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Abstract

One of the most serious shortcomings of multidimensional languages is their inability to col-
laborate with conventional programming languages and syvstems. Multidimensional languages
are used in order to define (potentially infinite) streams. grids, cubes, and so on, concepts
which resemble in nature to the familiar imperative arrays. The main difference is that the
former entities are lazy while the latter are generally ecager. This paper proposes the em-
bedding of multidimensional languages into conventional ones as a form of definitional lazy
arrays. The paper describes the details of an implementation of the proposed idea as well as
the expressibility and the performance of the resulting svstem. The main advantage of the
new approach is that multidimensional languages can now benefit from the advanced features
that have been developed for traditional languages. Moreover, multidimensionality adds to
conventional languages the idea of lazy arrays, which in many cases offer significant advantages
compared to the classical imperative arravs.

Keywords: Multidimensional Programming, Imperative Arrays, Procedures.

1 Introduction

Multidimensional programming [AFJ91, AFJW95] is a relatively recent programming paradigm
which is especially appropriate for expressing problems which involve entities that vary along dif-
ferent dimensions. Many such problems exist in various areas such as scientific computing, signal
and image processing, data processing. and so on [Agi96, RJ94, AFJW95]. One of the most seri-
ous obstacles in the wider use of multidimensional languages is the fact that they interface poorly
with existing procedural programming languages and systems. As a result, multidimensional
languages can not take advantage of advanced features that have been developed for traditional
languages. On the other hand, conventional languages lack the problem expressing capabilities of
multidimensional languages.

This paper proposes the embedding of multidimensional programs into conventional program-
ming languages by viewing such programs as defining lazy multidimensional arrays. A lazy array
is one whose entries are filled on demand (and not eagerly as in conventional languages). The pro-
posed approach allows multidimensional languages to take advantage of existing features available
in conventional programming systems. Moreover, when viewed as lazy arrays, multidimensional
programs may offer significant benefits compared to conventional (imperative) arrays. This is es-
pecially true in cases where only a small fragment of the elements of an array are needed in order
to compute a desired result. Such cases are difficult to handle with imperative arrays, especially
if the number of dimensions involved is significant. Moreover, in the lazy multidimensional array
approach one can trade time for space, something which is not easy in traditional imperative
arrays.

The amalgamation of multidimensional and procedural languages proposed in this paper is
simple and it only requires small changes to the syntax and semantics of both formalisms. The
paper describes the details of an implementation of the proposed idea as well as the expressibility
and the performance of the resulting system.

The rest of the paper is organized as follows: Section 2 provides an introduction to multidi-
mensional programming languages. Section 3 introduces the main technique (eduction) that has
been extensively used in the implementation of multidimensional languages. Section 4 describes
the technique for embedding multidimensional languages into conventional ones and Section 5



presents the details of an implementation of the proposed approach. Sections 6 and 7 explain why
the technique introduced in the paper compares favorably in many cases to the use of imperative
arrays and imperative procedures respectively. Section 8 concludes the paper with discussion of
future extensions.

2 Multidimensional Programming

The development of multidimensional programming languages [AFJ91, AFJW95. DW90a, DW90b]
followed the development of temporal languages such as Lucid [WA85]. Lucid is built on the no-
tion of time: the basic data value in a Lucid program is the stream, an infinite sequence of ordinary
data values. One can think of such streams as entities that vary with time. In the following we
give a brief presentation of Lucid, necessary for introducing the more demanding paradigm of
multidimensional programming.

To illustrate the ideas behind Lucid. consider the following program defining the (infinite)
sequence of natural numbers:

nat = 0 fby (nat+l);

Notice the use of the operator by (read followed by) in the above program. The semantics of the
operator will be given shortly. The declarative reading of the program is as follows:

The first value of the natural number sequence is 0. Each next value in the sequence
can be produced by adding 1 to the previous value of the sequence.

The above program defines the natural number sequence in a formal way, which however differs
from the usual mathematical definition which involves the use of a time index:

natg = 0
natier = nat +1

The Lucid program avoids the explicit use of the time index. The sequence of natural numbers is
defined using the temporal operator £by rather than using subscripts (i.e. indices).

