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Abstract

Recently, push-based delivery has attracted considerable attention as a means of
disseminating information to large client populations in both wired and wireless set-
tings. In this paper, we address the problem of ensuring the consistency and currency
of client read-only transactions in the presence of updates. To this end, additional
control information is broadecasted along with data. A suite of methods is proposed
that vary in the complexity and volume of the control information transmitted and
subsequently differ in response times, degrees of concurrency, and space and processing
overheads. The proposed methods are combined with caching to improve query latency.
The relative advantages of each method are demonstrated through both simulation re-
sults and qualitative arguments. Read-only transactions are processed locally at the
client without contacting the server and thus the proposed approaches are scalable, i.e.,
their performance is independent of the number of clients.

1 Introduction

In traditional client/server systems, data are delivered on demand. A client explicitly
requests data items from the server. Upon receipt of a data request, the server locates the
information of interest and returns it to the client. This form of data delivery is called
pull-based. In wireless computing, the stationary server machines are often provided with
a relative high-bandwidth channel which supports broadcast delivery to all mobile clients
located inside the geographical region it covers. This facility provides the infrastructure for a
new form of data delivery called push-based delivery. This broadcast infrastructure can also
“be found in wired networks. In push-based data delivery, the server repetitively broadcasts
data to a client population without a specific request. Clients monitor the broadcast and
retrieve the data items they need as they arrive on the broadcast channel.

Push-based delivery is important for a wide range of applications that involve dissemi-
nation of information to a large number of clients. Dissemination-based applications include
information feeds such as stock quotes and sport tickets, electronic newsletters, mailing lists,
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road traffic management systems, and cable TV. Important are also electronic commerce
applications such as auctions or electronic tendering. Finally, information dissemination
on the Internet has gained significant attention (e.g., [8, 22]). Many commercial products
have been developed that provide wireless dissemination of Internet-available information.
For instance, the AirMedia's Live Internet broadcast network [3] wirelessly broadcasts cus-
tomized news and information to subscribers equipped with a receiver antenna connected
to their personal computer. Similarly, Hughes Network Systems’ DirectPC [20] network
downloads content directly from web servers on the Internet to a satellite network and then
to the subscribers’ personal computer.

The concept of broadcast data delivery is not new. Early work has been conducted in the
area of Teletext and Videotex systems [4, 21]. Previous work also includes the Datacycle
project [9] at Bellcore and the Boston Community Information System (BCIS) [13]. In
Datacycle, a database circulates on a high bandwidth network (140 Mbps). Users query the
database by filtering relevant information via a special massively parallel transceiver. BCIS
broadcasts news and information over an FM channel to clients with personal computers
equipped with radio receivers. Recently, broadcast has received considerable attention in
the area of wireless computing because of the physical support for broadcast in both satellite
and cellular networks.

In this paper, we address the problem of preserving the consistency of clients’ read-only
transactions, when the values of data that are being broadcasted are updated at the server.
Providing transactional support tailored to read-only transactions is important for many
reasons. First, the great majority of transactions in dissemination systems are read-only.
Then, even if we allow update transactions at the client, it is more efficlent to process
read-only transactions with special algorithms. That is because consistency of queries can
be ensured without contacting the server. This is important because even if & backchannel
exists from the client to the server, this channel typically has small communication capacity.
Furthermore, since the number of clients supported is large, there is a great chance of
overwhelming the server with clients' requests. In addition, avoiding contacting the server
decreases the latency of client transactions.

To this end, control information is broadcasted along with data that enables the val-
idation of read-only transactions at the clients. We propose various methods that vary
in the complexity and volume of control information, including transmitting invalidation
reports, multiple versions per item, and serializability information. Caching at the client
is also supported to decrease query latency. The performance of the methods is evaluated
and compared through both gualitative arguments and simulation results. In all the meth-
ods proposed, consistency is preserved without contacting the server and thus the methods
are scalable; ie., their performance is independent of the number of clients. This prop-
erty makes the methods appropriate for highly populated service areas. The methods are
applicable in wired as well as in wireless settings.

The remainder of this paper is organized as follows. In Section 2, we introduce the
problem of supporting consistent read-only transactions in the presence of updates. In Sec-
tion 3, various methods for handling the problem are presented. The methods proposed are
extended to support caching at the client in Section 4. In Section 5, the performance of the
read-only transaction processing methods is compared through both qualitative arguments
and simulation results. In Section 6, we review briefly related research. Finally, in Section
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Figure 1: Broadcast-based data delivery

7, we offer conclusions and present our plans for future work.

