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ABSTRACT: A recursive version of the adaptive CFAR sonar signal thresholding scheme using
radial basis functional neural networks is proposed in this study. Intensity thresholding has proven
to be an effective technique to eliminate the low energy noise and to reduce the computational load
in an underwater target tracking system. The proposed system appears to have many advantages
over the previous traditional approaches. The adopted technique yields unbiased estimates under a
non-homogenous sea environment, because the false alarm rate is maintained at a constant level
while the threshold changes with different sea environments. In addition, the threshold for different
range cells can be adaptively estimated, since the noise under estimation is strictly local so that the
distance the sonar signals travelled does not affect the received intensities of noise and targets.
Finally, the computational requirements are greatly reduces through the introduction of the

recursive scheme.

1 Introduction

Intensity thresholding has been proven to be an effective technique for eliminating the low energy
noise and reducing the computational burden in an active target-tracking algorithm for an
underwater sonar system. The significance of sonar signal thresholding lies in that measurements
gathered from sonar devices are generally corrupted by various noise signals such as the ambient
and reverberation noise and they contribute to a high false alarm rate. The performance of a tracking
system is dependent on the rate of false alarm and the probability of detection, which in turn are
determined by the detection threshold.

Most of the active sonar tracking systems in the beginning exploited a simple thresholding scheme;
Le., a pre-selected constant threshold. In this case, a judiciously selected fixed threshold 1s used
prioni to passing the data to the CADAT (Computer Aided Detection And tracking) algorithm.
However, the fixed thresholding scheme has the following limitations.

e The performance of the tracking algorithm is prone to degeneration in a non-homogenous sea

environment because the threshold is generally selected under homogenous conditions, thus the




resulting false alarm rate could be too high in an adverse sea environment that will hinder the

normal operation of the tracking algorithm.
e When targets are beyond a certain range, their return intensities are attenuated to such a

degree that they fall below the pre-selected threshold and are subsequently deleted as noise.
The constant false alarm rate approach has been thoroughly studied in [1-8] for the selections of
radar signal detection threshold where similar problems are encountered. In this scheme, the
detection threshold is adjusted according to the probability density of the background noise to keep
the false alarm rate within an acceptable level which is predefined as a constant, and hence the name
Constant False Alarm Rate (CFAR) approach. The paradigm CFAR algorithm is referred either as
the cell averaging (CA-) or the mean level (ML-) CFAR technique [1-2]. Various improved
versions of the CA-CFAR scheme (e.g. 0S-, GO-, SO-, CCA-, TM-, AC-, AA-CFARs) have been
proposed to cope with diverse problems of different types of clutter and targets encountered in radar
signal processing [3-8]. In a few cases instead of using noise probability density functions that
adaptively represent the sea environment, normal or Rayleigh distributed noise probability density
function is assumed in order to simplify the computations.

Nevertheless, the investigation on the sonar data gathered from sea-trials shows that the
density function of the noise, which is mainly composed of ambient and reverberation noise signals,
is neither Gaussian nor Rayleigh. Although studies have been conducted to determine the
distribution of various types noise signals in the sea and some theoretical results have been reported
in the literature [9-12], the realistic situation vary considerably and hence the most reliable results
are still yielded from the actual measured data. Among other methods, a neural network approach
has been used to estimate the noise probability density function for a local optimal (LO) detection
[13-15] scheme. This method requires that the input is composed of noise only, a situation that 1s
more suitable to the scenario with a stationary platform.

