AN EFFICIENT SHAPE-BASED APPROACH TO
IMAGE RETRIEVAL

|. FUDOS and L. PALIOS

7-99

Preprint no. 7-99/1999

Department of Computer Science
University of loannina
451 10 loannina, Greece

An Efficient Shape-based Approach to
Image Retrieval

Ioannis Fudos and Leonidas Palios
Department of Computer Science
University of Ioannina
GR45110 Ioannina, Greece
{fudos,palios}@cs.uoci.gr

Technical Report 99-7
March 1999

Efficient image retrieval from large image bases is an issue central to a wide
range of real world applications, such as, digital libraries, digital film databases,
environmental sciences, and satellite image bases. The functionality of early
image base systems relied on a preprocessing phase during which each image
or group of images was manually annotated. Modern systems draw their power
from sophisticated retrieval based on color, texture or other global characteris-
tics. Such systems, although powerful and fast, often lack in accuracy. There-
fore, there is an increasing demand for image retrieval techniques which will
make use of local features such as shape.

QOur work focuses on the problem of finding good matches for a given query
shape among candidate shapes stored in a shape base. We present an efficient
matching algorithm built around a novel similarity criterion. Unlike previous
work which achieved an initial positioning of the query shape by normalizing one
of its edges, our approach is based on the normalization of the diameter of the
shape, thus making it less susceptible to errors due to noise or limited accuracy
during the shape extraction procedure. Our matching algorithm works by grad-
ually “fattening” the query shape until sufficiently many similar shapes have
been discovered. The algorithm exhibits poly-logarithmic average time behav-
ior. The user may customize the algorithm’s operation by providing information
regarding the desired maximum accuracy of the matching.

1 Introduction

The last few years, there is an emerging need to organize and efficiently use
large pools of images that have been collected over the last decades and contain
information potentially useful to areas such as medicine, journalism, weather
prediction, environmental sciences, art, fashion and industry. It is estimated
that there are more than 20 million pages containing hundreds of millions of
images on world wide web pages alone [4]. Traditionally, images were retrieved
by their filename, other technical characteristics such as date and size or, in
the case of images having manual annotation, through text keywords. It was
soon realized that manual annotation was not sufficient, since besides being a
time consuming and not real-time process, it also describes only a very small
percentage of the information that an image contains.

During the last decade, there is an increasing effort to organize and retrieve
images by content based on characteristics such as color, texture and shape.
There is a number of methods in the literature that perform indexing and re-
trieval based on global image characteristics such as color, texture, layout, or
their combinations. QBIC [8, 13], a system developed at IBM Almaden supports
retrieval by color histograms, texture samples (based on coarseness, contrast and
directionality), and shape. QBIC uses R* trees to process queries based on low-
dimensionality features, such as, average color and texture. Shape matching is
supported using either dimensionality reduction, which is sensitive to rotation,
translation and scaling [16], or by clustering using nonlinear elastic matching
[7], which requires a significant amount of work per shape comparison and some
derived starting points as a matching guide. QBIC also supports video queries.
Elastic matching based on numerical methods is a technique that has been used
for shape retrieval (see e.g. [3]).

Ankerst et al [1] present a pixel-based shape similarity retrieval method that
allows only minor rotation and translation. Their similarity criterion assumes
a very high dimension (linear to the number of pixels in the image). therefore
dimensionality reduction is performed.

Gary and Mehrotra [14, 10, 9] present a shape-based method, which stores
each shape multiple times once per edge. More specifically, the shape is posi-
tioned by normalizing one of its edges. The space requirements of this method
impose a significant overhead. The method is quite susceptible to noise, thus
the authors present a sophisticated preprocessing phase to eliminate the noise
effects. Finally, the method favors those shapes of the shape base, which have
almost the same number of vertices as the query shape.

Cohen and Guibas [6] present an image retrieval method based on geometric
hashing. This method calculates the hash signature of the shape based on the
contributing line segments. The method has been applied to retrieve Chinese
characters and is sensitive to rotation and translation. The geometric hashing

described in [6] is not related to the geometric hashing presented in our work.

In this paper, we present a shape-based method. where information regard-
ing the boundary of objects is automatically extracted and organized to support
a polylogarithmic (in the number of shape vertices) algorithm based on a novel
similarity criterion. Specifically, this paper makes the following technical con-
tributions:

e introduces a new similarity criterion for shapes, that works better in the
context of image retrieval than traditional similarity criteria.

e describes a novel method of storing shapes representing the boundary of
image objects; the method is noise tolerant and rotation-, translation- and
scale-invariant.

o presents an efficient algorithm for finding the closest match(es) to a given
query shape.