The statements of a Lucid program are equations defining individual and function variables
required to be true at everv context (time point). Ordinary data operations (such as +, = and
if-then-else) are defined in a pointwise way. This means, for example, that the valueofa + b
at time-point t is the (ordinary) sum of the values of a and b at the same time-point {. The basic
Lucid operators are first, next, and £by. The operator £irst switches us to time point (), next
takes us from ¢ to t + 1. The operator fby takes us back from ¢ + 1 to ¢ (giving us the value of
its second operand at that point) or from 0 to 0, giving us the value of its first operand.

Let a and b be Lucid sequences. Then, the above ideas are formalized by the following semantic
equations:

(a +b), = az+ b
first(a)y = ag
next(a)y = @+

- ag ift=0
(a fby ) = { be_y ift>0

The £by operator allows us to express many iterative algorithms concisely: the first operand of
fby gives the initial value, and the second specifies the way in which each next value is determined



by the current value. For example, the following program computes the stream (1,1,2.3,5,...)

of all Fibonacei numbers:
fib = 1 fby (fib+g)

g = 0 fby fib

The Lucid language also supports user-defined functions that operate on sequences and return
sequences as results. However, these are not considered in the main part of the paper (see the
discussion on future extensions in Section 8).

Lucid has recently been extended to support more than one-dimensional entities [AF.J91,
AFJW95]. This extended language was named GLU and its first implementation was developed
in SRI. GLU allows the user to declare dimensions and to define multidimensional entities that
vary across these dimensions. So, a two-dimensional entity can be thought as an infinite table, a
three-dimensional one as a cube extending infinitely across the three dimensions, and so on. One
can perform various operations with arguments such higher-dimensional entities or even define
functions that take such entities as parameters and return new ones as results, Moreover, the
language supports generalized operators that work along each dimension.

As an illustration of the expressive power of GLU, we consider a simple program which first
appeared in [FW86] and which models heat transfer in solids. More specifically, consider a long
thin metal rod which initially has temperature 0 and which touches a heat source of temperature
100. The problem is to determine the temperature at a point of the rod after a number of time
points has passed (we assume that the rod has been divided into a large number of individual
pieces each of which has a different temperature). The temperature T; . at time ¢ and at space
(i.e. piece) s is given by the following recurrence relation:

Tﬂ.s-i-l = 0
Tio = 100
Tis1541 = kaTio—(1=2%k)+Ti g1 +k*Tiss0

where k is a constant that depends upon the material of the rod. The above equations can easily
be coded in GLU as follows!:

dimensions t, s;
T = 100 fby_s (0 fby_t (k*T-(1-2#k)*(next_s T)+k+(next_s next_s T)));
E=20.3;

The first line in the above example declares that two dimensions are used, namely t and s. Notice
the new operators that appear in the definition of T: £by_t, next_s and fby_s. These operators
are straightforward generalizations of the corresponding Lucid operators. For example, if a and b
are entities varying across the s and t dimensions, the semantics of fby_s is:

- @z j.f &= ﬂ
(a fby-s B)e.s = { Beo i if5>0

and the semantics of next_s is:
next.s(a)ys = asea1

"The syntax we use is slightly different than the actual GLU syntax, mainly for simplicity reasons. More on the
syntax of the subset we adopt will be given in subsequent sections.



The semantic equations for the other multidimensional operators are similar in nature.

It should be noted here that the example described above is expressed very compactly and
naturally in the GLU language. The solution of such a problem in a traditional imperative
langunage would most probably require the use of a three-dimensional array together with the use
of nested for loops in order to fill the entries of the array.

The next section describes the main techniques that are used in order to evaluate multidimen-
sional programs.

3 The Evaluation of Multidimensional Programs

The basic technique that has been extensively used for computing the output of temporal and more
generally multidimensional programs is known as eduction [WA85). The main idea behind eduction
is that the ewvaluator of a program demands the value of a given variable at given coordinates;
each such demand generates corresponding demands for other variables of the program in possibly
different coordinates. In general, eduction follows the semantic equations of the operators in order
to compute the final output of a given program. The demand-driven nature of eduction makes it a
lazy implementation technique: it does not compute things that are not needed in the calculation
of the desired result.

The above ideas are illustrated in the example that follows. We first consider the simpler case
of temporal programs. Assume we want to compute the output of the £ib definition at time point
2. By EVAL we denote the evaluator (interpreter) of the temporal language.

