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ABSTRACT: The presentation of an evolutionary approach for discovering fuzzy systems for breast
cancer diagnosis is considered in this study. The automatic diagnosis of breast cancer is an important real-
world problem. In this study, we focus on the Wisconsin breast cancer diagnosis (WBCD) problem,
combining two schemes, fuzzy systems and evolutionary algorithms, so as to automatically produce
diagnostic systems. The proposed fuzzy-genetic approach produces systems exhibiting one of the highest
performances shown to date as well as the possibility of attributing a confidence measure to the output
diagnosis. In addition, the few simple rules involved in the resulting system make it also human-
interpretable.
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1. INTRODUCTION

A major class of problems in medical science involves the diagnosis of disease, based upon various tests
performed upon the patient. When several tests are involved, the ultimate diagnosis may be difficult to
obtain, even for a medical expert. This has given rise, over the past few decades, to computerised
diagnostic tools, intended to aid the physician in making sense out of the welter of data. A prime target for
such computerised tools is in the domain of cancer diagnosis. Specifically, where breast cancer is
concerned, the treating physician is interested in ascertaining whether the patient under examination

exhibits the symptoms of a benign case, or whether her case is a malignant case.



An efficient computerised diagnostic tool should possess two characteristics, which are often in
conflict. First, the tool must attain the highest possible performance, i.e., diagnose the presented cases
correctly as being either benign or malignant. Moreover, it would be highly desirable to be in possession
of a so-called degree of confidence: the system not only provides a binary diagnosis (benign or
malignant), but also outputs a numeric value which represents the degree to which the system is confident
about its response. Second, it would be highly beneficial for such a diagnostic systems to be human-
friendly, exhibiting so-called interpretability. This means that the physician is not faced with a black box
that simply spouts answers (albeit correct) with no explanation; rather, we would like for the system to
provide some insight as to how it derives its outputs.

In this study, two schemes, fuzzy systems and evolutionary algorithms, are combined to
automatically produce systems for breast cancer diagnosis. The major advantage of fuzzy systems is that
they favour interpretability, however, finding good fuzzy systems can be quite an arduous task. This is
where evolutionary algorithms step in, enabling the automatic production of fuzzy systems, based on a
database of training cases.

Fuzzy modelling is the task of identifying the parameters of a fuzzy inference system so that a
desired behaviour is attained. The parameters of fuzzy inference systems can be classified into four
categories: logical, structural, connective and operational. On the other hand, evolutionary algorithms are
used to search large, and often complex, search spaces. They have proven worthwhile on numerous
diverse problems, able to find near-optimal solutions given an adequate performance (fitness) measure.
Fuzzy modelling can be considered as an optimisation process where part or all of the parameters of a
fuzzy system constitute the search space. Evolutionary fuzzy modelling although had first appeared about
a decade ago, it has been applied in an ever-growing number of domains, like chemistry, medicine,
telecommunications and of course control.

Both connective and structural parameters modelling can be viewed as rule base learning processes

with different levels of complexity. In the evolutionary algorithm community there are two major



approaches for evolving such rule systems: The Michigan approach and the Pittsburgh approach [1]. A
more recent method has been proposed specifically for fuzzy modelling: the iterative rule leaming
approach [2]. This study is organised as follows: In the next section, the Breast cancer diagnosis problem,
based on the Wisconsin Hospital Database, is presented. In section 3, the proposed evolutionary approach
to the WBCD problem is described, while the results are discussed in section 4, followed by concluding

remarks in section 5.

2. THE BREAST CANCER DIAGNOSIS PROBLEM

Breast cancer is the most common cancer among women and a frequent cause of death in the 35-55 age
group. The presence of a breast mass is am alert sign, but it does not always indicate a malignant cancer.
Fine needle aspiration (FNA) of breast masses is a cost-effective, non-traumatic, and mostly non-invasive
diagnostic test that obtains information needed to evaluate malignancy. The Wisconsin breast cancer
diagnosis (WBCD) database [3] is the result of the efforts made at the Univ. of Wisconsin Hospital for
accurately diagnosing breast masses based solely on an FNA test [4]. Nine visually assessed
characteristics of an FNA sample considered relevant for diagnosis were identified, and assigned an
integer value between 1 and 10. The measured variables are illustrated as follows:

e Clump Thickness (v/)

e Uniformity of Cell Size (v2)

e Uniformity of Cell Shape (v3)