To cope with the problem of non-stationary platform, an Neural Network-based method is
proposed which eliminates the tentative targets from the measurements and then estimates the noise
probability density function. Taking into account the spatial and temporal environmental variations
of an underwater active sonar, a recursive version of the an adaptive CFAR sonar signal
thresholding scheme using radial basis function neural networks is proposed in this study. The
proposed thresholding scheme is applied to active sonar tracking system exercise against the
realistic sea environment. Experimental results show that the advantages of the proposed neural
network-based detection thresholding scheme are the following:

e [t yvields acceptable perform in a non-homogenous sea environment, because the false alarm

rate is kept constant while the threshold changes with different sea environments.
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o [n addition, it can &a’apﬁvefy estimate the threshold for different range cells because the noise
signal under estimation is strictly local so that the distance the signals travelled does not affect
the received intensities of noise and targets.

e Finally, the computational burden has been greatly reduced through the introduction of the
recursive scheme

This study is organised as follows: The proposed active CFAR sonar detection thresholding system

as well as its recursive window sliding scheme using Radial Basis Function (RBF) neural networks

is outlined in the next section. The detailed neural network structures and the corresponding
learning algorithms for the TTE- and the NPDFE-RBF sub-systems are presented in sections 3 and

4, respectively. Simulation results for active sonar using the data from sea trials are the subject of

section 5. Finally, section 6 summarises the features of the proposed NN-based recursive

thresholding scheme.

2. The Adaptive CFAR Sonar Signal Detection Thresholding System

The block diagram of the proposed adaptive CFAR sonar signal detection thresholding system is

illustrated in Fig. 1. The algorithm involves three functional blocks:

¢ The tentative target eliminator (TTE) is responsible for removing possible target measurements
from the input array.

* The noise probability density function estimator (NPDFE) provides the estimated noise
probability density

e The threshold generator (TG) determines the detection threshold Jrom the noise probability
density function according to the given FAR.

While the first two blocks are constructed using two radial basis function neural networks, the last

functional block is simply an integrator.

Taking into accounts the time and spatial variations of the environment, only the local
information is utilised to estimate the detection threshold of a data point with range r, and bearing
b;. The intensities of the points within a reference range-bearing window of size M x N surrounding
the cell under consideration are taken as the inputs to the proposed algorithm. Fig. 2 illustrates a
range-bearing window for an omni transmission case. Assume that the cell under consideration is
located at (,b,), and that the reference range-bearing window is of size M x N, where M and N are
the window lengths extended along the range and the bearing directions, respectively, and are
generally chosen as odd numbers for the purpose of symmetry. For notational convenience, we

usually use the following notation:



M=(M-1)/2,

N=(N-1)/2
The proposed adaptive CFAR sonar signal detection scheme, as shown in Fig.1, functions in one of
the following two phases: the initialisation phase and the recursion phase. For each ping of
transmission, the estimation of the detection threshold for the first cell considered goes through the
initialisation phase, because there is no existing cell with estimated noise probability density
function from its neighbouring cells it can build upon. Theoretically, any point can be taken as the

initialisation cell. The point(r;, .b_,)is chosen as the initialisation cell since the data within its

reference window is available first. This situation is illustrated in Fig. 2a.

For the rest of the cells, the thresholds can be estimated point-by-point recursively. Fig.3
illustrates the range-bearing window for the above example sliding along both range and bearing
directions. Figs. 3a and 3b show the reference windows before and after sliding from (r,b) to
(7, by.,), which is a step of 5 degrees along the bearing. In the proposed algorithm, instead of taking
all the M x N data points in the new window centred at (r,b.,), as input to estimate the new

threshold, only M new data points from the bearing vector B, 5 need to be considered, while the

effects of M old data points from the bearing vector B, - are eliminated. A bearing vector is a

column vector of size M =2M +1. Figs. 3¢ and 3d illustrate the case where the reference window
slides one range cell along the direction of range. Here again, the only new information available is

from N points of the range vector R, - and the old N data points to be deleted are from the range

vector R_ .. Similarly, a range vector is a row vector of size N = 2N +1. The range and bearning

vectors are shown as shaded areas in Fig. 3. The computational requirements to process one data
point are reduced from M x N operations to either 2M or 2N operations depending on the sliding

direction, thus decreasing the computational burden considerably.