¢ introduces a geometric hashing technique that can be used in conjunction
with the algorithm mentioned above.

describes an interactive prototype system implementing the above meth-
ods.

The rest of this paper is organized as follows. Section 2 presents our sim-
ilarity criterion for shapes and compares it with existing criteria. Section 3
describes the organization of the data describing the shapes, and the methods
for their effective retrieval. Section 4 provides a description of an interactive
system that incorporates our approach, and finally Section 5 offers conclusions
and directions for future work.

2 Similarity Criteria

The Hausdorff distance is a well studied similarity measure between two point

sets A and B. The directed Hausdorff distance h and the Hausdorff distance H
are defined as follows:

H(A,B) = max(h(A, B),h(B, A))
h(A, B) = max,c 4 mineg d(a,b)

where d is a point-wise measure, such as, the Euclidean distance. An inherent
problem with the Hausdorff distance is that a point in A that is farthest from
any point in B dominates the distance. To overcome this problem, Huttenlocher
and Rucklidge have defined a generalized discrete Hausdorff distance (see e.g.
(12]), given by the k-th ranked distance rather than the maximum:

Hi(A, B) = max(h(4, B), h(B. 4))
hi(A, B) = kthye 4 minyep d(a,b)

This metric, eliminates somehow the farthest-point domination disadvantage
of the Hausdorfl metric, but works only for finite set of points, and needs to
know the number of points m of the point sets to get a reasonable measure by
selecting k = m /2. The generalized Hausdorff distance does not cbey the metric
properties.

An interesting alternative measure is presented in [7] called Nonlinear Elastic
Matching NEM, (A, B) with stretch cost r. This measure does not obey exactly
the traditional metric properties but a relaxed set of metric properties instead.
In practice, this provides the same advantages as any metric, and therefore can
be used for clustering. However, the arbitrary number of points distributed on
the edges, the need of determining certain starting matching points and the
complexity of computing such a match (O(mn) using dynamic programming
[2]) makes this measure inappropriate for our method.

Figure 1: Depending on the similarity criterion the query shape) may be
matched with 4 or B

In our algorithm we use a new similarity criterion based on the average of
minimum point distances:

havg(A, B) = average . s mingep d(a,b)

This measure behaves nicely (gives intuitive results) and it can be computed
quite efficiently, as is shown in the next section. The metric properties do not
hold for this measure either, but in some sense they hold for a representative
average set of points probably different from the original point set. Figure 1
illustrates an example where using Hausdorff distance the shape @ is matched

with A instead of B (B is intuitively the closest match). According to the
similarity measure used in our work, B is indeed closer to () than 4.

3 Efficient Retrieval of Similar Shapes

3.1 Creating the shape database

To create the database of shapes, we process each shape element, a polygon or
polyline extracted from an image, as follows. First, we compute the diameter of
the shape, i.e., the pair of vertices that exhibit the longest Euclidean distance.
Then, we find all the pairs of vertices whose distance is at least a times the
length of the diameter (0 < a < 1). For each such pair of vertices, we then
scale, rotate, and translate the shape so as these two vertices get identified with
the points (0,0) and (1,0) respectively. Each shape is stored twice for every
diameter AB, once by identifying A with (0,0) and B with (1,0), and vice
versa. All these “normalized” copies of the shape constitute the shape base a
database of shapes.

The use of the diameter makes the retrieval system more tolerable to noise
situations. During automated extraction of shapes via image processing tech-
niques, distortion of the edges may be introduced. In Figure 2 the distorted
shape (right) can not be retrieved via the query shape (left) if we store “nor-
malized” copies of each shape based on its edges (as in [10], i.e scaling, rotating,
and translating so that the selected edge is positioned on ((0,0),(1,0))). The
diameter is less susceptible to such local noise.

(s})

Figure 2: (a) the query shape (b) some distorted shape extracted from an image

Moreover, the use of the « ratio rule to store a number of copies of the shape
in the shape base allows us to achieve even better noise tolerance. On the other

hand, this does not increase substantially the size of the database. Experiments
have indicated that for @ = 0.15 the number of copies of each shape is about
14 on the average (the average number of edges per shape in the test set was
about 20).

The initial source of our shape pool consists of a set of polygons or polylines
that are not self-intersecting.

