SOFT COMPUTING BASED TECHNIQUES
FOR SHORT-TERM LOAD FORECASTING

V.S. KODOGIANNIS, E.M. ANAGNOSTAKIS

9-99

Preprint no. 9-99/1999

Department of Computer Science
University of loannina
451 10 loannina, Greece

Soft computing based techniques for short-term load forecasting

V.S. Kodogiannis**, E.M. Anagnostakis
+ Department of Computer Science, University of Ioannina, loannina, GR-43110, Greece,
Tel: +30-651-97308, Fax: +30-651-48131, Email: vassilis@cs.uoi.gr

* To whom correspondence should be addressed.

ABSTRACT: Neural Networks are currently finding practical applications, ranging from ‘soft’
regulatory control in consumer products to accurate modelling of non-linear systems. This paper
presents the development of improved neural networks based short-term electric load forecasting
models for the Power System of the Greek Island of Crete. Several approaches including radial basis
function networks, dynamic neural networks and fuzzy-neural-type networks have been proposed and
discussed in this paper. Their performances are evaluated through a simulation study, using metered
data provided by the Greek Public Power Corporation. The results indicate that the load forecasting
models developed provide more accurate forecasts compared to the conventional backpropagation
network forecasting models. Finally, the embedding of the new model capability in a modular
forecasting system 1s presented.

Key words: Short-term load forecasting, Neural Networks, Fuzzy-Neural-type Networks, Radial Basis
Functions, Dynamic Neural Networks.

1. INTRODUCTION

Load forecasting has been a central and an integral process in the planning and the operation of electric
utilities. Load forecasting with lead-times, from a few minutes to several days, helps the system
operator to efficiently schedule spinning reserve allocation. In addition, load forecasting can provide
information that is able to be used for possible energy interchange with other utilities. On the other
hand, load forecasting is also useful for power system security. If applied to the system securnty
assessment problem, valuable information to detect vulnerable situations in advance can be obtained.
The load prediction period may be a month or year for the long- and the medium-term forecasts,
and day or hour for the short-term forecast. The long- and the medium-term forecasts are used to
determine the capacity of generation, transmission, or distribution system additions, and the type of
facilities required in transmission expansion plannming, annual hydro and thermical maintenance
scheduling, etc. The short-term forecast is needed for control and scheduling of power system, and also

as mputs to load flow study or contingency analysis.

The short-term load forecast (one to twenty four hours) is of importance in the daily operations
of a power utility. It is required for unit commitment, energy transfer scheduling and load dispatch.
With the emergence of load management strategies, the short-term forecast has played a broader role in
utility operations. The development of an accurate, fast and robust short-term load forecasting
methodology is of importance to both the electric utility and its customers and thus introducing higher
accuracy requirements.

Many techniques have been proposed in the last few decades for short-term load forecasting

(STLF) [7]. The traditional techniques that have been used for the STLF include the Kalman filtering,
the Box and Jenkins method, regression models, the autoregressive model and the spectral expansion
technique [21].
The Kalman filter approach requires estimation of a covariance matnx. The possible high non
stationarity of the load pattemn, however, typically may not allow an accurate estimate to be made [20].
The Box-Jenkins method requires the autocorrelation function for identifying proper ARMA models.
This can be accomplished by using pattern recognition techniques. A major obstacle here is its slow
performance [33]. An interesting application to STLF, using regression procedures have been proposed
by Irisarri [8]. However their Generalised Linear Square Algorithm was faced with numerical
instabilities when applied to a large database. Additionally, enormous computational efforts are
required to produce reasonable results.

The AR model 1s used to describe the stochastic behaviour of hourly load pattern on a power
system. This model assumes that the load at a specific hour can be estimated by a linear combination
of the previous few hours. Generally, the larger the data set, the better is the result in terms of
accuracy. A longer computational time for the parameter identification, however, is required.

The spectral expansion technique utilises the Fourier series. Since load pattern can be
approximately considered as a periodic signal, load pattern can be decomposed into a number of

sinusoids with different frequencies. However, load patterns are not perfectly periodic. This technique

usually employs only a small fraction of possible orthogonal basis set, and therefore is limited to
slowly varying signals. Abrupt changes of weather cause fast variations of load patterns that result in
high frequency components in frequency domain. Hence, the spectral expansion technique can not
provide any accurate forecasting for the case of fast weather changes unless sufficiently large number
of base elements is used [5].

Recently, with the developments of artificial intelligence, altemative solutions to the STLF
problem have been proposed. Expert systems have been successfully applied to STLF [30]. This
approach, however, presumes the existence of an expert capable of making accurate forecasts that will
train the system. However, it is extremely difficult to transform the knowledge of an expert to
mathematical rules [9]. Neural networks, on the other hand, are a more promising area of artificial
intelligence since they do not rely on human experience but attempt to learn by themselves the
functional relationship between system inputs and outputs.

Interest in applying artificial neural networks (ANNs) to STLF began recently. Park er al.
proposed the use of a multi-layer network with three layers, i.e one input, one hidden, one output. The
training of the network is performed through a simple back-propagation algorithm. Using load and
weather information the system produces three different forecast variables, i.e. peak load, total daily
load and hourly load [25]. Peng et al. presented a search procedure for selecting the training cases for
ANNSs to recognise the relationship between the weather changes and load shape. It utilises a neural
network algorithm that includes a combination of linear and non-linear terms which map past load and
temperature inputs to the load forecast output. The single forecast output is the total daily load [27].
Lu et al. used a similar feedforward neural network incorporating the previous load demands, day of
week, hour of day and temperature information for load forecasting [18]. Papalexopoulos er al.
proposed the inclusion of additional input variables such as a seasonal factor and a cooling/heating
degree into a single neural network [24]. Rather questionable results are reported to Bakirtzis er al., [1]

where a 24-hour prediction can be obtained by an enormous, in size, three layer neural network.