1 The Tentative Target Eliminator

3.1 The Structure of the TTE-RBF

As mentioned above, the objective of the tentative target elimination (TTE) i1s to remove the
tentative targets from the measurements. The structure of the TTE is shown in Fig. 4. As in a
standard radial basis function neural network (RBFN), the TTE has three layers: an input layer, an
output layer and a hidden layer. While there is only one node in the input layer that accepts input
from the measurement sequence {m,}, there are two nodes in the output layer that group the noise
sequence as well as the tentative targets. The hidden layer is composed of two nodes: one is used

for the classification of noise (NODE _MIN) and the other (NODE_MAX) for the tentative target(s)
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(if there exists any). The kernel radial basis function is chosen as the commonly used Gaussian

function
1 _irw[xuc)];
o(x) = JE_E B (1
no
where, ¢ = ¢, or ¢, is the centre, ¢ = a,, or g, is the variance of the node NODE_MIN or

NODE_MAX, respectively.

The operation of the TTE can be briefly explained as follows. All the sonar measurements within
the reference window are first ordered by increasing intensity before feeding to the TTE as an input
sequence. The input datum with the lowest intensity other than zero and the one with the highest
intensity are used as the initial values for the two node centres. Then the ordered intensities are fed
to the input layer of the TTE and are subsequently grouped into lower and higher energy classes. If
the higher energy class satisfies the criterion for tentative targets, then the intensity of the individual
member of that group is deleted from the measurements. This operates recursively until there is no

more tentative targets.

3.2  Linked-List: An Input/Output Data Structure

Before providing the detailed description of the TTE operating procedures, let present a data
structure that is utilised in the TTE to store ordered data sequences, i.e. the linked-list. The structure
of a linked-list is depicted in Fig. 5. As shown in Fig. 5a, an element in the linked-list has three
fields:

A pointer field that points to the next element in the linked-list, an address field that stores the
address of input data, and a classification field that records one of the three types of data being
classified: UNCLASSIFIED, NOISE and TENTATIVE NOISE.

The linked-list is addressed via a head-pointer that resides on a separate head node that has two
fields or records. In addition to the pointer or the address field, the head node also possesses a z
field. Zero-intensity elements are not included in the linked-list, but the number of zero intensity
elements is recorded in the z field of the head node. Thus, the first element that the linked-list points
to has the lowest nonzero intensity and the last element that the linked-list points to has the highest

intensity within their corresponding window. Therefore, the length of the linked-list L < (M x N)

indicates the number of nonzero elements. These are illustrated in Fig. 5b.

3.3  TTE Adaptive Learning Procedures
As stated in the previous section, the TTE operates in two phases: the initialisation phase and the

recuision phase. The detailed procedure for each phase 1s given below:



3.3.1 [Initialisation Phase

There are five steps in this phase:

Step 1: The measurement data from the reference window, which are saves in an M x N input
array, are first arranged in the increasing order of intensity and saved in a linked-list as described
above.

Step2: The TTE is initialised as follows: The content /,;, addressed by the first element in the linked
—list is set to be the centre ¢, of the node NODE MIN (c,;,=I,..). The corresponding classification
is set to NOISE. The highest intensity [, that is addressed by the last element in the linked-list 1s
set to be the centre ¢, of the node NODE_MAX (c,...=I,..). Its corresponding classification is set as

TENTATIVE TARGETS. The variances of both nodes are set as the difference between the centres of

the two nodes: g, = 0, = €, - €.y The initial weights are set to unity: w,,. = w,, = I. Fig. 5c
shows the hidden layer-state of the TTE after initialisation.
Step 3: Starting from the beginning of the linked-list, and selecting those elements which were
classified as “UNCLASSIFIED” to be the inputs, the response of the systems to each input, denoted
as m,, is given by

g max = Punae (m,}—.t?m (m,) 2
Zsmin = Punin (M) = 0 (M)

If g,...>8&, ...sctthe input element as tentative target, update the centre ¢, the vanance g,

and the weight w,,, of the node NODE_MAX according to

Crnax = ?(“':ma:& } : {H'.I'.'I'Ii.‘.c-'l'lix + m-5 } {3}
1
Grnu.x = {Cmn mn } {4}
H'Imn
1 &
W, =S—— 5
Max v{wﬂ‘a‘) { }

where V(w is defined as the weight adaptor for w,,,,

masz H 1
11.m+

Otherwise, set the input element as NOISE, update the centre ¢, the variance ¢, and the weight

W,.,, corresponding to the node NODE_MIN according to

cmin = ?{wlmin) ' |{.I""(Irmr.\uGmis‘l + mi) {6]
1
T in = __{cnux £ cmm} {.’F}
wn:in
|
= 8
T (8)



where the weight adaptor for w,,;, is defined as V(w,;, ) = =

S
This is repeated until the end of the linked-list is reached. Thus, two classes of data are grouped and
classified as NOISE and TENTATIVE TARGETS.