2 The Model

The server periodically broadcasts data items to a large client population. Each period of
the broadcast is called a broadcast cycle or beycle, while the content of the broadcast is
called a beast. Each client listens to the broadcast and fetches data as they arrive (Figure
1). This way data can be accessed concurrently by any number of clients without any
performance degradation. However, access to data is strictly sequential, since clients need
to wait for the data of interest to appear on the channel. We assume that all updates
are performed at the server and disseminated from there. Clients access data from the
broadcast in a read-only mode. We do not make any particular assumptions on transaction
processing, i.e., concurrency control or recovery, at the server.

2.1 Broadcast Organization

Clients do not need to listen to the broadeast continuously. Instead, they could tune-in to
read specific items. Selective tuning is important especially in the case of portable mobile
computers, since they most often rely for their operation on the finite energy provided by
batteries and listening to the broadcast consumes energy. However, for selective tuning,
clients must have some prior knowledge of the structure of the broadcast that they can
utilize to determine when the item of interest appears on the channel. Alternatively, the
broadcast can be self-descriptive, in that, some form of directory information is broadcasted
along with data. In this case, the client first gets this information from the broadcast and
use it in subsequent reads. Techniques for broadeasting index information along with data
are given for example in [14, 10].

The smallest logical unit of a broadcast is called bucket. Buckets are the analog to
blocks for disks. Each bucket has a header that includes useful information. The exact
content of the bucket header depends on the specific broadeast organization. Information
in the header usually includes the position of the bucket in the beast as an offset from the
beginning of the bcast as well as the offset to the beginning of the next becast. The offset to
the beginning of the next bcast can be used by the client to determine the beginning of the
next beast when the size of the broadcast is not fixed. Data items correspond to database



records (tuples). We assume that users access data by specifying the value of one attribute
of the record, the search key. Each bucket contains several items.

2.2 Consistency of Read-Only Transactions

We assume that the server broadcasts the content of a database. A database consists of a
finite set of data items. A database state is typically defined as a mapping of every data
to a value of its domain. Thus, a databases state, denoted DS, can be defined as a set
of ordered pairs of data items in D and their values. In a database, data are related by
a number of restrictions called integrity constraints that express relationships of values of
data that a database state must satisfy. A database state is consistent if it does not violate
the integrity constraints [7].

While data items are being broadcasted, transactions are executed at the server that
may update the values of the items broadcasted. We assume that the contents of the
broadcast at each cycle is guaranteed to be consistent. In particular, we assume that the
values of data items that are broadcasted during each broadcast cycle correspond to the
state of the database at the beginning of the broadcast cycle, i.e., the values produced by
all transactions that have been committed by the beginning of the cycle. Thus, a read-
only transaction that reads all its data within a single cycle can be executed without any
concurrency overhead at all. We make this assumption for clarity of presentation, we later
discuss how it can be eliminated.

Since the set of items read by a transaction is not known at static time and access to
data is sequential, transactions may have to read data items from different bcasts, that is
values from different database states. As a very simple example, say T be a transaction
that corresponds to the following program:

if a » 0 then read b else read ¢

and that b and ¢ precede a in the broadcast. Then, a client’s transaction has to read a first
and wait for the next cycle to read the value of b or ¢

We define the span of a transaction T', span(T'), to be the maximum number of different
broadcast cycles from which T reads data. The above example shows that the order in
which transactions read data affects the response time of queries. A form of transaction
optimization that orders requests for data based on the order according to which they are
broadcasted can be employed to keep the transaction’s span small.

Since client transactions read data from different cycles, there is no guarantee that
the values they read are consistent. We define the readset of a transaction T, denoted
Read_Set(T'), to be the set of items it reads. In particular, Read_Set(T) is a set of ordered
pairs of data items and their values that T read. Our correctness criterion for read-only
transactions is that each transaction reads consistent data. Specifically, the readset of each
read-only transaction must form a subset of a consistent database state [18]. We assume
that each server transaction preserves database consistency. Thus, a state produced by a
serializable execution (i.e., an execution equivalent to a serial one [7]) of a number of server
transactions produces a consistent database state. The goal of the methods presented in
this paper is to ensure that the readset of each read-only transaction corresponds to such a
state.