EVAL(£ib,2)
EVAL((1 fby (fib+g)),2)
EVAL((£fib+g).1)
EVAL(fib,1) + EVAL(g, 1)
(
(
(

Il

EVAL((1 fby (fib+g)),1)+ EVAL((0 fby f£ib),1)
EVAL((fib+g),0) + EVAL(£ib,0)

= EVAL(fib,0) + EVAL(g,0) + EVAL((1 oy (£ib+g)).0)
EVAL((1 fby (fib+g)),0) + EVAL((0 fby £ib).0) +1
= 14041

=: 2

A careful examination of the above steps reveals that there exist computations that take place in
more than one occasions. For example, the value of £ib at time 0 is demanded twice. This suggests
that an efficient implementation of a temporal language should store values of variables that have
been computed under specific contexts, so as that these results will be available if demanded later
during evaluation. The process of storing intermediate results is known as warehousing and the
data structure that is used for this purpose (usually a hash-table) is known as the warehouse.
Maintaining the warehouse during execution is not always an easy task: a garbage collection is
often required as the table tends to get full with old entries (which may be useless for future
calculations). Many techniques have been devised for managing the warehouse component of the
implementation [WA85, FW87, Bag86]. A variation of the technique used in [FW87] has been
used in the implementation of the lazy arrays approach proposed in this paper (more details are
given in Section 5).

on



When one considers multidimensional programs, things become more complicated in terms
of implementation. The evaluator has to compute the values of variables under more than one
dimensions. Moreover, the warehouse has to be more general as it now stores the values of variables
under more complicated contexts. To illustrate these ideas, consider the following example which
computes the value of the multidimensional entity T introduced in the previous section at time
point 1 and at space coordinate 1:

EVAL(T,1,1)
= EVAL{100 fby_s (0 fby.t (k*T-(1-2+k)*(next_s T)+k#(next.s nexts T)))},1.1)
EVAL(k*T-(1-2+k)*(next_s T)+k*(next_s next.z T),0,0)
0.3« EVAL(T,0,0) — (1 — 2+0.3) * EVAL(T,0,1) + 0.3 + EVAL(T,0,2)
30

As it can be easily verified, the eductive implementation of multidimensional programs involves
extensive recalculations (for an illustration of this, consider the calculation of the value of T at time
3 and space 3). The warehouse idea is now even more necessary than in the single dimensional
(temporal) case. The warehouse is usually implemented as an open hash table. More details on
its structure and implementation will be given in subsequent sections.

4 DMultidimensional Programs as Lazy Arrays

The basic idea behind the proposed approach is that the data definition section of a conventional
program can be extended to include a multidimensional lazy array definition part. The definitions
of this part are in fact definitions of a multidimensional program. Entities that are defined in this
way can be used in the remaining conventional part of the program as ordinary multidimensional
arrays. The only exceptions to the use of lazy arrays, are the following:

¢ The value of a specific entry of a lazy array can not be altered by the procedural program.
So. for example, a reference to a lazy array element can not appear in the left hand side of
an assignment statement.

e Lazy arrays can not (in the present implementation) be passed (as a whole) as parameters
nor returned as results of conventional imperative procedures. However, individual elements
of such arravs can be passed as parameters to procedures.

All other uses are legitimate. For example, one can compare lazy array elements, use them in
expressions, assign them to variables of the same type, and so on. An important characteristic
of this type of arrays is that thev are referentially transparent: references to the same element of
such an array in different parts of the program always correspond to the same value.

The basic advantage of the proposed approach is simplicity and semantic clarity. The two
formalisms (namely multidimensional definitions and conventional program statements) do not
mix in an arbitrary way, but through a specific, well-defined interface. So, for example, the
multidimensional part of the program can not contain any imperative statements nor can it use
any imperative variables. On the other hand, the imperative part of the program can only refer
to specific elements of entities that are defined in the multidimensional part; it can not handle
multidimensional entities in arbitrary ways.