Step 4: If the criterion for tentative target ¢ >> ¢, is satisfied, then delete these tentative targets

from the linked-list, set the classification field of the remaining elements in the linked-list back to
UNCLASSIFIED, increase the number of zero intensity elements by the number of tentative targets
deleted, and return to step 2. This is repeated until there is no more input measurements that can be
classified as tentative targets.

Step 5: The remaining elements in the linked-list after step 4 are considered as the noise and their
corresponding classification fields are set to NOISE before being sent to the next functional block
(NPDFE) as input. In addition, since the NODE_MAX as this point also represents a group of noise
signals though with higher energy than the group in NODE_MIN, the effect of the NODE_MIN
needs to combined with that of the NODE _MAX such that

cmm = J‘{ W} % {W:nin cm.iu + wrn.ncrm: } (9}
w__ =1/ A(w) (10)
where A(w NS called the weight updating factor, thus setting up the initial state of

1PV?I'IIH - H.Il‘lkl.i

NODE MIN for the TTE in the recursion phase.

3.3.2 Recursion Phase

The recursion phase is made up of the following five steps:

Step 1: Before sliding the reference window, step 1 eliminates the effects of the data not included in
the new window. There are two cases that should be considered separately.

If the window slides along the direction of bearing, as shown in Fig 3a, then group those

measurements {m,} that reside within the window of the bearing vector B, 5, eliminate their

influence from the resultant noise measurement list by adjusting the centre and the weight of the

node NODE_MIN according to

Cmin = v(wmm*hr}{cmin = im:} {1 I}
Wenin = %\7 (w_.. . N) (12)



On the other hand, if the window slides along the direction of range, as depicted in Fig. 3b, the

consequences of those elements {m, e R,_,, . +» which lie outside the new window after sliding, are

eliminated by updating the centre and the weight of the nose NODE_MIN according to

M
Cain = V(Wein s MNCpis = 2 1,) (13)
_ 1
Wi —/g(wminﬂ.w) (14)

1

K)= :
) w —K

In both cases, the modified weight adaptor is defined as V(w

mun *

Step 2: Depending on the directions of sliding, either along the range or the bearing, shde the
window by updating the point of interest as r,=r,_, or b;=b,_ ,, respectively.
Step 3: Consider the measurement intensities /(r,b) where (r,b,)€ R\, 01 (r,b;)€R, ;.\,

depending on whether the window slides along the bearing or the range cell. Store the resulting data
in a sub-linked ~list in the increasing order of intensity as illustrated in Fig. 6.
Step 4: Select the highest intensity as the centre ¢, of the node NODE _MAX, set: 0,,,, = 0y, = Coiax ™

¢, and repeat steps 3 and 4 described in the initialisation phase until all the tentative targets are

deleted from the list.
Step 5: Insert the sub-linked-list in the increasing order of intensity into the linked-list obtained
from the previous iteration and send the resulting data sequence as input to the NPDFE, the next

functional block.

4. The Noise Probability Density Function Estimator

4.1 The Structure of the NPDFE-RBF

The noise probability density function estimator (NPDFE) is illustrated in Fig. 7. Fig. 7a shows the
structure of the NPDFE, which differs from the standard RBFN mainly in the following two
aspects. First, instead of using a fixed number of basis functions in the hidden layer, the NPDFE
dynamically varies the number of nodes, up to a maximum of M x N the number of cells in the
input range-bearing window. The number of nodes utilised depends on the distribution of the noise
as well as the precision of the estimation. The sparser the noise intensity distributed the higher the
number of nodes required. The more precise the estimation, the higher the number of nodes
involved. Secondly, after training, it is the parameters embedded in the systems structure that will
provide estimation for the distributed noise density function. This is shown in Fig. 7b.

