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The magnetization reversal by the curling mode in a ferromagnetic sphere is examined in order to
account for magnetostriction effecta. We constrain the strains to simple extension or compression.
The nucleation field obtained, i= an upper bound to the correct one.
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I. INTRODUCTION

Understanding the micromagnetics of magnetostrictive
materials is very important for the development of effi-
cient miero electromechanical systems (MEMS) [1]. The
usual manner to take into account magnetostriction in
magnetization reversal is by assuming some kind of in-
homogeneity in the magnetocrytsalline anisotropy, in the
form of dislocations [2] and voids [3]. The theory of mag-
netoelastic interactions [4] has never been fully applied
to specific problems due to its complexity. Some crude
estimations about the effect of magnetostriction on the
nucleation field are given in Refs. [5,6], based on a pertur-
bation approach. It has been proved that magnetostric-
tion does not affect the nueleation field for magnetization
curling in an infinite cylinder [7]. It is the aim of this
wark to caleulate a rigorous upper bound to the nucle-
ation field in an elastic sphere for the curling mode. The
solution methodology is similar to that of Ref. [8]. Two
simple deformation modes (a uniform and a non-uniform
one), of *hydrostatic” type are considered. The Brown’
s paradox is discussed, within the limitations of the de-
formation modes considered. and the shift of the critical
size for curling vs. coherent rotation is computed,

II. THE MICROMAGNETIC FORMULATION

A, General Theory

According to micromagnetism [4], the state of a de-
formable ferromagnetic material is described by the mag-
netization vector p{z) per unit mass (pip = u2 =
const.) and by the displacement vector u(x). Stable equi-
librium states correspond to minima of the Gibbs free
energy functional:
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where: F(u;, pi j, €;) is the local internal energy per
unit mass, €; are the infinitesimal strains (e;{z) =
(u;; +u;:)/2), H' is the field generated by the volume
(W - M) and surface (n - M) magnetic charges, H® is
the applied magnetic field, p, is the mass density in the
undeformed configuration, f is the body force, T is the
surface traction, g, is the magnetic permeability of vac-
uum, 7 is the outward unit vector from the boundary
surface, M is the magnetization per unit volume (= p ),
p=ps(l —V-u)and (); = 8/0x;. The field H' is de-
termined from the scalar potential U, H' = -V U, where
[ obeys the well known potential problem of magneto-
statics (9], The vanishing of the first variation of the
energy functional (1) (4G = 0) results in Brown' s equi-
librium magnetoelastic equations, which are highly non-
linear. For the mechanical problem, the presence of the
magnetization results in non-symmetric stress tensor &y;
and in additional body force density p, M -VH' and sur-
face force density 3poMin [4]. Thus the variation of the
magnetic self-energy is according to Brown [4]:
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where M,, = n- M and o are the direction cosines of the
magnetization vector. The local internal energy per unit
undeformed volume g, F can be expanded as:
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which includes exchange, exchange-strictive, anisotropy,
magnetoelastic and elastic terms, respectively. In what
follows we will neglect exchange-strictive phenomena and
assume zero body forces (f = 0).



B. The Model

We consider an elastic ferromagnetic sphere of radius
R in its virgin undeformed state, with cubic crystallo-
graphic symmetry. For convenience we assume that in
the undeformed state, the Cartesian coordinate axes are
identical with the crystallographic axes. The uniform ex-
ternal field is applied along the z-axis. The geometry of
the problem is shown in Fig. 1
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FIG. 1. The geometry of the problem.

The deformations are constrained in two specified “hy-
drostatic” deformation modes:
Non-Uniform Strain Mode 1 [(M1): uy = P, ug = ug =10,
P = const. with e.. = Ply® + 2%}/ I{I2+y2+33]3'f2
exy = —Pay/ (2® +4° + %) k3
by cyclic permutation).
Uniform Strain Mode 2 (M2): w, = pr,ug = uy = 0,
p = const. with ez = eyy = €z; = v and e;; = 0 for
i 4.
Notice that M1 introduces a singularity at r = 0, but the
additional accuracy which might be obtained by select-
ing u;’ s that are unique at the origin does not justify
the additional amount of work needed to calculate the
nucleation field h,,. The calculated h, will be an upper
bound to the correct one, since the minimization of (1) is
performed under an additional constraint [4]. The mag-
netization reverses by curling [8]:

ty = —y/1 —alsing, a, = —y/1 —aicosg,
oz = az(r,8) = go(r) + [1 — go(r)] cos® 8, (4)
U=U(r, 8) = U(r)cos8 + Us(r) cos? 8.
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The surface tractions are radial ones (T, = const., Ty =
T, = 0). From hereafter, the superseript (i) will denote
the mode considered.

C. The Differential Equations

We introduce the dimensionless quantities:
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where () = d/dt, M? = popts, Ro = VO (VZpaM?) is
the exchange length, with € the exchange constant, K is
the anisotropy constant, B;. B; are the magnetoelastic
constants, ©1), c12, cgq are the elastic constants, HY is
the uniform applied magnetic field along the z—direction.
Following the approximations introduced in Ref. [8] and
carrving out the integrations over # and ¢ the Gibbs free
energy (1) reduces to:
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where flrff']fﬂfff =1- 8_5:;2, eii] = 2pp /L, ELi} = 3p, an =
(1 + go)/(1 = go) and i = 1,2. The vanishing of the first
variation of the energy functional (6}, with respect to
internal variables gy, vq, vy and p'’ results in the four
Euler equations of the problem. However, the variations
of v; and vs depend on the variations of gy and p'¥ due
to Eq. {2):
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The Euler’ s equations are
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Egs. (9) and (10) and boundary conditions (11) and
{12) account for magnetic and mechanical equilibrium,
respectively. We must add to the equilibrium equations
{9-12) the equations for the potential problem (Egs. 4)
of Ref. [8].