To illustrate the above ideas. consider the following problem taken from the area of dynamic
programming [AHUST]. Suppose two teams, A and B, are playing a match to see who is the first
to win n games for some particular n. Let p(z,y) be the probability that if A needs r games to
win, and B needs y games, that A will eventually win the match. It can be easily shown that p
is given by the following recurrence relationship:

1 ifr=0andy>=0
plz.y) = 0 ffr>0andy=10
(plx — 1,y) +p(z,y—1))/2 otherwise
The above recurrence can be coded in GLU as follows:

dimensions x, y;
p = 1 fby_x (0 foy_y (next_y(p)+mext_x(p))/2);

Multidimensional programs such as the above will be embedded into conventional ones. The “host
language” we will be considering in this paper is the object-oriented (and also imperative) language
Java. The main reason that Java has been chosen is the fact that it supports a large number of
useful classes which can be used in combination with multidimensional programs. For example,
using Java's Abstract Windowing Toolkit package (AWT). one can visualize the execution of
multidimensional programs; using Java’'s threads one can experiment with the parallel execution
of multidimensional programs, and o on.
The syntax of the mixed language is demonstrated by the following extended Java program:

public class multi {
/* The multidimensional array definition section */
CC
dimensions x, ¥;
p =1 fby_x (0 fby_y (mext_y(p)+next_x(p})/2);
1]

public static void main(String [] argv){
System.out.println(p[100] [100]);
}
}

Notice that in the conventional part of the program, the variable p is used as an ordinary
array. In particular, the above program will print to the standard output the value of the two-
dimensional entity p at x coordinate 100 and at y coordinate 100.

As it will be demonstrated in the next section, lazy arrayvs can be used in cases where the use of
conventional ones appears to be problematic (e.g. whenever space allocation for imperative arrays
becomes a problem due to the large number of dimensions of a specific application). Moreover,
in many cases, lazy arrays appear to be much more expressible and problem-oriented than their
imperative counterparts.

On the other hand, the embedding described in this section offers immediate practical benefits
for multidimensional languages. Figure 1 illustrates the visualization of the demand patterns
during the eduction procedure of the temperature program of Section 2 (and more specifically for
the computation of the value T[8] [6]). Such simple visualization applications are easy to code
once given the implementation of the mixed language that was introduced in this section.
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Figure 1: Demand Pattern in the Execution of a Multidimensional Program

5 Implementation

In this section we present the details of an implementation of the lazy arrays idea. More specifi-
cally, we outline the basic ideas behind a compiler we have developed which translates the extended
language of the previous section into pure Java code. The compiler has been written almost ex-
clusively in Prolog (in fact, a large part of the code has been borrowed from a compiler we had
developed for a higher-order functional language [RW94]).

The multidimensional language adopted is a simple subset of GLU. More specifically, programs
of this subset consist of an initial declaration of the dimensions that will be used. followed by a
set of individual variable definitions. In other words, the user-defined functions and the nested
where clauses of GLU are not used. The language has been kept as simple as possible because
it is not intended to compete with the more general-purpose “host language”. The simplicity
of the language also leads to a relatively easy compilation procedure. The only GLU operators
adopted are first, next, fby, and prev (working in all user-defined dimensions). The language
also supports many usual operators (e.g. +, >, if-then-else, etc.). Roughly speaking, the above
subset of GLU corresponds to the syntax of a multidimensional extension of the logic programiming
language Chronolog [Wad88, OD97].

On the other hand, the host language has also been restricted. Only one multidimensional
array definition section is allowed in every class definition, and it appears as the first thing in the
class definition. Lazy arrays are assumed to be private in the class where they are defined (i.e.,
they can not be accessed from outside the class). These restrictions are not serious and have been
imposed for syntactic simplicity reasons.

The basic idea behind the implementation of the proposed lazy arrays approach is that ev-
ery individual definition of the multidimensional program is compiled into a conventional Java
method. Each such method has as formal parameters all the dimensions that are used by the cor-
responding multidimensional program. Moreover, the various operators are compiled according
to their semantic definitions. As an example, consider the “two teams” example of the previous
section. A (simple-minded) implementation of the example would give:

public class multi{
static double eval_p(int x, int y) {
return ((x == 0)?(1):((y == 0)7(0): (eval_p(x-1, y)+eval_p(x, y-1))/2));



}
public static void main(String argv[]){
System.out.println(eval_p(100,100));
}
}

Notice that the individual variable definition of p has been transformed into a Java method
eval_p(int x, int y), where x and y are formal parameters that model the corresponding
dimensions of the initial program. Notice also that the reference p[100] [100] in the conventional
part of the initial program has been transformed into the method invocation eval_p(100,100).