As indicated in Fig. 7a, both the input and the output layers each have one node. The measurad

noise sequence /n./, which is obtained from the TTE in the previous functional block, 1s used as the



input to the NPDFE. The output is employed in the training phase to justify the adaptation for the
centres and the weights of the hidden layer. In the training phase, the output y, as a function of the

input /n.} is given as follows:

y, =9 wb(n,)-0, (15)
k

where w,, 8, represent the weight and threshold of the #” node, whereas the basis function takes the
form of Gaussian density which is typical in RBFNSs. That is

e
oL el g8

f:ntfn;)=hlg e ° (16)

k

where ¢, and o, are the centre and the standard deviation of .the Gaussian density function,
respectively. The centre will be learned through the leaming process described in what follows,
while the standard deviation is proportional to the resolution of the noise intensity distnibution. The
NPDFE learns the noise probability density function adaptively. After learning, the centres of the
NPDFE represent the intensities of the noise signals and the weights render their corresponding

probability densities.

4.2  NPDFE Adaptive Learning Procedures

As in the TTE, the NPDFE has two learning stages: the initialisation and the recursion stages.

4.2.1 Initialisation Phase

In the initialisation stage, there is no estimated noise probability density function available for the
current ping of transmission. The learning process starts all over from the very beginning with zero
number of nodes. Contained in the linked-list, the noise process {n} which was obtained by
removing tentative targets from the first available range-bearing window of measurements in a
transmission, and then arranged in an increasing order of intensity, is forwarded one by one to the
input node of the NPDE.

If the system does not response to an input n,, i.e. its output y,=0, then add a new node centred at

i=n (17)

3

and set its corresponding weight to:

i, e s (18)

Z w, +1

W=k .'
Otherwise if y, =0, update the centre and the weight of the node with the highest response as
follows:

¢, =V w,(w,-c, +n), (19)



w, =w, +A"w, (20)

i 1 i : :
where V'w, =—— and A"w, = are defined as a weight decrement factor and a weight

1
w, +1 Z w; + 1
ok

increment adaptor, respectively. In both cases, adjust the rest of the weights according to
Wi =2 Awew, - w, (21)

. g ; " |
where the modified weight increment adaptor is defined as A"w = ﬁ :
W, +
A
i

After processing all the noise elements within the window of the initialisation cell, the resulting
centres and their corresponding weights give rise to the probability densities of the noise sequence

that will be sent as input to the next functional block to calculate the detection threshold.

4.2.2 Recursion Phase

In the recursion phase, the existing structure of the NPDFE from the previous iteration lays the
foundation for the current estimation. One can simply eliminate the effect of the input data that lie
outside the window of the next iteration by sliding the window, and then accommodate the
contribution of new data that has not been included in the last iteration. The learning procedure can
be further divided into the following three steps:

Step I: Depending on the sliding direction, the noise measurements contained in the range-vector

window R _g  or the bearing-vector window B, ,  are presented sequentially as inputs to the

NPDFE to eliminate their contribution to the noise probability density estimation for the cell before
sliding. This is accomplished by simply justifying the centre and the weight related to the node with

the highest response as:

g, =NCw {we-c—n), (22)
w, =W, —Aw, (23)
1 . : :
where V'w, = and A"w, = = are defined as weight increment factor and weight

My o= 1 Z w}. -1

decrement adaptor, respectively. The weights of the rest of the nodes are updated subsequently as

W, = Z Aw-w, W, (24)
i

X 1
where the modified weight decrement adaptor is defined as A" w = ﬁ
W, —
!
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If the weight after adjustment decreases to zero, i.e. w,=0, remove the corresponding node from the
network.

Step 2: Slide the window either by r,=r;+ or by b=>b+1 depending on whether the window slides
along the range or the bearing direction.