3 Read-Only Transaction Processing Schemes

In this section, we introduce a suite of processing schemes for read-only transactions. The
first method is based on broadeasting invalidation reports, the second one on broadcasting
older versions and the last one on broadeasting serializability information.

3.1 The Invalidation-Only Method

Each bcast is preceded by an invalidation report in the form of a list that includes all data
items that were updated at the server during the previous broadcast cycle. For each active
read-only transaction R, the client keeps a set RS(R) of all data items that R has read so
far. At the beginning of each beast, the client tunes in and reads the invalidation report. A
read transaction R is aborted if an item z € RS(R) was updated, that is if z appears in the
invalidation report. Clearly, in the absence of disconnections (we will discuss disconnections
in a later section)

Theorem 1 The invalidation only method produces correct read-only transactions.

Proof. Let c. be the cycle during which a committed read-only transaction R performed
its last read operation and DS% be the database state broadcasted at cycle c.. Then, the
values read by R correspond to the database state DS%. For the purposes of contradiction,
assume that a value of a data item = read by R corresponds to a database state broadcasted
at a previous cycle, then an invalidation report should have been transmitted for r and thus
R should have been aborted. 0

As indicated by the proof above, in the invalidation-only method, a read-only transaction
R reads the most current values, that is the values produced by all transactions committed
by the beginning of the broadcast cycle at which R commits. The increase in the size of
the broadcast is equal to [5‘—;‘], where u is the number of items that were updated, k is the
size of the key and b the bucket size.

3.2 Multiversion Broadcast

In order to minimize the number of invalidated and aborted read-only transactions, older
versions of data items may be retained temporarily. In particular, if for each data item,
its S previous values, i.e., the values that the item had during the previous § beycles, are
available, where S is the maximum transaction span among all read-only transactions, then,
read-only transactions can proceed safely by reading older versions of data when necessary.
To implement the scheme, the server, instead of broadcasting the last committed value for
each data item, maintains and broadcasts multiple versions for each data item. Multiversion
schemes, where older copies of items are kept for concurrency control purposes, have been
successfully used to speed-up processing of on-line read-only transactions in traditional
pull-based systems (e.g., [16]).

At least one value (the current one) is broadcasted for each data item. At each beycle
k, the server discards the k — § version from the beast. An additional value is added to
the broadcast, for those data items that were updated during the previous broadeast cycle.
Let ¢y be the broadcast cycle during which a client transaction R performs its first read
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Figure 2: Multiversion broadcast with § = 3: (a) simple (b) with overflow buckets.

operation. During ¢, transaction B reads the most up-to-date value for each data item,
that is, the value having the largest version number. In later cycles, R reads the value with
the largest version number ¢, such that ¢, < ¢.

Theorem 2 The S-multiversion broadcast method produces correct read-only transactions.

Proof. Let R be a read-only transaction, ¢y the cycle at which R performs its first read
operation and DS*° the database state broadcasted at cycle ¢p. We will show that the
values read by R correspond to the database state D5 which is consistent and thus R is
correct. For any data item x € RS(R). R reads the largest version ¢, of ¢, such that ¢, <
cp. This value is the most recent value of & produced before cycle ¢, that is the value that
the item had at D50, a.

As shown from the proof above, R is serialized after all transactions that were committed
prior to ¢y and before all transactions that were committed after beycle ¢p. In terms of
currency, the data items read by T correspond to the database state at the beginning of
the beycle eg.

Instead of broadcasting all S previous versions, the server may broadcast V' older ver-
sions, for some constant V < S. In this case, the number V of older versions that are
retained can be seen as a property of the server. In that sense, a V-multiversion server, L.e.,
a server that broadcasts the previous V' values, is one that guarantees the consistency of all
transactions with span V' or smaller. Transactions with larger spans can proceed on their
own risk; their consistency cannot be guaranteed. V, i.e., the amount of broadcast reserved
for old versions, can be adapted depending on various parameters, such as the allowable
bandwidth, feedback from clients, or update rate at the server.

Multiversion Broadcast Organization

One way to structure the broadcast is to broadecast all versions of an item successively
(Figure 2(a)). In such an organization, the location of each data item is not the same
at all becasts, thus clients can not anymore utilize a locally stored directory to determine
the position of items in the broadcast. Consequently, prior to each cycle, the server must
reconstruct an index structure and broadcast it along with data, further increasing the
overall size of the broadcast. The client must first tune in to get such index information.



