be used as a minimum distance classi-

fier: if |[N(p*, z) —t1] < |N(p™, z) — t2] then z is classified as a € class member, otherwise as
a Cy class member,

Suppose now that ¢; and ¢y are treated as variational parameters and hence, are allowed
to vary during the training process just like the network parameters p. These two extra
parameters enhance the degrees of freedom and it is expected that the minimization task will

be easier. Since at the minimum we have that 8E/8t; = E /8ty = 0, one readily obtains:

1 . .
ti(p) = " Y N(p,z;) =< N(p) > (2)
Ei €A
and, similarly,
1 -
ta(p) = — Y N(p,z:) =< N(p) > (3)
2 X

This means that the optimum value for ¢; is the average of the network outputs for the training

patterns of class C;. Using these values, we eliminate ¢; and ¢ in eq. (1), which becomes
E(p) = ni(< N(p)* >1 = < N(p) >}) + na(< N(p)? >2 — < N(p) >3) (4)

The minimum of the above error function is zero and occurs iff N(p*,) = a, with a being a
constant. In this case t; = t2 = a and the solution is of no interest for classification problems.
To avoid this trivial solution and at the same time retain the 'mobility’ of the output targets,

we reformulate the training problem by adding a proper constraint:

minimize E(p, t1.t3)
subject to: [ta —t;| >0

We can assume without loss of generality that ¢; < t; and write
la=t14¢ (5}
with ¢ > 0. In this case the error function takes the form:

E(p,ti,c)=) (N(p,z:)-t1)’+ Y (N(pa:)—t1 —c)? (6)

22X ;€ X3

with ¢ > 0. This constrained minimization problem can be treated by a host of applicable
methods. Note that this formulation contains the classical formulation where t; = 0 and
ta =1 by setting t; =0, e = 1.

Requiring the partial derivative of E with respect to ¢; equal to zero we get that

1(p,) = = (< N(p) > —nze) (7

and

t(p,0) = (< N(p) > +mie) ®)

where L
< N(p) >= Y N(p.z) 9)

k=1

Consequently, we get the following expression for the error function

E(p,e) = Z (N(p,z;)— < N(p) > _i_%c}g
aEX
* IEXE{J‘J[F‘: zi)— < N(p) > __%C]E (10)

with the constraint that ¢ > 0. One may employ one of the several applicable methods
for inequality constrained minimization problems to handle the above problem, however we
followed a much simpler approach.

Instead of having ¢ as an optimization parameter we considered that ¢ is a constant in
the interval 0 < ¢ < 1. The choice of this interval is justified by the fact that we used MLPs
with a sigmoid output unit, ie. N(p,z) € (0,1). Then we solved a series of unconstrained
optimization problems (for several datasets) each considering a different constant value of
¢ in the range (0,1). We found that on average, better classifiers are obtained when ¢ €
[0.65,0.85] and that there are no significant variations within this range. A value of ¢ = 0.75
is recommended for general use. Once the minimization process has terminated the final
target values t; and ¢2 can be computed from equations (7) and (8).

In order to efficiently minimize the error function {10) we need to compute the derivatives
OF {Op; for any parameter p; (j = 1,..., P) (weight or bias) of the network N(p,z) and then
employ an optimization algorithm that exploits the derivatives to perform minimization (e.g.
gradient descent, quasi-Newton, conjugate gradients etc [4]).

To compute the error partial derivatives we first need to calculate the partial derivatives

. _ ON(p,zy)
dk,j) = ———— 11
%0, (11)
for (k=1,...,n) and (j = 1,...,p). The partial derivative d(k, j) can be easily computed

using the backpropagation technique in the case of MLPs. Then, for each parameter p; we
define the average

&
d(j) = =Y d(k,j) (12)
b k=1
Equation (10) can be written as
Elp)=) eilpz)+ 3 eilpmz) (13)
T EX 2iEXa

where

L n
eilp.a) = N(p,z) = = 3~ N(p.ax) + e (14)
k=1
and N
’ 1 . i e
ea(p,z) = N(p,z) — = Z Nip,zx) — ;1-: (15)
k=1
Consequently, the partial derivative E /8p; can be written as
A i S § 3 =
e e > eilp)(di) = (i) +2 D ealp,z)(d(i, j) — d(5)) (16)
Pj EX) rEXa

3 Implementation and Experiments

To test the effectiveness of the proposed training method, we performed comparisons with
the classical approach to target encoding (fired target approach) where the targets are fixed
and assume values ¢t; = 1 and ¢ = 0. In the fixed target approach, if the MLP output for an
input pattern x is N(z) > 0.5 then z is classified to class C}, otherwise it is classified to class
C3. We have tested MLP architectures with one hidden layer and one sigmoid output unit.
The architectures differ only in the number H of sigmoid units in the hidden layer.

To perform minimization of the error function, we have used the quasi-Newton BFGS
method [4] provided by the MERLIN optimization environment [5] which has been found to
be very effective in the case of MLP training [3].

In our series of experiments several datasets have been considered. For each dataset and
for each MLP architecture (e.g for each H value) we have conducted 30 experiments with
different initial weight values randomly selected in (—1,1). In every experiment both the
fixed target and the moving target approach were tested starting from the same initial weight
values. In this way, we were able to achieve a fair comparison of the training capabilities of
both methods.