» Marginal Adhesion (v4)

* Single Epithelial Cell Size (v3)

e Bare Nuclei (v6)

e Bland Chromatin (v7)

+ Normal Nucleoli (v8)




¢ Mitosis (v9)

Specialists in the field furnished the diagnostics in the WBCD database. The database itself contains 683
cases, with each entry representing the classification for a certain ensemble of measured values. However,
the diagnostics do not provide any information about the degree of benignity or malignancy. There are
several studies based on this database. Using the C4.5, the well-known method for decision tree induction,
a classification rate of 95.7% has been obtained [5]. In another similar technique, the OC1, a method for
the induction of oblique decision trees, a rate of 96.2% has been achieved [6]. Kermani et al. [7] used a
genetic algorithm to extract the most important variables, their attained performance level being lower,
94.7%. Setiono [8] proposed a method based on pruned neural networks for finding a set of rules to
explain the diagnostic. His results were encouraging, exhibiting both good performance, and a reduced
number of rules and relevant input variables, 95.42% with 1 rule per system and 97.14% with 3 rules per
system. However, the extraction of rules was a manual, experience-based process. Finally, the well-
known neuro-fuzzy NEFCLASS learning algorithms have been applied to the above-mentioned problem
[9]. After training the fuzzy sets, with four rules, for 100 epochs the classification accuracy reached at
96.5%, i.e. 24 classification errors. The work in this study is focused on a two-component set-up, in order

to evolve fuzzy rules for the WBCD problem: the fuzzy inference system itself and the genetic algorithm.

3.  EVOLUTIONARY FUZZY SYSTEMS FOR THE WBCD PROBLEM

The proposed scheme for the WBCD problem is illustrated in Fig. 1. It consists of a fuzzy system and a
threshold unit. The fuzzy system computes a continuous appraisal value of the malignancy of a case,
based on the input values. The threshold unit then outputs a benign or malignant diagnostic according to
the fuzzy system’s output.

3.1 Fuzzy system parameters



srevious knowledge about the WBCD problem and about some of the extant rule-based models represents

valuable information to be used for the choice of fuzzy parameters. However, the following issues should

be taken into consideration: small number of rules [10], and small number of variables [10][11].

Some fuzzy models forgo interpretability in the interest of improved performance. Where medical
diagnosis is concemed, interpretability is the major advantage of fuzzy systems. This motivated us to take
into account the following five semantic criteria, defining constraints on the fuzzy parameters [12],
Distinguish-ability, justifiable number of elements, coverage, normalisation and orthogonality. Taking in
account the above criteria, the fuzzy system setup is constructed as: _

Logic parameters

e Reasoning mechanism: zero-order, Takagi-Sugeno-Kang (TSK) fuzzy system

¢ Fuzzy operators: min and max

e Input membership function type: orthogonal, trapezoidal as shown in Fig. 2.

Structural parameters

e Relevant variables: there is insufficient a priori knowledge to define them, therefore this will be one of
the genetic algorithm’s goals.

e Number of membership functions: two membership functions denoted, Low and High are used for the
input variables. Three membership functions have been used but the results were less satisfactory,
probably due in part to the increased search space size. Two output values are used, corresponding to
benign and, malignant diagnostics.

* Number of rules: results from Setiono [8] show that few rules are needed to achieve good
performance. In this study the number of rules was limited to be between 1-5. These rules are evolved.

Connection parameters

¢ Antecedents of rules: to be found by evolution.
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o Consequent of rules: the implemented strategy has the algorithm find rules for one of the possible
consequent (malignant or benign), the other being an else condition.

¢ Rule weights: active rules have a weight of value 1 and the else condition has a weight of 0.25.

Operational parameters

e Input membership function values: to be found by evolution.

e Qutput membership function values: following the WBCD database, we used a value of 2 for benign
and 4 for malignant.

3.2 The Genetic Algorithm

The Pittsburgh-style structure learning is applied [1], using a genetic algorithm to search for three

parameters. The genome, encoding relevant variables, input membership function values, and antecedents

of rules, is constructed as follows:

e Membership function parameters: There are nine variables (v/-v?9), each with two parameters P and 4,
defining the start point and the length of the membership function edges, respectively as shown in Fig.
2,

o Antecedents: The i* rule has the form:
if (vl is 4 )and ..and (v9is A,) then (output is benign),

where A represents the membership function applicable to variable v;. AJ can take on the values:

1 (Low), 2 (High), or 0 or 3 (Other).

e Relevant variables are searched for implicitly by letting the algorithm choose non-existent
membership functions as valid antecedents; in such a case the respective variable is considered
irrelevant.