An alternative organization in which the position of each data item in the bcast remains
fixed, is to broadcast all old versions at the end of the beast. In particular, instead of
broadeasting with each data item all its versions, a single version, the most recent one, is
broadcasted along with a pointer. The pointer associated with each data item points to
its older versions, if any, that are broadcasted in reverse chronological order at the end of
each beast in overflow buckets (Figure 2(b)). This way, for each data item, the offset of its
position in the beast from the beginning of the beast remains fixed. Thus, the server needs
not recompute and broadcast an index, at each broadcast cycle. Instead, the client uses its
locally stored directory to locate the first appearance of a data item in the broadcast. After
reading the item, if it needs an older version, it uses the pointer to locate it in the overflow
bucket.

The drawback of the overflow approach is that long-running read-only transactions that
must read old versions are penalized since they have to wait for the end of the beast to
complete their operations. However, transactions that are satisfied with current versions
do not suffer from a similar increase in latency. On the contrary, in the first approach,
in which all versions of an item are clustered together, the overhead in latency is equally
divided among all transactions.

Let v be the size of the version number, k the size of the key, d the size of the other
attributes, u the mean number of updates, and S the maximum transaction span. The
first approach produces a beast of size [D[H”J’dj”f—l”d*k“] 1, where b is the bucket size.
With this approach, since the position of each item from the beginning of the bcast is not
fixed, additional space may be allocated to broadcast index information. In the second
approach, the size of the data buckets is D(k + d + P), where P is the size of the pointer,
while the total size of the overflow buckets is B = rﬂS_—l_Hb-“____*'ﬂ‘Hﬂ]_ The pointer can be kept
as the offset of the beginning of the overflow bucket from the end of the beast, and thus
be analog to the number of overflow buckets, in particular P = log(B). To allocate less
space for version numbers, instead of broadcasting the number of the beycle at which the
data item was created, we can broadcast the difference between the current beycle and the
beycle in which the value was created, i.e., how old the value is. For example, if the current
beycle is cycle 30, and a version was created during beycle 27, we broadcast 3 as the version
of the data value instead of 27. In this case, log(S) bits are sufficient for v.

3.3 Serialization-Graph Testing

Both the invalidation-only and the multiversion schemes ensure that transactions read con-
sistent values, i.e., values produced by a serializable execution, by enforcing transactions to
read values that correspond to the content of a single beast, In the case of the invalidation-
only scheme, this is the beast at the end of the transaction, while in the case of the multi-
version scheme this is the bcast at the beginning of the transaction. However, it suffices for
transactions to read values that correspond to any consistent database state not necessarily
one that is broadcasted. To this end, we use a conflict serialization graph testing (SGT)
method.

The serialization graph for a history H, denoted §G(H), is a directed graph whose nodes
are the committed transactions in H and whose edges are all T; — T (i # j) such that one
of T;'s operations precedes and conflicts with one of T; operations in H [7]. According to
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the serialization theorem, a history H is serializable iff SG{H) is acyclic. We assume that
each transaction reads a data item before it writes it, that is, the readset of a transaction
includes its writeset. Then, in the serialization graph, there can be two types of edges T} —
T; between any pair of transactions T; and T; dependency edges that express the fact that
T; read the value written by T; and precedence edges that express the fact that T; wrote an
item that was previously read by T;.

In brief, the SGT method works as follows. Each client maintains a copyv of the serial-
ization graph locally. The serialization graph at the server includes only the transactions
committed at the server, while, in addition, the local copy at the client includes any active
read-only transactions that were issued at this site. At each cycle, the server broadcasts
any updates of the serialization graph. Upon receipt of the updates, the client integrates
them into its local copy of the graph. A read operation at a client is executed only if it does
not create a cycle in the local serialization graph. The serialization graph at the server is
not necessarily used for concurrency control at the server, instead a more practical method,
e.g., most probably two-phase locking, may be employed.