3.2 The matching algorithm

The algorithm relies on the computation of a “fattened” version of the query
shape by taking lines parallel to its edges at distance € on either side (Figure 3);
we call this fat shape the e-envelope. The e-envelope can be seen as a collection
of trapezoids of height 2¢, one for each edge of the query shape. (For simplicity,
we assume that € is such that no two trapezoids are overlapping; the method
is easily extended to handle overlapping trapezoids.) The basic steps of the
algorithm for the retrieval of the database shapes that are similar to the query
shape are:

a. We compute an initial value € = ¢, such that the e;-envelope is likely to
contain at least one shape of the shape base (see Section 3.4). We then
calculate the actual number K, of vertices of the database shapes. If K,
greatly differs from the estimated number of vertices that are needed (see
section 3.4) then we continue, otherwise we adjust € by performing binary
search in the values of e.

b. For each of the trapezoids T of the current e-envelope, we collect the
vertices of the database shapes that fall within T. This can be achieved
by preprocessing the vertices so that inclusion in a query triangle can be
answered fast. Available data structures of sub-quadratic space complexity
allow ﬂlfli:lg3 n + k) query time, where n is the total number of vertices of
the shape base and is the number of vertices inside the query triangle [11].
(There are also quadratic-size data structures that allow for O(logn + &)
query time by using fractional cascading which uses more sophisticated
linking [5].) Then, finding which among the vertices of the shapes in the
database fall inside the e-envelope takes O(m log® n + K) time in total, by
processing each of the m trapezoids separately and treating each one of
them as two triangles; K is the total number of vertices of the database
shapes inside the e-envelope. Each time we find that a certain vertex of
some shape is inside a trapezoid, we increase a counter associated with that
shape that holds the number of its vertices that are inside the trapezoids.
By maintaining this information, at the end of this process, we know which
polygons or polylines of the shape base have more than a fraction (1 — 3)
of their vertices inside the e-envelope, for a parameter 3 (0 < 3 < 1).

c. If there are polygons or polylines of the shape base that have more than
a fraction (1 —) of their vertices inside the e-envelope, we process them
as described in Section 3.3; during the processing, we may either conclude
that the best matches have been found in which case they are reported to
the user and the execution is complete, or (i.e. we are not certain that
the best match has already been found) we continue to the next step. If
no candidate shapes are found a new e is computed via cost calculation
(Section 3.5) and we go to step e.

d. Let pj,, pjs, -, Pj, be the k polygons with the smallest k costs, s;,, 5j;,
<-es 8j,; and Spygy be the maximum of these costs. If we increase €, then
the smallest normalized cost s7%" of a new candidate shape (that was not
candidate during the last iteration) is the minimum of the cost gie + ;,
over all shapes 1 that were not candidate last time and therefore they
had a fraction g;, 5 < g; < 1 of their vertices outside the envelope (f;
is the normalized cost of the vertices that were inside the envelope). If

Anar = 3?;;“,'1 then we terminate and report the k& polygons as the best

min '

matches. Otherwise, we set ¢ = 3’““;__21 and go to step e. This is

9i
actually the maximum e, after this no iteration is needed so we can make
a binary search to find an envelope that has reasonably many vertices,
which takes time logarithmic in the number of vertices on the average.

e. We check ¢; if it is not too large, we go to step b and repeat the procedure,
otherwise we report the k candidate shapes with the smallest costs (if any)
and exit.

The method converges and if there exist similar shapes it retrieves the best
match(es).

An alternative but fully compatible method based on geometric hashing is
also outlined (Section 3.6). We revert to this method when the closest match
exhibits a sufficiently large cost with respect to the query shape.

The overall time complexity after [iterations is O(I m poly-logn+K,) where
K., is the total number of points within the final envelope of width e;. (We note
that when the width of the envelope is increased from € to ¢, we concentrate
on locating the vertices of the database shapes that are inside the ¢'-envelope
and are outside the e-envelope; in this way, points are not double-counted.) We
expect that the number of iterations I will be logarithmic on the average, so
that the total complexity is polylogarithmic in the number of vertices of the
shapes in the shape base.

3.3

Processing the Polygons or Polylines

Let 5;. 53, ..., 5, be the sequence of the edges of the query shape along a clock-
wise traversal of its boundary starting from the vertex that was positioned at
(0,0) in the normalization step. Then we process each polygon or polyline P of
the shape base which contains less than a fraction 3 of its vertices outside the
current e-envelope as follows (we refer to P as candidate shape):

(1)

(if)

(iii)

Starting at P’s vertex which was positioned at (0,0) in the normalization
process, we traverse its boundary clockwise. In the general step, we have a
vertex V; inside a trapezoid of the envelope; let that trapezoid correspond
to the edge 5; of the query shape (note that (0,0) lies in the trapezoid of
51). Let V; be the next vertex of P inside the e-envelope, and let S; be
the edge corresponding to the trapezoid that contains V5.