The first type of datasets we have used, concern the parity problems with the number of
inputs d ranging from 3 to 8. Tables 1 and 2 display the average (over the 30 runs) percentage
of correctly classified patterns as the number of hidden units H increases.

The second type of datasets were the diabetes datasets obtained from the Probenl database
[6]. The percentage (over the 30 runs) of correctly classified training/test patterns are dis-
played in Tables 3 and 4.

As experimental results indicate, the performance improvement obtained using the moving
targets approach is significant when architectures of small size are employed. In such cases the
number of adjustable parameters of the network is smaller and, therefore, it is more difficult

for the optimization procedure to train the network adequately. Therefore, the flexibility

d=3 [d=4 | d=5 | d=6

73 | 62 | 64 | 66
82 | 8 | 83 | 87
a7 a3 91 =3
100 | 97 | 95 | o1
100 | 99 | 97 | 03
100 | 100 | 98 | 96
100 | 100 | 98 | 97
100 | 100 | 100 | 98

W-Hlmtﬂbl'-\-mh:'b—ltt:

Table 1: Percentage of correctly classified training patterns using the moving targets method
for parity datasets with d inputs and H units in the hidden layer.

d=3 | d=4 | d=5 | d=6
| 50 50 52 55
B4 63 70 75
85 81 32 34
39 90 1
99 a5 92 04
100 | 98 96 a7
100 | 99 08 a7
100 | 100 | 99 98

OC'HII:-'"}".F"J-‘-DJIQH,’J:
w0
-

Table 2: Percentage of correctly classified training patterns using the fixed targets method
for parity datasets with d inputs and H units in the hidden layer.

diabl | diab2 | diab3 |
78/76 | 79/74 | 78/75
80,77 | 81/72 | 81/76
82/77 | 84/74 | 84/7

8475 | 86/73 | 86/77
87/76 | 00/73 | 88/76

'-‘J"-l‘—'-':-\}t\:?:—‘,’:q

Table 3: Percentage of correctly classified training/test patterns using the moving targets
method for the diabetes datasets from the Proben database using H units in the hidden
layer.

diabl | diab2 | diab3
67/63 | 68/60 | 66,64
71770 | 72/65 | 71,70
75/73 | 77/70 | 78/72 |
83/75 | 85/72 | 84,75 |
86/75 | 89/73 | 88,76 |

g I] R e e

Table 4: Percentage of correctly classified training/test patterns using the fixed targets
method for the diabetes datasets from the Proben database using H units in the hidden
layer.

in optimization offered by the proposed method makes training substantially more efficient
and the capability of the training method to avoid low quality solutions becomes very clear.
As the size of the architecture increases, the two approaches tend to provide comparative
performance results. Therefore, the moving targets method can be seriously considered as a
technique for training feedforward classification networks.

Another important issue concerns the distance ¢ between the the target values a and
b corresponding to each class. As already noted, experiments indicate that the value of ¢
must not be very large nor very small. The reason is, that since the output of the MLP is
constrained to the interval (0, 1), a large value (close to 1) reduces the flexibility for the targets
t and t5 to be adjusted by the training procedure. On the other hand, a small value of ¢ does
not seem sufficient for effective discrimination between classes. Therefore, it is suggested that
the value of ¢ should be selected in the range [0.65, 0.85] and we have used the value ¢ = 0.75

in our experiments.

4 Conclusions

We have presented the moving targets approach to classification using feedforward neural
networks. The method exploits the fact that the target values are allowed to change during
training providing in this way greater flexibility to the minimization process which leads to
more effective training. This advantage becomes very clear in the case of small architectures
with few parameters where the minimization process is harder.

There is a lot of room for further research. Topics such as multi-class and multi-output
extensions, different MLP architectures, use of different networks (eg RBF networks) await for
further study and development. Moreover inequality constrained optimization methods may
also prove useful in-spite the complexity of their implementation that may at first discourage

their application. Our present results suggest that the moving targets idea is promising and

certainly deserves further investigation.

References

[1] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[2] T.G. Dietterich and G. Bakiri, "Error-correcting Output Codes: A general method for
improving multiclass inductive learning programs”, in D. Wolpert The Mathematics of
Generalization: The Proceedings of the SFI/CNLS Workshop on Formal Approaches to
Supervised Learning, pp. 395-407, Addison-Wesley, 1995,

[3] A. Likas, D.A. Karras and L.E. Lagaris, "Neural Network Training and Simulation Using
a Multidimensional Optimization System”, Int. J. of Computer Mathematics, vol. 67,
pp. 33-46, 1998.

[4] R. Fletcher, Practical methods of Optimization, second edition, Wiley, 1987,

[5] D.G. Papageorgiou, I.N. Demetropoulos and L.E. Lagaris, "Merlin-3.0, A Multidimen-
sional Optimization Environment”, Computer Physics Commaunications, vol. 109, pp.
997-249, 1998,

[6] Prechelt, L., PROBENI: A set of Neural Network Benchmark Problems and Benchmark-
ing Hules, Tech. Report 21/94, September 30, 1994, Fakultat fur Informatik, Universitat

Karlshruhe, Germany.

[7] M. Smith, Neural Networks for Statistical Modeling, Van Nostrand Reinhold, 1993.