Step 3: Train the system with the new noise measurements from the range-vector window after

sliding R_ , provided the window slides along the range direction or from the bearing-vector

window B, - if the window slides along the bearing direction, to justify the centres and the

weights of the NPDFE. The adjustment approaches taken are the same as those in the initialisation
phase described above.

After presenting all the input noise signals to the system once, the T:raining process is terminated for
that cell. The centres along with their corresponding weights provide the probability density
function of the noise measurements and therefore are taken as the output of the NPDFE and sent to

the next functional block.

4.3 The Threshold Generator

In the Threshold Generator functional block, the resultant noise probability density is first stored in
a reverse ordered linked-list with reference to the centre values in a decreasing order as shown in
Fig. 8. Then, with the estimated noise probability density, it is simply a matter of integrating the to

the desired false alarm rate by
K Ly
> w, SFARN D w, 2 FAR (25)
k=T k=T-1

and the required detection threshold can be obtained as
DT=c, (26)

5. Application to Active Sonar Tracking

The proposed thresholding scheme has been applied for an active sonar signal tracking system
simulator in a realistic sea environment. The above operations are illustrated using an example as
shown in Fig. 9. The received measurements from sonar containing both target and noise
information is the only viable inputs. Fig. 9a shows a sample of the real sea intensity (in a semilog
scale) from underwater active sonar in an omni transmission mode. In this case, the bearing angle
varies from 0 to 360 degrees with a step size of 1 degree; whereas the distance or range is
discretised into 80 range cells numbered from 1 to 80. The intensity is shown in the log scale

because some of the tentative target intensities are much stronger than the average noise intensity.
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As we have mentioned, the first step is to eliminate the tentative targets from the measurements.
The received signals with higher intensity are considered as tentative targets and therefore are
deleted form the measurements. Fig. 9b depicts the measurement noise thus obtained.

After the removal of the tentative targets, the remaining information is treated as noise, from which
the noise probability density function is then estimated. Fig. 9c shows the resulting noise probability
density function. With the estimated noise probability density and a given false alarm rate
(FAR=0.01 in this case), shown as the shaded area, the detecting threshold, can be easily obtained

as indicated in Fig. 9c.

6. Features of the Proposed NN-Based Recursive Thresholding Scheme

A recursive version of the adaptive CFAR sonar signal thresholding scheme using radial basis
function neural networks has been proposed in this study. Both theoretical analysis an experimental
results show that the proposed neural network—based recursive thresholding scheme exhibits the
following prominent features:

First it yields an acceptable performance under non-homogenous sea environments; the false alarm
rate is kept constant while the threshold changes with different, because the false alarm rate is kept
constant while the threshold changes with different sea environments. This is because the detection
threshold is not determined according to a pre-assigned sea noise condition but using the
measurements gathered from local information only.

Secondly, the proposed scheme can adaptively estimate the threshold for different range cells since
the noise signal under estimation is strictly local so that the received intensities of noise and targets
are not affected by the distance travelled by the sonar signals.

Finally, the computational requirements has been greatly reduced through the introduction of the
recursive scheme due to the fact that the computations required to process one data point reduces

from M x N operations to 2M or 2N operations depending on the sliding directions.
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(b) Data Structure of a Linked List
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(¢) TTE Hidden Layer Initialization

Figure 5 Linked-List: a Structure for Ordered Data Sequence
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Figure4  The Tentative Target Eliminator
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Figure 6  An Example of Sub-Linked-List
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{a) The Structure of the Noise Probability Density Function Estimator
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Figure 7  The Noise Probability Density Function Estimator
head-ptr
head
SRR : node
NULL — | ~—e -t -+ —e | o
0 C] [N 'L""l-_i CT T CK-[ Ci
L Yo W) hat I O R & [ Wi-1] Wk

Figure 8 Reverse Ordered Linked-List
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(a) A Sample of the Real Sea Data from Underwater Sonar
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{b) Measurement Noise after Removal of Tentative Targets

Figure 9 lllustration of the Proposed Scheme
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(c) Estimated Noise Probability Density Function

Figure 9 Illustration of the Proposed System Operation (Cont.)