Table 1 delineates the parameters encoding, which together form a single individual’s genome. Fig. 3

shows a sample genome.



jve the fuzzy inference systems, we have applied a standard genetic algorithm [1] with a fixed
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pulation size of 200 individuals, and fitness-proportionate selection. The algorithm terminates when the

et

maximum number of generations, G, is reached (we set G, =2000+500x N,), i.e. dependent on the

qumber of rules N, used in the run), or when the increase in fitness of the best individual over five
successive generations falls below a certain threshold (in the experiments, threshold values between
2x107and 4x10™° have been used).

The proposed fitness function combines three criteria:

¢ F,:classification performance, computed as the percentage of cases correctly classified;

e F,: the quadratic difference between the continuous appraisal value (in the range [2,4]) and the correct
discrete diagnosis given by the WBCD database (either 2 or 4);

e F the average number of variables per active rule. The fitness function is given by

F =F, —aF, - BF,, where ¢=0.05 and p=0.01 (these latter values were derived empirically).
F_, the percentage of correctly diagnosed cases, is the most important measure of performance. F,
measures the linguistic integrity (interpretability), penalising systems with a large number of variables per

rule (on average). F, adds selection pressure towards systems with low quadratic error.

4. RESULTS

This section describes the results obtained when applying the methodology described in the previous
section. We first delineate the success statistics relating to the evolutionary algorithm. Then we describe
in full three evolved fuzzy systems, a 3—rule system, a 2-rule system and a 1-rule system that exemplify
our approach. Finally we discuss the issue of obtaining a confidence measure of the system’s output,
going beyond a mere binary, benign-malignant classification.

4.1 The genetic approach



/

The evolutionary experiments performed fall into three categories, in accordance with the data

repartitioning into two distinct sets: training set and test set. The three categories are:

e training set contains all 683 cases of the WBCD database, while the test set is empty,

e training set contains 75% of the WBCD cases, and the test set contains the remaining 25% of the
cases,

e training set contains 50% of the WBCD cases, and the test set contains the remaining 50% of the
cases,

A total of 120 evolutionary runs were performed, all of which found systems whose classification

performance exceeds 94.5%. In particular, considering the best individual per run (i.e. the evolved system

with the highest classification success rate), 78 runs led to a fuzzy system whose performance exceeds

96.5%, and of these, 8 runs found systems whose performance exceeds 97.5%. These results are

summarised in Fig. 4. Table 2 presents the average performance obtained by the genetic algorithm over all

120 evolutionary runs, divided according to the three experimental categories discussed above.,

4.2 Evolving the fuzzy approach

We next describe three of our top-performance systems, which serve to exemplify the solutions found by

our evolutionary approach. The first system, delineated in Fig. 5, consists of three rules (note that the else

condition is not counted as an active rule). Taking into account all three criteria of performance,

classification rate, number of rules per system, and average number of variables per rule, this system can

be considered the top one over all 120 evolutionary runs. It obtains 98.7% correct classification rate over

the benign cases, 97.07% correct classification rate over the malignant cases and an overall classification

rate (i.e. over the entire database) of 97.8%.

However, a thorough test of this three-rule system revealed that the second rule (as shown in Fig. 5) is

never actually used; in other words it never fires, i.e. is triggered by none of he input cases. Thus, it can be

eliminated altogether from the rule base, resulting in a two-rule system (also reducing the average number

of variables per rule from 4.7 to 4).
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Can the genetic algnﬁthm automatically discover a two-rule system, without resource to any such post-
processing? This is indeed the case one such solution is illustrated in Fig. 6. It obtains 97.3% correct
classification rate over the benign cases, 97.49% correct classification rate over the malignant cases and
an overall classification rate of 97.36%. Finally Fig.7 delineates the best one-rule system found through
our evolutionary approach. It obtains an overall classification rate of 97.07%.

4.3 Diagnostic Confidence

Up until now we have been using the evolved fuzzy systems to ultimately produce a binary classification
value, benign or malignant, with no finer gradations. Referring to Fig.1 we note that the diagnostic
systems comprises in fact two subsystems. The first subsystems consists of the (evolved) fuzzy system,
which, upon presentation of an input (in our case, a WBCD database entry) proceeds to produce a
continuous appraisal value. This value is then passed along to the second subsystem, the threshold unit,
which produces the final binary output (benign or malignant).