The above compilation is a naive one, in the sense that it results to extremely inefficient output
code. The resulting program is a highly recursive one, and calls to eval p(int %, int y) fail to
terminate even for very small values of x and y.

The actual output of the compiler is the following (much more efficient) program:

public class multi{
static Warehouse w = new Warehouse();
static double eval_p(int x, int y) {
double temp;
Key k = new Key(1, x, yJ;
Value v = w.get(k);
if (v != null) return v.result;
temp = ((x == 0)7(1):((y == 0)7(0): (eval_p(x-1, y)+eval_p(x, y-1))/2));
w.put (k, new Value(temp));
return temp;
}
public static void main(String argv[]){
System.out.println(eval_p(100,100)};
}
}

Certain explanations are in order. The main difference between the above program and the
previous one is that the warehouse idea is now used. Notice that the above program presupposes
the existence of a Warehouse class, which will be described shortly. The basic idea of the above
code is that whenever a call eval_p(x,y) takes place, a search of the warehouse is first performed
with the hope that the same call has oceurred before and the corresponding result is immedi-
ately available. If the search is unsucecessful, the result value is computed as usual. After the
computation has taken place, the value together with the corresponding context is added to the
warehouse,

The Warehouse class implements an open hash table [CLR90]. For a two-dimensional program
the warehouse has the structure shown in Figure 2. More generally, each entrv of the table consists
of a Key (with attributes the identifier name encoded by a small integer, and the coordinates under
which the identifier has been demanded). the Value part which holds the value that corresponds
to the particular entry, and the age of the particular entrv (which is further discussed below).
The Warehouse class, apart from its constructor method, also supports a void put(Key key,
Value value) for storing values to the warehouse, a Value get(Key key) method for retrieving



WAREHOUSE

Identifier  Time Space Age Value
a | 1 3| 108 ‘
a 2 i 3 192
i b 5 o | 0
EVALUATOR = |
r 2 0 | g | Ba
¢ 3 3 16 8 !

Figure 2: The Structure of the Warehouse

values from the warehouse, the int h(Key key) which implements a hashing funection, and the
void garbage_collect() method which performs a regular garbage collection of the warehouse.

The garbage collection scheme used is a slight variation of the one proposed in [FWR87]. More
specifically, entries are stored in the warehouse together with an item which characterizes their
age. In the variation we use, there exists a global_age variable which is increased every time
a new entry is added to the warehouse’. The age field of the new entry is then set to the new
value of global_age. In this way, the oldest entries are the ones having the smallest values in
their age fields. Every time a garbage collection takes place, all entries whose age is below a
certain limit are discarded; the age of all remaining entries is decreased accordingly. The overall
behavior of the warehouse depends upon three parameters: the size 5 which is the number of
buckets of the warehouse table (usually a prime number). the garbage collection limit G which
is the number of entries in the warehouse after which the garbage collection algorithm starts
executing, and the rate R which characterizes the percentage of the elements in the warehouse
that will be deleted during garbage collection. For example, S = 6997. G = 5000 and R = 0.5
means that the warehouse table has 6997 buckets, garbage collection starts whenever 5000 entries
exist in the warehouse and that 2500 entries will be deleted in every garbage collection.

The present implementation does not support any form of dimensionality analysis [Dod96].
a technique that has been developed for identifving for each variable in a multidimensional pro-
gram the minimum set of dimensions that the variable depends upon. Dimensionality analysis
is especially useful when the number of dimensions that a program uses is significant. Know-
ing the dimensions on which a variable depends is important because one can then store (and
subsequently search) in the warehouse only the coordinates that are relevant regarding a specific
variable.

2In [FW&T]. the age of an entry is counted by the number of garbage collections that the entry has survived.
and it is usually a small integer.
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The next section discusses the performance of the above implementation and compares it with
the performance of imperative arrays.