Although the number of hidden nodes is much smaller the input dimension, the authors claim that this
number does not significantly affect the forecasting accuracy. Lee ef al. treat electric load demands as
a non-stationary time-series and they modelled the load profile by a recurrent neural network. The
forecast was made separately for weekends and weekdays using load data only [16]. Finally, an
alternative technique for load forecasting using Recurrent High Order Neural Networks was considered
in [10]. This type of neural network is supposed, in theory, to approximate very accurately any non-
linear function, with exponential error convergence to zero [15]. Based on an interpolation procedure,
the method although gives superb results in training, in testing the results were rather disappointed.
The lack of generalisation can be explained by the fact that the specific method needs an enormous
amount of training patterns in order to create a satisfactory input-output mapping. In this work, the
training data set created from the whole year of 1994 and respectively the testing one for the first four
months of 1995. The insufficiently relative small training data set, had as a consequence the poorly
performance of the Recurrent High Order Neural Network model, despite its perfect training phase.

Amongst the above neural based forecasting techniques most of them generally can be classified
into two categories in accordance with techniques they employ. One approach treats the load pattern as
a time series signal and predicts the future load by using the already mentioned techniques. In the
second approach the load pattern is considered to be heavily dependent both on weather variables
(temperature, humidity, etc.) and previous load patterns. Such models that include weather variables
are limited in use by problems such as inaccuracy of weather forecasts and difficulties in modelling the
weather-load relationship [26].

In this paper we present algorithms which follow the time series approach. In our case ANNs
trace previous load patterns and predict a load pattern using recent load data without using weather
information for modelling. The developed systems identify the load model, which reflects the

stochastic behaviour of the hourly load demand for the island of Crete in Greece. The balance of this

paper contains a comparative study of various prediction techniques used to develop the STLF for the

power system of Crete.

2. THE SHORT-TERM LOAD FORECASTING PROBLEM

This section is dealing with the application of the developed STLF models on the power system of the
island of Crete. The objective of STLF is to predict the 24 hourly loads of the next day. Here, a
modular-constructed forecasting system is proposed, where 24 neural blocks with a single output have
to be developed and trained separately to represent the 24 hourly loads respectively. The outline of the
proposed architecture is illustrated in Fig. 1.

Each neural block is fed by its previous one. Hence, step by step, 24 hour load prediction
can be obtained. In this work, the training data set created from the whole year of 1994 and
respectively the testing one for the first four months of 1995. Both training and testing sets were
classified into 24 time series, each one corresponds to a different daily hour. Therefore, for each neural
block, the following non-linear load model is proposed for one-hour ahead forecasting:

xX(t) = F { x(t-24i), x(t-j), x(t-24i - j) } 1)
i = I?‘"!P .] =]"."":-q
where p and g indicate the number of previous days and hours respectively. The main objective of the

proposed system, is the development of sufficiently accurate blocks represented the individual hourly

loads.

3. MODELLING USING NEURAL NETWORKS

The nvestigation of Neural Networks (NNs) for system modelling has been carried out for the
prediction of all 24 hours, each one trained separately, one for each hour. An assumption has been

made in the case of blackouts that occurred during the whole year. All the zero load values have been

removed from both training and testing set, and replaced by the mean value of the preceding and next
load value.

Eq. (1) is used to provide the input variables to the individual blocks. According to Eq.(1), the
requested load is forecasted not only with the load data of previous days but also with the forecasted
load data for the same day at previous time steps. In the following sections only results which
correspond to hours with the maximum (14:00h) and minimum (02:00h) load consumption are

llustrated.

3.1 Autoregressive Linear Modelling

Although this work is primarily oriented to neural network approaches to STLF, it was assumed that it
was necessary to test the well known stochastic autoregressive model to this type of data. An
autoregressive (AR) model of a time series assumes that the current value of the time series is equal to
a weighted average of a finite number of previous values, with the addition of a constant offset and a
random noise term. The original AR model is expressed in equation

X, =0 +0,X, +9,X, 5+ -+¢'px1-p to, (2)

where x, X, ,...X,_, are the terms of time series, ¢,,0,,..0 are the unknown coefficients of the

model , ¢, is a constant term , and «, is the random noise term.

The main objective here, is the computation of the unknown parameters of the AR model

0.9, .,d]p . The recursive least squares method was used, in conjunction with the well known U-D

algorithm [29] for optimisation of the numerical calculations. The order p of the AR model was
approximated using the well known Akaike’s information criterion. Hence, for the majority of the test
cases it has been found that p=4. Attempts to increase the model’s order for the sake of improved

accuracy, resulted a severe deterioration of its performance.

3.2 Backpropagation Algorithms for STLF prediction.

Some artificial neural network architectures exhibit the capability of forming complex mappings
between input and output which enable the network to approximate general non-linear mathematical
functions. The multi-layer perceptron (MLP) neural network, trained by the standard back-propagation
(BP) algonithm, 1s probably the most widely used network and its mathematical properties for non-
linear function approximation are well documented [32]. The generalised delta rule is applied for
adjusting the weights of the feedforward networks in order to minimise a predetermined cost error

function. The rule of adjusting weights is given by the following equation:

w S (t+)=w, ()+ 8,7y +adw, (1) (3)

where, 5 is the learning rate parameter, a the momentum term and 5 is the negative derivative of the
total square error in respect to the neuron’s output.

It 1s well known that the training of MLPs using that standard backpropagation algorithms
plagued by a slow convergence. In this work a simple heuristic strategy, the Adaptive learning rate
Backpropagation Neural Network (ABP), which relates the learning rate with the total error function E
have been adopted in order to accelerate the convergence speed [34]. The algorithm uses the batch
update mode, and the update rule for the weights is

SE

. P

p(E)
P P Sw ij
w,(t+)=w, ()-——— (4)
SE

P
Gu.ij

with p(E) is some function of the error E, which is given by

m
p(E)={nE (5)

E
tanh(—
n {ED}

where m and E, are constant, non-negative numbers, representing the leaming rate and the error

normalisation factor respectively. The main advantage using these formulas is the dependence of the
learning rate on the instantaneous value of the total squared error E. Therefore a faster convergence of
the algorithm is achieved.

In order to provide sufficient information to model each neural block using an MLP, a structure with
two hidden layers and 8 inputs was used. The inputs were selected from the model of Eq. (1) by setting
the parameters p and g equal to 2.