If ViV, is an edge of the current candidate shape, then if the edge is
completely inside the e-envelope we continue to the next step. Otherwise,
we check that

(i —2)modm < ;.
If this inequality does not hold, we conclude that this shape is not a
candidate for successful matching and we ignore it. If not, we calculate
the minimum e that will bring the edge inside the e-envelope.

If V;V; is not an edge of the candidate shape, then the vertices Viz1, ..., Vi
lie outside the e-envelope. In this case, we calculate the contribution of
the distance of each such vertex Vi in the cost of the polygon. This is
accomplished by calculating the distance :j;m of each vertex Vj with re-
spect to the intermediate chain of edges S;+1,...,5;-1 of the query shape
augmented by the two previous and the two next edges:

8 = S(i—2) modm> S(i-1) modm: s S(j+2) mod m
This is consistent with the restriction of (ii). We also calculate the maxi-
mum distance d::;;g of any point of the edge V1 from the chain of edges
& (see Figure 3).

We repeat these steps until we traverse all the vertices of the candidate
shape P. At the end, we calculate the measure hl, .. as the average

:;,fgr, which is an approximation of the average distance of a vertex of
the candidate shape P from the query shape. We also calculate the average
dysar over all the edges of the candidate shape that have both their edges
inside the e-envelope, which we denote by h%, . The cost of the candidate

edge*
shape P is defined as

h- { hififl: if hi{yg E €
p =

P P .
max(hegoe: Myertez) Otherwise.

8

Figure 3: Calculating the maximum distance of the edge points from the three
edges of the query shape

So finally we either have a valid candidate shape P with a cost hp, or we
have excluded this shape from the list of candidate shapes.

The worst case time complexity for this step is O(max(m, x)), where x is the
number of vertices of the candidate shape. In practice, m < & and therefore the
time complexity is O(x). Then, the time complexity for doing the same traversal
on all candidate shapes is O(K,), where K, is the total number of points within
the e-envelope.

3.4 Computing the initial width (2¢,) of the ¢-envelope

Let I, p, and A be the length of the perimeter of the query shape, the number
of shapes in the shape base, and the active ares, i.e., the area in which the
vertices of the normalized shapes fall. Since we use the diameter and we store
copies for each shape normalized for pairs of points whose distance is at least o
(0 < @ < 1) times the length of the diameter, the area A is equal to the area of
the lune defined by two circles of radius (1 + o) whose centers are at distance 1

apart. This implies that 4 = {%{ - %](1 + @)
By assuming uniform distribution of the vertices inside this lune, the average

number of vertices inside an e-envelope can be estimated to:

= 2le
e = Eﬂ
In order that the initial ¢;-envelope contain at least one candidate shape, we
derive that:

K -
#21=>6sz
2p

(1-8)=
p

Since this is a conservative lower bound (we have the necessary number of
vertices, but the probability that all of them belong to a single shape is very
small) we determine experimentally a y(n), and we have that

_(=Bra

et O

8

3.5 Increasing ¢ when there are no candidate shapes

In this case, all the shapes of our shape base have more than § of their vertices
outside the current e-envelope. Let us assume that the i-th shape F; has at least
g; of its vertices outside the e-envelope, where g; > 3. If s; is the cost of P,
then
i
| e
size(F;)
where #; is the sum of the costs of the vertices that lie inside the envelope.
For some new €' > e, the shape P; will have ¢! < g; of its vertices outside the
¢'-envelope and its cost s} will be

+ g

t; t;

1

size(P;) size(F)

!
Sfa

where] is the cost of the (g; — ¢;) vertices of P; that are outside the e-envelope
but inside the e'-envelope. Then we also have:

'

!
. i t;

——+gie < + —
size(F) | = yize(B) | size(F)

+ q:-ﬁf

r
! i

ey
size(F;)

If we want ¢, = 4 and since (g — gl)e < # < (g; — ¢))e’

= + qgie'.

" e = e S £

B -8
ek sizelF;)

Therefore, we increase € according to this formula; if the number of vertices of
the shapes in our shape base which fall inside the ¢'-envelope does not increase
sufficiently, we increase ¢ geometrically.