6 Comparison with Imperative Arrays

Conventional arrays is the standard means for implementing all kinds of applications that require
storing and subsequent fast access to intermediate computation values. One problem however
with imperative arrays is that often. in order to compute the value of a specific element, one has
to compute the values of other elements on which the desired value depends. In general, this is not
an easy task. For example, suppose one uses conventional arrays in order to compute the element
pl10]1 [10] (where p is the multidimensional entity modeling the “two teams” problem). The
value of the particular element depends on the values of p[9] [9] and p[10] [9]. These elements
themselves depend on other elements of p, and so on. Writing a program that would calculate
the value of p[10] [10] using imperative arrays is not straightforward, because the programmer
has to think how to structure the nested for loops that will fill the array elements leading to the
calculation of the desired value. The following Java program implements such a solution (given
in [AHUST]) for the “two teams” problem:

public class Comp {
public static double p[]l[] = new double[1001] [1001];

public static double odds(int i, int j){
plol[0] = 1;
for (int s = 1; s<=i+j; s++)}{
pl0l[s] = 1.0;
plsl(o] = 0.0;
for(int k = 1; k <= s5-1; k++) {
plkl[s-k] = (p[k-1][s-k] + plk]l[s-k-1])/2.0;

}
return p[il[j];

public static void main(String argv[]){
System.out.println(odds(500,500));
E;
¥

The above program actually computes the elements of the array in diagonals. The resulting
code is certainly not very straightforward to think and write. In the lazy arrays approach one
simply has to think about the problem in hand and forget about the low level implementation
details which are taken care by the eduction mechanism. During execution, when a specific
element of a lazy array is demanded. the eduction mechanism uses the corresponding definition in
order to calculate the desired output. This results in demands for other elements to be generated,
and so on. In other words, the eduction engine itself reveals and follows the existing dependencies.
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Time (in sec)

Input Size | Lazy Arrays | Imperative Arrays
100 il 1
150 11 2
200 20 3
250 31 5
300 52 7
350 65 9
400 90 12
450 112 15
&00 129 19
550 173 23
600 202 -
650 239 s

Table 1: Time Comparison Between Lazy and Imperative Arrays

250

Time {sec)

Lazy Arrays ——
imparative Arrays /
|
<

200
Input Size

500

Figure 3: Imperative Arrays vs Lazv Arrays: Time Comparison

On the other hand, it should be noted here that imperative arrays are significantly faster
than their lazy counterparts (because they use direct access instead of hashing). A comparison
of the performance of the “two teams” program in the above imperative and the compiled lazy
version of Section 5, is shown in Table 1 and Figure 3. Both programs were set to compute and
print the value of p[i] [i] ten times (in order to get non-zero timing results for small values
of i). The input value i ranged from 100 to 650. For the lazy version, the parameters used
in the warehouse were S=6997 (a prime number), R = 0.5 and G = 5000.

12
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arrays are slower (about 7 times)3. However, using standard curve fitting techniques, one can see
that both curves express quadratic complexity and they differ only by a constant factor. Notice
also that the imperative solution fails for large input values possibly due to space problems (an
unexpected NullPointerException is generated), while the lazy array solution continues to give
results even for quite large values of the input. Moreover, the lazy program has an overhead
due to the recursive method calls introduced by the compilation strategy of Section 5. Another
overhead is due to the garbage collection of the heap which is performed by the Java runtime
(and which is higher for the lazy program due to the objects used as entries by the warehouse).

Another shortcoming of imperative arrays is that in many applications, in order to compute
a desired element, one has to compute all the values in the array. However, not all values will
generally be needed and possibly only a very small fragment of them will ever becomne necessary
(see for example the dependencies for the calculation of T[8] [6] in Figure 1). This discussion
is closely related to the old debate between lazy and eager functional programming languages
[FH88]. There are cases where an eager functional program is preferable and others where laziness
is of paramount importance. It should be noted at this point that although this debate has
a long history, it seems that the trends in modern functional languages are more in favor of
lazy evaluation. This possibly suggests that lazy arrays may prove a useful complement to the
traditional array concept.