A common approach taken to enable a neural network to capture the dyvnamics of a non-linear

system, as the load forecasting problem, is to configure and train a network to represent a non-linear,
autoregressive (WAR) model structure. It is natural to reflect the dynamic nature of the problem by
sequential information processing. There are two approaches to processing inputs in the time domain:
one is to window the inputs and then treat the time domain like another spatial domain; alternatively,
to use some internal storage to maintain a current state.
In the first approach, the network input consists of a moving window of time-delayed system outputs
and the network is trained to predict the system output at the next time step. It has been found that a
major factor affecting the neural model prediction accuracy is the method by which data are coded in
the network. This is especially in the case when the network is acting as a recurrent model. The reason
for this is because any errors in the predicted output will tend to accumulate. The conventional method
of conditioning the data is to re-scale and represent using a single node at the input or output layers of
the network. An alternative representation, called spread encoding (SE), has been shown to enable a
network to maintain a high degree of accuracy [11].

In the SE technique, each data value is represented as the mean value of a sliding Gaussian
pattern of excitation over several nodes at the network input and output. A similar and reverse
procedure is applied at the network output to decode the output back into the original variable range.

This approach has similarities with data fuzzification techniques where the scalar dimensional space of

each variable is fuzzified to a space of higher dimensions. Also, decoding of the network output using
the SE method consists of computing a weighted summation of the node excitations which is
analogous to the conventional centre of gravity defuzzification technique. Thus a network utilising
spread encoding can be considered as a fuzzy-neural-type network. The SE method is also keeping
with the heritage of neural networks from biological systems where information is often represented by
the combined activity of a population of receptors, as in the retina of the eye [19]. Fig. 2 illustrates the
internal architecture of this technique.

Analytically, this data conditioning method of SE consists of mapping each network variable, xe

[s Xae)s Onto a sliding Gaussian activation pattern of N network nodes, which includes additional

nodes either side of the variable range to contain overspill resulting from the use of a mapping function
with wide support. The level of activation of each node is confined to be in the range [0.1, 0.9] similar
to the conventional normalisation technique. Each node is assigned a value, «,, linearly spaced by a
distance, 6. to span the range of x, and the centre of the Gaussian excitation pattern corresponds to the
value coded [12].

The SE algorithm is derived by creating a discrete map which represents the mean value of a
continuous probability distribution, @(«), within each class interval. This then provides a simple
mechanism for retrieving the original coded value as a sum of the activity of the node excitations, each

weighted by the values at the centres of the class intervals @, For a particular value of x, the excitation

of each node is defined by

i + B2

!u ola- x)da
Wi (K] — @i {6)
i
which satisfies the requirement that
N
> awwi(x)= Iu o(a-x)da =T =x (7)
i=1

It is assumed that the distribution @(c) has unit area.

The activation of a particular node can be evaluated from Eq. (6) by integration by parts:

oy (x) = [o D(a - x)]7 27 - m*f;}(u xX)da (8)
i -8

where ®fu) is a parent cumulative distribution with ¢(a) = @ fa). In the investigations reported in this
paper, the integral term in Eq. (8) was approximated using the first two terms in the trapezium rule
resulting in

vi(x) = o+ 6/2 - x) - B - 6/2 - x) (9)
which was found to provide sufficient accuracy in these studies. The relationship between this coding
technique and conventional fuzzification techniques is illustrated by considering a first approximation
of the integral term in Eq. (8) resulting from a Taylor series expansion of the cumulative function
about the interval centre, o, and keeping the linear term in the expansion. This leads to

v () = (e -x) (10)

which is analogous to the use of membership functions in fuzzy logic [35].

The practical advantage of spread encoding is that it leads to more accurate models using static
feed-forward neural networks than representing normalised physical variables using single nodes. The
main reason for this is that signal noise is reduced in the spread encoding representations by suitable
matching of the coding function with the interval width spanned by each node, exploiting hence the
network’s fault tolerance.

The spread encoding algorithm was implemented by initially scaling the data to a normalised
range where the original data range r € [r,,;, r,.] Was represented by x € [0, N-2N,] with N the total
number of nodes, N, the number of nodes on either side of the variable range and 8=1. The data coding

is performed using the following relation

W) = 0w+ 1/2-x) - O - 1/2-x), i=1,..N (11)

10

where
a=i-No-c (12)
and the cumulative Gaussian distribution function was approximated by the sigmoidal function centred

at x:

Pla-x)= 1 : (13)

1+ePa-n
In Eq. (12), ¢ is an offset term which shifts the position of the range limits on the nodes. The width of
the node excitations is inversely controlled by the parameter § in Eq. (13). Errors arise in decoding
using a straight-forward applications of Eq. (7) because the node excitations, y, (x), are calculated by
an approximation, Eq. (9). The accuracy of decoding is improved by dividing the weighted sum by the
sum of the node excitations. Thus, the network output is decoded back to the normalised range using

> v ()

- = - (14)
) Z:] Y. (x)

which is analogous to the conventional centre of gravity defuzzification technique. In this work, the
parameters used in the spread encoding algorithm were N=6, N,=2, ¢ =0.5 and f=2.3 which were found
to provide sufficiently accurate coding and decoding in the application reported in this paper.

Formal techniques for determining an optimum number of nodes in the hidden layers are still an
area of current research and presently, this task is often achieved by experimentation. The resulting
MLP network topology with the spread encoding applied to the network data, was 48 input nodes, 34
and 16 nodes for the two hidden layers and 6 output nodes. The results for the 14.00h and 2.00h which
correspond to hours with maximum and minimum load consumption respectively, are illustrated in

Tables 1 and 2.

3.3 Window Random Activation Weight Neural Network (WRAWN)

11

General function approximation can be obtained by feed-forward neural networks consisting of just
one hidden layer of non linear neurons [4]. The innovation here is that training of the weights between
the input and hidden layer is not required. By taking these activation weights as random numbers, the
problem, concerning the parameters, could be considered as linear, thus can easily be solved using a
sliding window least-squares estimator [28].

Let consider a feed-forward neural network consisting of a hidden layer with a non linear
sigmoidal activation function, and one output layer with a linear activation function. The related

equations are written in matrix form as:

Z=xwt
U = f(Z) = atanh(hZ) (15)
Y, =UW?®

where X is the input vector, W" is the weight matrix between the input and hidden laver, U is the
output matrix of hidden layer, W"is the weight matrix between the hidden and output layer, and finally
Y, is the output vector of neural network. If Y assumed to be the target vector, then it could be easily
generated by the matrix equation
Y=UW"+e (16)

where e is the error term. Suppose that the weights W" are fixed. Then the training of the network is
equivalent to find the weights W* that minimise a specific cost function, which in our case is the
difference between the network’s output Y, and the target output Y. Basically, this is a classic least

squares problem and provided that the matrix U is of full rank, the least-squares solution is given by

w* =Ty 'uTy (17)
Let define
)
u=|: (18)
u’ (1)

where u” ()={u; (1}t ®,....uT (D={u, (O, (] and y =[¥(1)...y(®]".