10

3.6 Geometric Hashing

When we cannot find a match and the envelope is large enough, suggesting
that the matching algorithm has become inefficient, we revert to the geometric
hashing method outlined in this section.

This method requires a finite family of curves which cover uniformly the
non-augmented active area that contains the polylines of our shape base. The
non-augmented active area is the intersection of two circles with unary radius,
and is derived by considering that the diameter of every shape of the database
has been normalized and rotated to fit ((0,0), (1,0)). The augmented active area
(or simply active area) contains some shape vertices which are not contained
in the non-augmented active area; such vertices are considered to lie on the
boundary of the non-augmented area for the purpose of this Section.

The non-augmented active area consists of four quarters ¢}, (2, (s and ¢4
and is illustrated in Figure 4 (left). The uniform coverage of each quarter is
achieved by requiring equal areas between consecutive curves of the family. The
method works by assigning to each polygon/polyline of our shape base the closest
curve segment of the family of curves. By increasing the number of curves, we
are able to have a small, on the average, number of shapes assigned to each curve
segment. Shapes that are close to each other will be assigned to neighboring
curves. However, neighboring curves are not always assigned to similar shapes.

|

113

Figure 4: (left) the four quarters of the active area (right) hash curves for the
upper left quarter

To retrieve similar matches for a given query shape, we calculate the curve

11

segment which is closest to this shape. Then, we retrieve all the shapes that have
the same or neighboring hash curve. Finally, we apply the similarity measure
between every retrieved shape and our query shape and report the shapes that
exhibit the lowest costs.

We have considered different families of conic curves, trying to increase the
retrieval accuracy, while minimizing the computational complexity of finding
the curve closest to a given polyline. Thus, we have selected circles of constant
unary radius that pass through the origin (since all shapes contain the origin)
for the upper left quarter and likewise for the other three quarters. Finding
the closest curve takes logarithmic time in the number of curves in the family.
Figure 4 (right) shows some curves of this family for the upper left quarter.

We have generalized this method to make use of information from all four
quarters, This is accomplished by assigning four curves to each shape, one for
every quarter. Then, we consider shapes that have the same hash curve in any
of the four quarters.

4 An Image Retrieval System

In this section we describe how the methods outlined in the previous section are
integrated in an interactive image retrieval system.

4.1 Edge Extraction and Preprocessing

When adding a new image in the image base we process the image and extract
shapes that describe sufficiently the boundary of each object. These shapes
are non-selfintersecting polylines either open or closed. We first perform image
processing that achieves edge extraction and enhancement. We then scan the
image horizontally detecting clusters of polylines that describe the boundary of
objects. Each such cluster consists of one or more non-selfintersecting polylines
that share edges or vertices. Each time a cluster is detected, it is deleted from
the processed image and the horizontal scanning continues.

In Figure 5 (a) we see an image and in 5 (b) we see the same image after it has
been processed it for edge extraction. The result of the cluster detection is shown
in Figure 6. There are seven clusters of shapes (A through G). The shapes are
approximated by adeguately small line segments, connected in polylines. Several
heuristics may be used to minimize noise. Our method has been designed to be
tolerant to such noise situations. Thus, noise elimination is important only for
reducing the effective size of the shape base.

After the polyline clusters have been determined, each cluster is decomposed
in a number of non-selfintersecting polylines. There are several different decom-
positions; achieving a good decomposition is an important issue, but we are not
treating it here. During cluster detection and decomposition, certain relations

12

(a) (b)

Figure 5: (a) the original image (converted in grey scale) and (b) after the edge
extraction

Cuteee [

Chmar P [::l
Chuuar r_‘_
—

Figure 6: Seven clusters of shapes (A through G) have been detected

13

are recorded concerning the relative size and positioning of these shapes with
respect to other shapes of the same or different clusters. The efficient use of this
information (see e.g. [15])) is an important direction for future research.

4.2 User Dialogue

The overall user dialogue is illustrated in Figure 7. The user is first presented
with a workspace where she/he can draft a query sketch. This sketch is then
decomposed in non-selfintersecting polylines. Initially, the system attempts to
use the incremental “fattening” algorithm to find the best match(es). If it fails
to find a close match, geometric hashing is used for approximate retrieval. If
the user is not satisfied by the returned result(s), she/he can edit the query
sketch, specify certain polylines (open or closed) that are of special interest and
re-apply the retrieval process.