A case where multidimensional lazv arrays appear preferable to conventional ones is for appli-
cations that use a significant number of dimensions. The space required for storing conventional
arrays that use a large number of dimensions is by no means negligible. For example, a three
dimensional array with 100 elements in each dimension has a total of one million entries. As the
dimensions increase, the corresponding arrays tend to get unmanageable. On the other hand,
lazy arrays do not need to be stored as a whole. When a value of a variable is demanded. the
definition of the variable is used to compute the desired result. The result can then be saved in
the warehouse so as that it can be used by subsequent computations. However, the result need
not stay in the warehouse for ever. If space becomes a problem, the warehouse can be garbage
collected. It can even be completely emptied if this is required. The values that are thrown away
can always be recomputed by the corresponding multidimensional definitions. In other words,
in the lazy multidimensional array approach one can trade time for space, something which is
not easy in traditional imperative arrays. Table 2 and Figure 4 show the space consumption
comparison for the “two teams” problem. In the lazy version, the same parameters as before were
used in the warehouse. The space for the lazy program is computed using a worst-case scenario:
the space taken-up by the warehouse just before a garbage collection will take place. This space
is constant because the garbage collection takes place whenever G=5000 entries have been added
in the warehouse, and each such entry has a specific size. Notice also that the warehouse size
can be regulated according to the space limitations that an application may have. Smaller size of
the warehouse does not necessarily mean worse performance. This is illustrated in Table 3 and
Figure 5 which present the execution times for the calculation of p[200] [200] (ten times) with
varying warehouse size. More specifically, S = varying (and usually a prime), G = 2/3+ S, and R
= (.5. Notice that performance is affected only when S gets very low (in which case many useful
entries are thrown away during garbage collection and have to be recomputed).

3All the performance results were obtained on a Sun UltraSparc 1, with 192 MB RAM. and the corresponing
timings were recorded with the UNIX time utility. The programs were compiled and run using JDK 1.1.4.
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Space (in data items)
Input Size | Lazy Arrays | Imperative Arrays

100 36997 10201
150 36997 22801
200 36997 | 40401
250 36997 63001
300 36997 20601
350 36997 123201
400 36997 160801
450 36997 203401
500 36997 251001

Table 2: Space Comparison Between Lazy and Imperative Arrays

300000 T T
Lazy Armays —
Imperative Amrays ---
250000 -
200000 +
§1m I
100000
50000 +
0 1 1 1 : i i
100 150 200 250 350 400 450 500

300
Input Size

Figure 4: Imperative Arrays vs Lazy Arravs: Space Comparison

Of course, there are cases where multidimensional arrays are not appropriate. For example,
there exist problems in which arrays are not used in order to model some multidimensional
problem but simply to keep values that are used over and over again by the program. As an
example, consider traditional sorting of an array of values. Sorting of numbers can also quite
easily be performed in a multidimensional language [AFJW95]page20], but it does not appear as
natural as the usual sorting algorithms that use imperative arrays. In general, we believe that
the two different forms of arrays are complementary in nature, each one having its own successful
application domains.
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Warehouse Size (S) | Time (sec)
443 355
-‘ 461 259
503 291
547 283
599 364
601 19
607 18
919 20
1847 19
3697 20
7393 23
14783 23

Table 3: Execution Time as a Function of Warehouse Size

400 T T
Lary Arrays ——

Time [sec)

100

2000 4000 BOO0 8000 10000 12000 14000
Warshousa Size

Figure 5: Execution Time as a Function of Warehouse Size

7 Comparison with Imperative Procedures

As discussed in Section 5, the definitions of the multidimensional lazy arrays can be compiled to a
set of conventional procedures (in our case a set of Java methods). This brings us to the question
of why not just use procedures instead of extending a traditional language with lazy arrays.

An important drawback of the use of procedures to describe multidimensional entities, is the
fact that procedures can not in general be memoized. This is due to the fact that imperative
programming languages are not in general referentially transparent. Two syntactically identical
procedure calls in a program may correspond to two different returned values. Therefore, any
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[ Input Size | Time (sec)
| B 0

[ 9 1

L 10 5

| 11 20

| 12 84

I 328

| U 1225

Table 4: Performance of Procedures without Memoization
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3 9 10 12 13 14

11
Input Size

Figure 6: Performance of Procedures without Memoization

attempt to memoize conventional procedure calls seems fruitless. On the other hand, memoization
(through the use of the warehouse) plays a vital role in the performance of the lazy arrays
approach. Table 4 and Figure 6 illustrate the performance of the procedure implementation
of the “two teams” example discussed in previous sections. Notice that even for small values
of the input. the time required to solve the problem is significant. Actually the complexity of
computing p(i,j) for the specific problem in a recursive way without memoization is O(2*7).