12

For a moving window of length n , define

[u {t-n,+1) ul(t-n,+1)
|, uT (1) U(tt-n, +2)
W t10+2) | rygegen, +2)
Uy =| — (19)
_______ T
uT{H-I} u (t+1)

The unknown parameter vector is calculated as a least squares estimator

Yo = Wo(t+DU,,, = W (t+ D=(UL,, U,)" UL, ¥, (20)

Therefore, matrices (U[,,U,,,)'and U[,,y,., should be computed . Substituting the matrices

UT UL, ¥.¥. by their above forms, Eq. (19), it yields
U,"U, =u(t-n, +Du’ (t-n, + D+ UT (tt-n,, + 2)U(t,t-n,, +2) (21)

and after some calculations

Uy U, =U,TU, +T(t+1) (22)

where T(t+1)= u(t+DuT (t+1)-u(t-n, + Du” (t-n +1). (23)
Similarly

Uly, = u(t-n,, + 1) y(t-n, +)+ UT (tt-n,, +2) y(tt-n +2) (24)

Ul Ve =UTy, +8(t+1) (25)

Hence the parameter estimation update equation is

W (t+1)= W°(t)- P(t+ D[T(t+ HYW® (1) 8(t+1)] (26)
with
P(t+1)=(U,,,"U,,) "= P (0+ T(t+1) (27)

as the covariance matrix of the estimate W*(t+1)

13

and

&(t+)= u(t+ Dy(t+ - uft—n + 1) ¥(t-n_, +1) (28)
}f[I-nw+ I}' ¥(t-n,+1)
¥(t)=|: | s
L y(t) ¥(tt-n,+2)
Fy[t—n“ +2) yitt—n,+2)
yt+1)=|: S (29)
| ¥(t+1) y(t+1)

~

The major advantage of this variation is that W"(t) is estimated using information from the last n_

samples. As a result there is a reduction in speed which is proportional to the length of the window,
since the dimensions of P, I', and & are independent of the window size.

The main objective in this method is the right choice of activation weights W". In order matrix
UU not be close to singularity, sigmoid function should always operates in the linear range. This task
is achieved by normalizing input vector in the range [-a.a], where a is a small number O<a <, and
scaling the randomly chosen weights W" in an efficient manner. Hence, the following equation is

satisfied:

Nj+1
max var{lethW'?}Ea (30)
I=1

! J
The weight matrix W" is randomly generated by a normal distribution with zero mean and standard

deviation of 1. Then the normalised weight matrix W" is given by the following equation

N(0,1) (31)

where N(0,1) denotes a generator of random numbers with zero mean normal distribution and standard

deviation of 1. Best results were obtained using an 8/20/1 structure. The results for the 14.00h and

14

2.00h which correspond to hours with maximum and minimum load consumption respectively, are

illustrated in Tables 1 and 2.

3.4 Radial Basis Functions

An altermative model to the multilayer networks for the time series identification, is the neural network
employing radial basis functions (RBFs). An RBF is a function which has in-built distance criterion
with respect to a centre. A typical RBF neural network consists of three layers (input, hidden, output).
The activation of a hidden neuron is determined in two steps: The first is computing the distance
(usually by using the Euclidean norm) between the input vector and a center ¢, which represents the i"
hidden neuron. Second, a function h which is usually bell-shaped is applied, using the obtained
distance to get the final activation of the hidden neuron. In our case the well known Gaussian function

G(x)
G(x)=exp(- z—;} (32)

was used. The parameter ¢ is called unit width and is determined using the heuristic rule “global first
nearest-neighbor” [22]. It uses the uniform average width for all units using the Euclidean distance in
the input space between each unit m and its nearest neighbor n. All the widths in the network are
fixed to the same value o and this results in a simpler training strategy.

The activation of a neuron in the output layer is determined by a linear combination of the fixed

nonlinear basis functions, i.e.

M
F ()= w,0,(x) (33)

1=]

where ¢,(x)= G("x—cj") and w; are the adjustable weights that link the output nodes with the

appropriate hidden neurons. These weights in the output layer can then be learnt using the least-squares

method.

15

The present study adopts a systematic approach to the problem of centre selection. Because a
fixed centre corresponds to a given regressor in a linear regression model, the selection of RBF centres
can be regarded as a problem of subset selection. The orthogonal least squares (OLS) method can be
employed as a forward selection procedure which constructs RBF networks in a rational way. The
algorithm chooses appropriate RBF centres one by one from training data points until a satisfactory
network is obtained. Each selected centre minimises the increment to the explained variance of the
desired output, and so ill-conditioning problems occurring frequently in random selection of centres
can automatically be avoided. In contrast to most learning algorithms, which can only work if a fixed
network structure has first been specified, the OLS algorithm is a structural identification technique,
where the centres and estimates of the corresponding weights can be simultaneously determined in a
very efficient manner during leamning. OLS learning procedure generally produces an RBF network
smaller that a randomly selected RBF network [2]. Due to its linear computational procedure at the
output layer, the RBF 1is faster in training time compared to its backpropagation counterpart.

A major drawback of this method is associated with the input space dimensionality. For large
numbers of inputs units, the number of radial basis functions required, can become excessive. If too
many centres are used, the large number of parameters available in the regression procedure will cause
the network to be over sensitive to the details of the particular training set and result in poor
generalisation performance (overfit). To avoid this problem, regularisation method has been proposed
by Orr [23]. Both the forward selection and zero-order regularisation techniques were proposed to
construct parsimonious RBF networks with improved generalisation properties. Using the regularized

forward selection algorithm (RFS) the error criterion for minimisation is given by the equation

J=eTe+iw'w (34)

16

instead of the standard J=e"e, where A is the regularisation parameter. However, the proposed
algorithm does not utilise an orthogonalisation scheme; therefore computationally is more expensive
from the standard OLS algorithm.