Draft a query sketch

Decomposition of the query sketch
in & number of characteristic noa-
selfimersecting polylines

For each palyline
The match 15 not satisfactary; \ poLy
edit initial sketch andéor select

: : R — 5
certain parts of it as more

significant. ?fx; initial ‘
I 1
:' Report results to user L]
i Refine & appropriately :_l
no candidate |
== 5 | 1 OF 100 many
Find image(s) that contain ? |
as many best matchesas || | Find candidate shapes
possible and rank them | 5 1o best masch or
1 Calculate the similarity BRC

Found k best manches [Im.pew-l:-f,:r;cl.ml 32
(k 13 user defined) ||h=qumshap¢ -

cannot find match
and € is oo large

|Revert to geometric hashing

Figure 7: User Interaction

14

4.3 Implementation Issues

An efficient version of the algorithm is being developed in C. The user interface
was developed using Tecl/Tk. We currently have a stable version running on
Sun Solaris platform. We have performed experiments with around 100 images
and 350 shapes. The software is easily portable to various platforms. Figure 8
depicts a snapshot of the GUL

Figure 8: A snapshot of the GUI

5 Conclusions and Future Work

We have presented an efficient noise tolerant shape-based approach to image
retrieval. Qur system combines two powerful methods, an efficient algorithm for
retrieving shapes based on a novel similarity criterion and a geometric hashing
technique, to maximize efficiency and intuitiveness.

We are currently incorporating this approach in a video retrieval system. Fu-
ture research directions include adding 3D awareness support, and using relative
position information for allowing more complicated queries such as containment

and tangency.

15

References

1]

[5]

[6]

[7]

[8]

(9]

[10]

[11]

M. Ankerst, H.P. Kriegel, and T. Seidl. Multistep approach for shape
similarity search in image databases. IEEE Transactions on Knowledge
and Data Engineering, 10(6):996-1004, 1998.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kadem, and J.5.B.
Mitchell. An efficiently computable metric for comparing polygonal shapes.
IEEE Transactions on Knowledge and Data Engineering, 13(3):209-216,
1997.

A. Del Bimbo and P. Pala. Visual image retrieval by elastic matching of
user sketches. IEEE Transactions on Knowledge and Data Engineering,
19(2):121-132, 1997.

C. Carson and V. E. Ogle. Storage and retrieval of feature data for a very
large online image collection. IEEE Bulletin of the Tech. Comm. on Data
Engineering, 19(4):19-27, 1996.

B. Chazelle and L.J. Guibas. Fractional cascading: 1. a data structuring
technique; ii. applications. Algorithmica, 1:133-191, 1986.

S. Cohen and L. Guibas. Shape-based image retrieval using geometric hash-
ing. In Proceedings of the ARPA Image Understanding Workshop, pages
669674, May 1997.

Ronald Fagin and Larry Stockmeyer. Relaxing the triangle inequality in
pattern matching. International Journal of Computer Vision, to appear,
1999.

M. Flincker, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker.
QBIC: Query by image and video content. IEEE Computer, 28(9):23-32,
1995.

J. E. Gary and R. Mehrotra. Similar shape retrieval using a structural
feature index. Information Systems, 18(7):527-537, 1993.

J. E. Gary and R. Mehrotra. Feature-index-based similar shape retrieval.
In S. Spaccapietra and R. Jain, editors, Visual Database Systems, volume 3,
pages 46-65, 1995.

J. E. Goodman and J. O'Rourke. Handbook of Discrete and Computational
Geometry. CRC Press LLC, 1997.

16

(12] D. P. Huttenlocher and W. J. Rucklidge. A multi-resolution technique for
comparing images using the hausdorff distance. Technical Report TR92-
1321, CS Department, Cornell University, 1992.

[13] IBM. Ibm’s query by image content (QBIC) homepage. http:
//wwwgbic.almaden.ibm.com.

[14] R. Mehrotra and J. E. Gary. Similar-shape retrieval in shape data man-
agement. IEEE Computer, 28(9):57-62, 1995.

[15] M. Nabil, A.H.H. Ngu, and J. Shepherd. Picture similarity retrieval using
the 2D projection interval representation. [EEE Transactions on Knowledge
and Data Engineering, 8(4):533-539, 1996.

[16] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glassman, D. Petkovic,
and P. Yanker. The QBIC project: querying images by content using color,
texture and shape. In Proc. SPIE Conference on Storage Retrieval for
Image and Video Databases, volume 1908, pages 173-181. SPIE, 1993.

17