III. LINEARIZATION (NUCLEATION FIELD
CALCULATION)

For small deviations from saturation, Euler’ s equa-
tions (9-10) reduce to the equations that determine the
nucleation mode. Setting

golt) =1 - eQ(t)’ (13)

with 0 < € < 1, taking into account (10} and expanding
the rhs of (9) up to terms that are linear in ¢, one finds
for €t} the equation (the self-magnetostatic potential
is taken to be that corresponding to saturation: v, =
Stf3,v3 =10):
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Notice that B!} = const. while B2 = Bl2}{t), Without
loosing much from the physics of the problem, we might
replace for M2 Eq. (10) with the approximate one p =~

=by/ cif\". Then

N k. (1-3p) (1 5
(3 j _5“2{ 5+ (3 h)} (17)

The general solution of {14) is the spherical Bessel func-
tion of first order Q) = 71 (Bt). At nucleation h =
by, this function satisfies the boundary condition [11)
JiiBn) = 0, the smallest root of which is B, = 2.0816.
Thus the nucleation field is given by:
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For hoth deformation modes h, is affected by magne-

tostriction (the rigid sphere limit corresponds to Sml =
0, ’?’r[:tl: = 1}, For small particles the coherent Stoner-
Wolfarth (SW) rotation governs the nucleation process.
For M1 the SW rotation is not a permissible magnetiza-
tion reversal mode, while for M2 is, with the well known

nucleation field:
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The crossover from SW to curling rotation determines
the critieal radius, which is affected by magnetostriction:
Srt’g&i
[
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According to the predictions of micromagnetics, the nu-
cleation field h, serves as a lower hound to the exper-
imental measured coercivity h,. (which is defined as a
positive quantity):
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As long as nucleation starts at positive fields (h, > 0}
the above inequality is an empty statement. But even
for by, < 0 it is not always satisfied (in experiments
h, € —hy,, sometimes by two or more orders of mag-
nitude). This is known as Brown’ s coercivity paradox
[10]. It is attributed to the existence of crystalline im-
perfections such as magnetic impurities and dislocations
[4]. Magnetostriction effects might be a step towards re-
solving that paradox, as long as

ﬂhn = h:t{gid o h_:;ﬂaat:ic - ﬂ.- {24]

with A% and h2'%#¢ hoth negative. Depending on the
values and signs of the magnetoelastic factors ﬁ'f;lt and
‘r::,:,.! Eq. (18) might satisfy Eq. (24), but it cannot help
on resolving the paradox, alone, because it computes an
upper bound to the correct nucleation field. Only after
calculating a lower bound to h, that also satisfies Eq.
(24) and is close to the upper bound (18) this result is
of practical importance. For materials for which the up-
per bound (18) does not satisfy (24) there is no need to
compute a lower bound, since in this case the paradox is
even more outstanding. The nucleation field is plotted in
Fig. 1 as a function of the reduce radius 5, for a fictitious
material with negative magnetostriction (b;. b2 > 0) and
positive magnetocrystalline anisotropy constant (k = 0},
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FIG. 2. =h, vs 5 for a fictitious material {by = 10¢%,
br =7x 10%, k=6, c}) =3 107, i = 10°).

For this particular set of material constants, both de-
formation modes satisfv Eq. (24). Notice the shift of the
critical radius is AS, = ST _gelostic — 7 485102 and
that non-uniform strains are hetter candidates for resolv-
ing the paradox than uniform ones. Assuming that M? =
10% kA/m and that the material is “clastically isotropic”
(c4s = {en1 — 12)/2) [11], Fig. 1 corresponds to K} =
3TT=10%T/m?, cgq = 5.06x 10T /m? and magnetostric-
tion constants Ay = —8.27x 1073, Aj;p = =116 x 10~%,
For Fe [12] AS, = —1.92 x 10~%, ALY = 0(107%) > 0
and AR = O(—107%) < 0 for § > 1. Similarly, for
Ni [12] AS. = 2.39 x 1073, ARY) = O(10-%) > 0 and
ARY = 0(-10-%) <0 for S > 1.

IV. CONCLUSIONS

Even though it has been stated by Brown [4] that mag-
netostriction affects the nucleation by curling in an ellip-
soidal ferromagnetic particle, no estimates of this effect
has ever been given. In our work we computed an upper
bound to the nucleation field for an elastic sphere. This
value is of practical importance only in combination with
a close enough lower bound. Methods already used for
obtaining lower bounds to the rigid problem [13], can be
applied for elastic ferromagnets, but with the additional
cost of solving the “mechanical” problem. We proved
that for materials for which the upper bound (18) does
not satisfy (24) the paradox is even more outstanding.
The shift of the critical radius for curling vs. SW rotation
for Fe and Ni was not a significant one. Both deforma-
tion modes considered, failed to satisfy the “mechanical”
boundary conditions. A more rigorous approach requires
consideretion of a mechanical fixed boundary surface [4].
Work is under way in this direction. The magnetization
reversal bevond nucleation is also under investigation.
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