An efficient combination of the zero-order regularization and the OLS algorithm proposed by
Chen et al [3]. Similarly, the new error criterion for minimization in the ROLS algorithm is

J=e'e+ih g'g (35)
where g is the orthogonal weight vector which satisfy the triangular system
g=AW (36)

and A4 is an upper triangular matrix which computed directly from the OLS regression procedure [2].

In our case, the ROLS algorithm was employed to model the hourly demand load. Best results
were obtained using 10 inputs, selected from the general Eq. (1), by setting the parameters p, g equal
to 3. The proposed “global first nearest-neighbor” method for width definition was found in practice
to be inadequate for our problem. A rather heuristic method by taking the half the maximum Euclidean
distance was finally adopted for our simulations. Although an elegant approach to the selection of the
regularization parameter X is to adopt Bayesian techniques, in this work this parameter was set by trial
and error to small positive values, which satisfy the optimal problem’s solution.
The A parameter was set equal to 0.0002 and 0.0008 respectively for the two cases. As a result, the
corresponded centres were found by the OLS procedure to be equal to 27 and 13 respectively. Just for
comparison purposes, it should be noted that for the first case of 14h, the original OLS algorithm,
without the use of A parameter, gave us a network with a similar accuracy but with the computational
cost of 69 centres. The results for the 14.00h and 2.00h which correspond to hours with maximum and

minimum load consumption respectively, are illustrated in Tables 1 and 2.

3.5 Autoregressive recurrent neural network

17

In the previous sections, the so called windowed input network has been applied for modelling the
electric load. Another approach has been that of explicitly including the time depedency into the
network structure. The commonly used back-propagation algorithm contains no memory, hindering the
learning of temporal patterns. Here, the alternative is to use a dynamic network that is given some kind
of memory to encode past history.

In the standard multilayer perceptron, the input to a neuron are multiplied by feedforward
weights and summed, along with a node bias term. The sum is then passed through a smooth sigmoidal
transfer function, producing the neuron’s output value. This neural model has no memory, because th
output value is not expilicitly dependent upon previous outputs.

In this section a novel network architecture for the load forecasting problem, called the
autoregressive recurrent network (ARNN) is proposed [12]. It was designed to contain internal
memory of the previous states, while training rapidly using a generalised BP algorithm. The idea is
that we still use a recurrent neural network model but the recurrent neurons are decoupled so that each
neuron only feeds back to itself. With this modification the ARNN model is considered to converge
easier and to need less training cycles than a fully recurrent network.

The ARNN is a hybrid feedforward / feedback neural network, with the feedback represented by
recurrent connections appropriate for approximating the dynamic system. The structure of the ARNN
is shown in Fig. 3. There are two hidden layers, with sigmoidal transfer functions, and a single linear
output node. The ARNN topology allows recurrence only in the first hidden layer. For this layer, the
memoryless backpropagation model has been extended to include an autoregressive memory, a form of
self-feedback where the output depends also on the weighted sum of previous outputs.

A modified backpropagation algorithm was developed to train the ARNN which includes

dynamic recursive equations in time. The mathematical definition of the ARNN is shown below:

y©) =01 =Y W°Q,), Q =f(8,). 8, =Y WIZ 1) 37)
1 i

18

and
k=n
Z,(t)=1f(H, (1), H1)= ;wﬁfzj(t -k)+ Zw.u'.l.l (38)

where It} is the i input to ARNN, Ht) is the sum of inputs to the j* recurrent neuron in the first
hidden layer, Zt) is the output of the j* recurrent neuron, Sy?) is the sum of inputs to the /* neuron in
the second hidden layer, Oy%) is the output of the /* neuron in the second hidden layer and Of%) is the
output of the ARNN. Here, f# is the sigmoid function and W, W°, W and W are input, recurrent,
hidden and output weights, respectively. The index » indicates the number of internal memories in the
hidden nodes at reccurent layer and for this application was set to five. Thus the network can be
considered as a model capable to carry out five-steps-ahead accurate predictions. The five memories in
each node at the first hidden layer allow the network to encode state information [14].

Eight inputs were selected form the model of Eq.(1) by setting the parameters p and q equal to 2.
Hence a structure of 8/20/14/1 nodes has been used for the simulation of the STLF problem. The
results for the 14.00h and 2.00h which correspond to hours with maximum and minimum load
consumption respectively, are illustrated in Tables 1 and 2.

From the results, which are shown in a next section, it was proved that the approach of producing
a dynamic memory is clearly simpler than the other proposed techniques, with the result that the
computational burden to be substantially reduced [13]. This fact, in conjunction with the simpler
network complexity, proves that the current approach is better suited to this kind of sequence

processing.

3.6 Neuro-Fuzzy inference system
The various neural architectures presented in previous sections, illustrated their strength for modelling
the individual ‘blocks’ in the proposed modular architecture. It is well known that a number of

complex systems are difficult to be modelled due to their non-linear behaviour and imprecise

19

measurement information. Therefore, imprecise systems states and a set of imprecise heuristic rules
are needed.

Zadeh introduced the linguistic approach to system design based on fuzzy logic. The main goal of a
fuzzy inference system is to model human decision making within the conceptual framework of fuzzy
logic and approximate reasoning [31]. Such a system consists of four important parts: the
fuzzifications interface, knowledge base unit, decision making unit and output defuzzification
interface.

Recently, the resurgence of interest in the field of artificial neural networks (ANNSs) has injected
a new driving force into the ‘fuzzy’ literature. The backpropagation leaming rule, which drew lhittle
attention till its applications to ANNs was discovered, is actually an universal learning paradigm for
any smooth parameterised models, including fuzzy inference systems. As a result, a fuzzy inference
system can now not only take linguistic information (linguistic rules) from human experts, but also
adapt itself using numerical data (input/output pairs) to achieve better performance. This gives fuzzy
inference systems an edge over neural networks, which cannot take linguistic information directly.

In this section a simple fuzzy logic system implemented by using a multilayer feedforward
neural network is presented for modelling the individual hourly load ‘blocks’ in the proposed modular
architecture. A schematic diagram of the proposed fuzzy neural network (N_Fuzzy) structure is shown
in Fig. 4.