One possible solution to the above problem would be to appropriately mark the procedures
used for describing multidimensional concepts. Then, the compiler would know that these are
referentially transparent ones and could perform some type of memoization. However, this type
of marking also means that the syntax of the source language has to be altered (slightly) and
the memoization may require changes to the runtime of the language. The advantage of such
an approach would be that the programmer would not have to learn yet another formalism (i.e.
multidimenional languages) and would be able to program multidimensional applications using
conventional procedures.
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However, there exists another serious obstacle to the use of imperative procedures for encod-
ing multidimensional entities. Such an encoding is far less natural than a direct encoding in a
multidimensional language. Using procedures, one has to carry around all the possible dimensions
that are used, in contrast to the GLU definitions in which the contexts do not appear explicitly.
Consider for example the following fragment of a GLU program:

dimensions x, ¥, Z, t;

a=b+ c;
b = if (d+e > 2#e) then d+c else 2=g;
c = b

Coding the above program using procedures, would result in something of the following form:

static double a(int x, int y, int z, int t) {
return b(x, y, =z, t) + clx, y, 2, t);
+
static double b(int x, int y, int z, int t) {
if (d(x, v, 2z, t)velx, ¥, 2z, t) > 2*e(x, ¥, 2, t))
return d(x, y, z, t)+c(x, y, 2z, t);
else return 2*e(x, y, z, t);

}

static double c(int x, int y, int z, int t) {
return 5;

}

Obviously, the use of procedures to describe multidimensional entities is generally cumbersome
and inelegant. Things become even more difficult when one allows the multidimensional language
to support user-defined functions. In such a case, the description using procedures becomes much
more difficult. These issues are further discussed in Section 8 that follows.

In general, we believe that conventional procedures are inappropriate for describing multidi-
mensional concepts in a concise way. However, they can be used, as discussed in previous sections.
to provide a viable implementation of the lazy multidimensional arrays idea.

& Discussion

In this paper, we have presented a technique for amalgamating multidimensional and procedu-
ral programming languages in a controlled way. More specifically, we have demonstrated that
multidimensional programs can be embedded into procedural programs as multidimensional lazy
arrays. Such an approach offers benefits to both worlds: multidimensional languages can benefit
from the extensive capabilities of traditional programming and procedural languages can use a
different form of arrays which in many applications offers advantages over imperative ones. In
particular, lazy arrays can be used in applications where not all elements of an array are needed
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in order to compute the desired output. Moreover, they are especially appropriate for problems
that involve a large number of dimensions, and in which imperative arrays would face significant
space problems.

There are certain aspects of the work presented in this paper that require further investigation
and development. First of all, the subset of GLU considered is somewhat restrictive, in the
sense that it only uses zero-order (i.e. nullary) definitions. It would be natural to ask whether
functions can easily be added to this subset. The answer is that first-order functions as well
as a significant class of higher-order ones can be added to the language without any semantic
complications. However, the implementation of the resulting multidimensional language would not
be as straightforward as the language considered in this paper (see for example [RW97, RW99]).

Another useful extension would be the addition of multidimensional pattern matching, which
is similar in spirit to the pattern matching idea of modern functional languages [FH88]. This
would allow the more natural coding of applications. For example, the "two teams” problem of
Section 4 would then be coded as follows:

first_ x next_yp = 1;
next_x first_ yp = 0;
next _x next .y p =next y p + next_x p;

This syntax corresponds more closely to the recursive definition of p given in Section 4, avoids the
use of the £by operator and is in our opinion much more natural. Of course, the above three parts
of the definition of p would at compile time be transformed into a single one; for this purpose,
similar techniques as those employed in conventional functional languages could be used.

Finally, we believe that further experimentation is required in order to identify the nature
of applications that require lazy instead of imperative arrays and vice-versa. One area which is
rich in multidimensional problems that can form the basis of such an investigation, is the area
of scientific computing. Recent work [Paq99] has shown that multidimensional languages are
especially appropriate for descibing scientific computing problems. It is our opinion however that
lazy and imperative arrays are not competing notions but complementaty ones, and a language
for scientific computing based on both ideas would offer significant benefits.

Acknowledgment: The author would like to thank J. Plaice for many useful comments on an
earlier version of the paper.
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