The first subsystem (the fuzzy system) is the one evolved in our approach. The threshold subsystem
simply outputs malignant if the appraisal value is below a fixed threshold value and outputs benign
otherwise. The user through knowledge of the problem assigns the threshold value at hand.

The appraisal value can accompany the final output of the diagnostic system, serving as a confidence
measure. In general, the appraisal value computed by our evolved fuzzy systems is in the range [2.4]. We
choose to place the threshold value at 3, with inferior values classified as benign and superior values
classified as malignant. This demonstrates a prime advantage of fuzzy systems, namely, the ability to
output not only a (binary) classification, but also a measure representing the system’s confidence in its
output. For example the three-rule system of Fig. 5 computes intermediate appraisal values (between say
2.4 and 3.6) for 39 cases; these might thus be considered the cases for which we are somewhat about the

output.



14

/

‘ CONCLUSIONS
| this study we applied a combined a fuzzy-genetic approach to the Wisconsin breast cancer diagnosis
problem. Our evolved systems attain, firstly high classification performance (one of the best shown to
date) with the possibility of attributing a confidence measure to the output diagnosis, and second the
resulting systems involve a few simple rules, and are therefore interpretable.
This experience suggests that the proposed approach is highly effective where such medical diagnosis

problems concerned. Future goal is to develop an approach for automatically producing high-

performance interpretable systems for real-worlds diagnosis problems.
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" Parameter | Values | Bits | Quantity | Total bits |
, P [1-8] | 3 9 27
| d [1-8] 3 9 27
| A [0-3] 2 ON, 18N,

Table 1: Parameters encoding of an individual’s genome. Total genome length is 54+18N, where

N, denotes the number of rules.

Training/test | Performance Number
Ratio ' Training set Test set Overall | ofvanables
100% / 0% - - 96.97% 3.3
75% [/ 25% 97.00% 96.02% 96.76% 3.46
50% /50% 97.71% 94.73% 96.23% 3.41

Table 2: Summary of results of 120 evolutionary runs, divided according to the three experimental
categories.
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Figure 1: Proposed diagnosis system
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Figure 2: Example of a fuzzy variable with two possible fuzzy values labeled Low and high, and
orthogonal membership functions, plotted above as degree of membership versus input values. P
and d define the start point and the length of membership function edges. respectively. The
orthogonality condition means that the sum of all membership functions at any point is one.
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ure 3 Example of a genome for a single-rule system. (a) Genome encoding. The first 18
K,f]nons encode the parameters P and d for the nine variables v;. The rest encode the membership
junction applicable for the nine antecedents of each rule. (b) Interpretatmn Database and rule base

of the single-rule system encoded by (a).
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Figure 4: Summary of results of 120 evolutionary runs. The histogram depicts the number of
systems exhibiting a given performance level at the end of the evolutionary run. The performance
considered is that of the best individual of the run, measured as the overall percentage of correctly

classified cases over the entire database.
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Rule Base
Rule 1: if (v, is Low) and (v is Low) and (v,is Low) and (v, is Low)
then (output is benign)
Rule 2: if (v, is Low) and (v, is Low) and (v, is High) and (v, is Low)
and (v, is High) and (v, is Low) then (ouipur is benign)
Rule 3: if (v, is Low) and (v, is Low) and (v,is Low) and (v, is Low)
then (output is benign)
Default: else (output is malignant)

Figure 5: The best evolved fuzzy diagnostic system with three rules. It exhibits an overall
classification rate of 97.8% and an average of 4.7 variables per rule.
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Rule Base
Rule 1: if (v, is Low) and (v, is Low) then (output is benign)
Rule 2: if (v, is Low) and (v, is Low) and (v,is Low) and (v, is Low)
then (output is benign)
Default: else (ourput is malignant)

Figure 6: The best evolved fuzzy diagnostic system with two rules. It exhibits an overall
classification rate of 97.36% and an average of 3 variables per rule.
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then (output is benign)

Default: else (output is malignant)

Figure 7: The best evolved fuzzy diagnostic system with one rule. It exhibits an overall
classification rate of 97.07% and a rule with 4 variables.
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