The system consists of four layers. Nodes in layer one are input nodes which represent input
linguistic variables. Nodes in layer two are membership nodes which act like membership functions.
Each membership node is responsible for mapping an input linguistic variable into a possibility
distribution for that variable. The rule nodes reside in layer three. Taken, together, all the layer three
nodes form a fuzzy rule base. Layer four, the last layer, contains the outpur variable nodes.

The links between the membership nodes and the rule nodes are the premise links and those between

the rule nodes and the output nodes are the consequence links. For each rule node, there is at most one

20

premise link from a membership node of a linguistic variable. Hence there are [],|T(x)| rule nodes in
the proposed FNN structure. Here |T(x,)| denotes the number of fuzzy partitions of input linguistic
variable x. Moreover, all consequence links are fully connected to the output nodes and interpreted
directly as the strength of the output action. In this way, the consequence of a rule is simply the
product of the rule node output, which is the firing strength of the fuzzy rule and the consequence link.
Thus, the overall network output is treated as a linear combination of the consequences of all rules
instead of the complex composition, a rule of inference and the defuzzification process. This fuzzy
neural network is a slight modification of the network reported by Lin [17].

For an n-input one-output system, let x; be the ith input linguistic variable and &' the firing
strength of rule j, which is obtained from the product of the grades of the membership functions

i, (x;) in the premise part. If w’ represents the /" consequence link weight, then the inferred value y*

is obtained from the weighted sum of its inputs. Thus, the inference in the proposed fuzzy neural

network is realising as

i rule: IF x, isA/,,andx_ isA!, THEN y=w/,j=1,2,...m

y*=Ya'w), al=]L[u&,(x.)

(39)

The class of fuzzy inference system under consideration is a simplified type which uses a singleton to
represent the output fuzzy set of each fuzzy logical rule Thus w/ is the consequence singleton of the j*

rule. We now consider the basic function of each node in each layer.

Layer I1: Layer 1 is an input layer whose nodes represent input variables. The nodes just transmit input
values to the next layer directly. Hence, for the jth node of layer 1, the net input and output are

represented respectively as:

R PO ST, |
net;=x;, 1=j, y,=net, (40)

21

Layer 2: This is an input term (partition) layer whose nodes represent the membership functions
associated with each linguistic term of the input variable. The Gaussian function, a particular example
of radial basis functions, is adopted here as a membership function. Hence, the output of the jth term

node associated with x;, is

2 F
(xl. _ml]'}

net}=p, (m;.c,)=- i y}=exp(net?) (41)
ij

where m;; and o; are respectively, the mean and the variance of the Gaussian function in the jth term of
the ith input linguistic variable x; .

Layer 3: Layer 3 is a rule node layer, where each node represents a rule of the fuzzy system. Thus the
nodes in Layer 3 form a rule base. The links in this layer are used to implement the antecedent
matching. The matching operations or the fuzzy AND aggregation operation is chosen as the simple

PRODUCT operation instead of the MIN operation. Thus, for the jth rule node
net; = fo . ¥i=net} (42)

Layer 4: This is an output layer, whose nodes represent the partitions of the output vanables. All
consequence links are fully connected to the output nodes and interpreted directly as the strength of the

output action. This layer performs centroid defuzzification to obtain the numencal output:

net= > wix!, yi=net! (43)

where the link weight w,” is the output action strength of the jth output associated with the ith rule.
Thus, the overall net output is treated as a linear combination of the consequences of all rules instead
of the complex composition of a rule of inference and the defuzzification process.

The adjustment of the parameters in the proposed FNN can be divided into two tasks,
corresponding to the IF (premise) part and THEN (consequence) part of the fuzzy logical rules. In the

premise part, we need to initialise the center and width for Gaussian functions. To determine these

22

initial terms, a self-organisation map (SOM) and fuzzy-c-means are commonly used. Another simple
and intuitive method of doing this is to use normal fuzzy sets to fully cover the input space. Since the
final performance will depend mainly on supervised leamning, normal fuzzy sets are chosen for this
work. In the consequence part, the parameters are output singletons. These singletons are initialised
with small random values, as in a pure neural network.

For our problem, four inputs were selected from the model of Eq.(1) by setting the parameters p
and g equal to 2. Hence, the requested load is forecasted both with the load data of the previous two
days and also with the forecasted load data for the same day at previous two time steps. Each input
variable was assigned to four fuzzy partitions. Figs. 5-6 illustrate the load prediction results for the
14.00h and 2.00h which correspond to hours with maximum and minimum load consumption
respectively.

The main advantages of the proposed adopted method are the ability to learn from experience
and a high computation rate. The average percentage relative error approaches its optimal value after 5-
epoch training. This is due to the fact that the consequence parameters have converged. This implies
that the convergence of consequence parameters play a dominant role in system estimation accuracy.
The remaining time is just for fine-tuning the premise parameters. Thus the training required to achieve

acceptable accuracy was very fast compared to the other techniques.

4. DISCUSSION OF RESULTS

This section presents the results and the statistics of forecasts obtained from the application of the
developed STLF models on the power system of the island of Crete. Case studies for the proposed
methods were carried out for a 24-hour load forecasting.

Several structures of neural networks with algorithms ranging from backpropagation learning to

OLS methods were tested. Note that the neural models differ from the usual time-series models. Since

23

they include loads for both previous times and previous days, they better represent the hourly
variations than other existing methods.

An obvious advantage of the proposed modular architecture is that since the complete system
consists of 24 neural blocks, each one with a single output, training is easier and faster compared to
traditional neural approaches which treat the output as a 24x1 vector. The results were analysed based

on the following indices:

Standard error deviation

=Jﬁib’.-:~f

Percent relative error
1 M
= ﬁ Z|~.fI -}-i| - 100/ y,

Root mean square error

:, = \lﬁ glj[{:fi-y.- b/y,] 100
The complete results for the STLF problem, for the hours with minimum and maximum load
consumption, are illustrated in Tables 1 and 2 respectively.

The widely used for such an application, standard MLP with ABP learning algorithm, was
considered in this work as a testbed case. In an alternative representation, the SE structure has been
shown to enable a network to maintain a higher degree of accuracy compared with the classic MLP
structure. Although this considerable improvement in performance is generally at the expense of a
larger in size network, the use of the proposed structure has significant advantages in applications

requiring long-range predictions. The performance of a classical MLP will severely deteriorate when it

24

is acting as a recurrent model because any errors of the predicted output will tend to accumulate. This
problem is avoided in this specific structure, by splitting the error to several nodes, thus exploiting the
network’s fault tolerance.

A faster in training method was demonstrated with the use of WRAWN algorithm using a
sliding window least-squares estimator. Using a proper set of parameters, the results were found to be
similar to those from a classic MLP using the ABP learning rule.

An alternative method to MLPs could be consider a neural model employing radial basis
functions. Both aspects of training time and improved accuracy were satisfied with the use of ROLS.
An additional advantage of the specific algorithm was the overfitting problem avoidance by using the
regularised parameter &. Due to this factor, the RBF network enjoys a very compact structure compared
to the other proposed neural architectures.

The use of dynamic neural networks present an innovation to the specific problem. Here, the
objective was to use a dynamic network (ARNN) that was given some kind of memory to encode past
history, with the additional requirements of short traiming time.

The improved, compared to the standard MLP structures, results reveal the advantages of using
memory neuron structures. The inclusion of five memories and the related recurrence in the first
hidden layer, enable the network to carry out five-steps ahead accurate predictions. Although this
method is depedent on the number of ‘memories’ and therefore it can be considered as a partially
recurrent network, its use to the proposed modular architecture will allow the expansion of the
prediction horizon beyond the limit of 24 hours.

However, the introduction of hybrid leamning algorithms imposed a new dimension to STLF. The
main advantages of the proposed Neuro-Fuzzy (N-Fuzzy) method are the ability to learn from
experience and a high computation rate. The average percentage relative error approaches its optimal
value after 5-epoch training. This is due to the fact that the consequence parameters have converged.

This implies that the convergence of consequence parameters play a dominant role in system

25

estimation accuracy. The remaining time is just for fine-tuning the premise parameters. Thus the

training required to achieve acceptable accuracy was very fast compared to the other techniques.

5. CONCLUSIONS

This paper is based on the comparative analysis of neural network based STLF techniques. These
methods were developed for a one-day-ahead prediction of hourly electric load using a modular
architecture. Several neural architectures were tested including, multilayer perceptrons, WRAWNS,
fuzzy-neural-type networks, radial basis and memory neuron networks. The building block of the
existing forecasting systems is an MLP trained with the BP algorithm. However, in such
dynamic applications, the real computing power of connectionist models could be exploited only if the
networks themselves are dynamic in nature. Two approaches to processing inputs in the time domain
have been applied: One to window the inputs and then treat the time domain like another spatial
domain, with the result the development of the SE network. The obtained results from the SE model,
reveal the advantage of the proposed neural approach compared to the widely used multilayer
perceptron employed with the standard BP algorithm.

Alternatively to introduce dynamics into the network by transferring the regular network neuron
state to another set of ‘duplication’ neurons called memory neurons. The autoregressive neural
network is an example of such architecture. Its performance is characterised by a high degree of
accuracy as well as fast training time, similar to the performance of the RBF network based on the
ROLS algorithm.

The introduction of hybrid learning algorithms imposed a new dimension to STLF. The main
advantages of the proposed Neuro-Fuzzy (N-Fuzzy) method are the ability to learn from experience

and a high computation rate. The average percentage relative error approached its optimal value after

26

5-epoch training. Thus the training required to achieve acceptable accuracy was very fast compared to
the other implemented techniques.

It should be noted that the proposed structures differ from the usual time-series prediction
models since they include only loads for both previous times and previous days for hourly load
forecasting. In a future work, the present approach will be enhanced by using advanced neuro-fuzzy
models and additional load and weather information such as illuminations level, temperature,

humidity, wind direction and industrial load.

ACKNOWLEDGEMENT

The authors would like to thank Professor G. Stavrakakis, for providing access to load data for the

Power System of the Greek Island of Crete.

REFERENCES

1. Bakirtzis, A., Petridis, V., Klartzis, S., A neural network short term load forecasting model for the
greek power system. [EEE Trans. on Power Systems, 1996, 11(2), 858-863.

2. Chen, S., Cowan, C.F., Grant, P., Orthogonal least-squares learning algorithm for radial basis
function networks. IEEE Trans. on Neural Networks, 1991, 2, 302-309.

3. Chen, S., Chng, E., Regularised orthogonal least squares algorithm for constructing radial basis
function networks. Int. J. Control, 1996, 64(5), 829-837.

4. Cybenko, G., Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 1989, 2, 303-314.

5. Gross, G, Galiana, F., Short term load forecasting. Proc. IEEE, 1987, 75(12), 1558-1573.

6. Hertz, J., Krogh, A., Palmer, R.G., Introduction to Theory of Neural Computation, Addison-

Wesley, 1991.

27

. IEEE Committee Report, Load forecasting bibliography Phase 1. JEEE Trans. on Power App. and

Sys., 1980, 99, 53-58.
Irisarri, G, Widergren, S., On-line load forecasting for energy control center applications. [EEE

Trans. on Power App. and Sys., 1982, 101(1), 71-78.

. Jabbour, K., Riveros, J.F.V., Landsbergen, D., ALFA: automated load forecasting assistant. [EEE

Trans. PWRS, 1988, 3, 908-914.

10.Kariniotakis, G.N., Kosmatopoulos, E., Stavrakakis G., Load forecasting using dynamic high-order

11

neural networks. Proc. of [EEE-NTUA Joint Int. Power Conf., 1993, 801-805.

Kodogiannis, V.S., Lisboa, P.J.G. and Lucas, J., A Neural Predictive Controller for Underwater

Robotic Applications. Proc. 2nd IEEE/BCS Workshop on Neural Network Applications and Tools,

Liverpool, September 1993, IEEE Computer Society Press, pp. 126-133.

12.Kodogiannis, V.S., Neural network techniques for modelling and learning control of an underwater

13.

14,

15

16.

1

robotic vehicle. PhD thesis, Liverpool University, May 1994,
Kodogiannis, V.S., Lisboa, P.J.G. and Lucas, J., Neural network modelling and control for
underwater vehicles. Artificial Intelligence in Engineering, 1996, 1, 203-212.
Kodogiannis, V.S., Lisboa, P.J.G., Lucas, J., Long Range Predictive Controller for Underwater
Robotic Vehicles using Recurrent Neural Networks. 2nd J[EEE Mediterranean Symposium on New
Directions in Control & Automation, Chania, Crete, Greece, June 1994, pp. 217-224.
Kosmatopoulos, E., Polycarpou, M., Christodoulou, M, Ioannou, P., High - order neural network
structures for identification of dynamical systems. /[EEE Trans. on Neural Networks, 1995, 6(2),
422-432.
Lee, K., Cha, Y., Ku, C., A study on neural networks for short-term load forecasting. Proc. of
ANNPS '91, Seattle, July 1991, 26-30.
Lin, C.T., lee, C.S., Neural-network-based fuzzy logic control and decision system. JEEE Trans.

Computers, 1991, 40(12), 1320-1336.

28

18. Lu, C.N., Wu, H.T., Vemuri, S., neural network based short term load forecasting. JEEETrans. on
Power Systems, 1993, 8(1), 337-342.

19. Marr, D., Hildreth, E., Theory of edge detection. Proc. Roy. Soc. B, 1980, 207.

20.Mehra, R., On the Identification of variance and Adaptive Kalman filtering. Proc. of JACC, 1969,

494-505.
21.Moghram, I., Rahman, S., Analysis and evaluation of five short-term load forecasting techniques.
IEEE Trans. on Power Systems, 1989, 4(4), 1484-1491.

22. Moody, J., Darken, C., Fast learning in networks of locally tuned processing umts. Newural
Computation, 1989, 1, 281-294.

23. Orr, M., Regulansed centre recruitment in radial basis function networks. Research report No 59,
Centre for Cognitive Science, University of Edinburgh, U.K, 1993.

24, Papalexopoulos, A., How, S., Peng, T.M., An implementation of a neural network based load
forecasting model for the EMS. Paper 94 WM PWRS presented at the IEEE/PES 1994 Winter
Meeting, 207-209,

25.Park, D.C, El-Sharkawi, M.A., Marks II, R.J., Atlas, L. & Damborg, M., Electric load forecasting

using an artificial neural network. JEEE Trans. on Power Systems, 1991, 6(2), 442-449,

26. Park, J.H., Park, Y.M., Lee, K., Composite modeling for adaptive short term load forecasting.
IEEE Trans. on Power Systems, 1991, 6(2), 450-456.

27. Peng, T.M., Hubele, N.F., Karady, G.G., Advanement in the application of neural networks for
short term load forecasting. [EEE Trans. on Power Systems, 1992, 7(1), 250-258.

28. Pouliezos, A., Recursive sliding window estimators. Information and Decision Technologies, 1993,
19, 19-30.
29. Press, W., Teukolsky, S., Numerical Recipes in C: The art of scientific computing. Cambridge

University Press, 1992,

29

30.

Rahman, S., Bhatnager, R., An expert system based algorithm for short term load forecast. JEEE

Trans. PWRS, 1988, 3, 392-399.

31. Ross, T., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995.
32. Rumelhart, D., McClelland, T. L., (eds), Parallel Distributed processing: Explorations in the
Microstructure of Cognition. Vol. 1: Foundations, MIT Press, 1986.
33. Vemuri, S., Huang, W., & Nelson, D., On-line Algorithm for forecasting hourly loads of an electric
utility. [EEE Trans. on Power App. and Sys., 1981, 100, 3775-3784.
34. Vogl, T.P., Mangis, J.K, Rigler, AK., Accelerating the convergebce of the backpropagation
method. Biological Cybernetics, 1988, 257-263.
35. Zadeh, L.A., Fuzzy sets. Information and Control, 1965, 8, 338-353.
Models | AR | WRAWN | ABP SE RBF | M-Fuzzy | ARNN
Statistical Properties
Relative Eror % 386297 | 275417 | 27346 | 15174 | 1.35119 1.2233
Standard Deviation Error 500894 | 4.10438 | 3.91741 | 2.1345 | 1.96127 | 1.962 1.83768
RMSE % 5.80199 | 4.0633 | 3.80634 | 2.0314 | 186722 | 1.815 171771
Table 1

AR WRAWN ABP SE RBF MN-Fuzzy ARNN

Statistical Properties

Relative Error %

111837 | 1059024 | 11.9674 279244 |0 273292

Standard Deviation Error

256068 [21.74416 | 243568 | 7716 | 377855 ;'_'_"i'= 5.92847

RMSE %

368308

17.2049 | 15.19347 | 17.6778 | 4.6194 | 3.60609 |3

Table 2

30

00 [x(t+24) |

Siging outsut
ieyer

Figure 2: Spread encoding newral architecture

Cutput Units

Input Units

N architecture

Figure 3: ARN.

3

walyar
{ruia Aoa &)

Figure 4: Neuro-fuzzy architecture

1301

118

995

moenths of 1

33

Days for 4 first

Figure 6: Load forecasting of 14:00h using the N-Fuzzv model

o
e T (i o et
“em man i.ﬂ....l..-..ﬂ:lll.l”....'.: - .I|||I.._I.-j||l i v o
— M e —mE i
= o a—
- S T
- - |..._il.-.. —..r___. _ .lrI.“HU.. . —
—="" 4 L foam T
—— L, < T
v = Hlllt;ﬁ.ll:-l.lrhl..lf O N_ .w. |...._...Jq._.|..|Uv
m e % % i t._d.llq.:..r...
| A e
m) -.rrllm,hll.-l 5 m m = Ty "
— o % ks) b0 iy 1.......| T
he) L o & .=
m L] lnur:nu,nu.i.n._u m m & E " .I|I__!
= i a]Is...,.. } -
U- Ly |r“-|... .nM_ o o) bt .1l. |I - v s
W L] ...ﬂ...nw.r = S w 5 e
v 5 R T 1 g u @ v o
o w 3 w e, T O P
e - T o ow ——l .
il % \ T —
e ¥ e
M. m = p— BN —
o e A
L o mr—
T
O ,,m ~
e = P
I sty i
M i 4 3 ey e e .
ke T Timmem— T
*a e e i ——
5 ; D T
m oo f..m.l_.
o o > o Ly o o
¥ 8 - v 0 8 8 g b o © = o
Lo S & C = = = =
v = — — - = — Lo}] o a.um._._ Mr,,n m (i8] o = o