Implementation of the SGT Method

In the serialization graph testing (SGT) method, the server broadcasts at the beginning of
each beast the following control information:

e the difference from the previous serialization graph
In particular, the server broadcasts for each transaction T; that was committed during
the previous cycle, a list of the transactions with which it conflicts, i.e., it is connected
through a direct edge.

o an agugmented invalidation repord
The report includes all data written during the previous beycle along with an identi-
fication of the first transaction that wrote each of them during the beycle.

In addition, the content of the broadcast is augmented so that the identification of the
last transaction that wrote a data item is broadcasted along with the item.

Each client tunes in at the beginning of the broadcast to obtain the control information.
Upon receipt of the graph, the client updates its local copy 5G of the serialization graph
to include any additional edges and nodes.

We describe next, an efficient method based on the assumption that histories are strict.
A history is strict if no data may be read or overwritten until the transaction that previously
wrote into it terminates. The method is applicable to other cases as well, but requires
additional overhead. Let SG* be the subgraph of SG that includes only the transactions
that were committed during cycle i. An interesting property is that:

Claim 1 There cannot be any incoming edges to transactions in SG* from transactions
committed in subseguent eyeles m > 4.

This is true since all transactions in SG* are committed prior to any transactions com-
mitted in subsequent cycles.



At the beginning of each beyele ¢ + 1, the client also adds precedence edges for all its
active read-only transactions as follows. Let R be an active transaction and RS*(R) be the
set of items that R has read so far. For each item z in the invalidation report such that x
€ RSY(R), the client adds a precedence edge R — Ty, where Ty is the first transaction that
wrote z during beycle 7. Although R conflicts with all transactions that wrote r during
beyele 4, it suffices to just add one edge to Ty since:

Claim 2 Let z € RS (R) and 5G, be the serialization graph that includes edges R — T
for each T that wrote = during beycle v and SGy the subgraph of SG that includes only one
such edge R — Ty, where Ty is the first transaction that wrote x during beycle i. 5G, has
a cycle if and only if SGy has a cycle.

Proof. In the Appendix.

When R reads an item y, a dependency edge T; — R is added in the local serialization
graph, where T is the last transaction that wrote y. The read operation is accepted, only
if no cycle is formed. It can be shown using an argument similar to the one in the previous
claim that it suffices to just add one edge T} — R instead of adding edges T' — R from all
transactions T' that wrote y.

Claim 3 Let y € R5(R) and 5G, be the graph that includes edges T — R for each T that
wrote y ond S5G; be the subgraph that includes only an edge Ty — R, where T; is the last
transaction that wrote y. SGy has a eyele if and only if SG; has a eycle.

We will prove that the SGT method detects all cycles that include a read-only transac-
tion R. We will use the following lemma:

Lemma 1 Lei o be the first broadeast cycle during which an item read by R gets overwritten.

{a} During broadcast cycle m, the only type of cycles that can be formed that includes R
are of the form R = T;, -+ T;, = ... T;, = R, where for any T}, € SG!, it holds o
<< m.

(b) The SGT algorithm detects all such cycles.

Proof. In the Appendix.

Figure 3 shows graphically the formation of such a cycle.

Theorem 3 The SGT method produces correct read-only transactions.

Proof. From Lemma 1, the SGT algorithm detects all cycles that involve R, thus from a
direct application of the serialization theorem, R is serializable with all server transactions,
thus K reads consistent data and is correct. a

Regarding the currency of read-only transactions, each read-only transaction A that
performs its first read at ¢p reads values that correspond to a database state between the
state at the beginning of broadcast cycle ¢y and the current database state.
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Figure 3: At beyele m, read-only transaction R reads z from T} committed during beycle
k (o £ k < m). Transaction Ty committed during beycle ¢ (i < o) overwrote an item
previously read by R.

Space Efficiency

Instead of keeping a complete copy of the serialization graph locally at each client, by
Lemma 1, it suffices to keep for each read-only transaction R only the subgraphs SG*
with k& > ¢, where ¢, is the beycle when the first item read by R was invalidated, ie.,
overwritten. Thus, if no items are updated, there is no space or processing overhead at
the client. Furthermore, at most S subgraphs are maintained, where S is the maximum
transaction span of the queries at the client. By Lemma 1., we may also keep only the
outgoing edges from R: there is no need to store the incoming edges to R.

However, the volume of the control information that is broadceasted is considerable. Let
fid be the size of a transaction identifier, N the maximum number of transactions committed
during a broadcast cycle, and ¢ the maximum number of operations per transaction at the
server. We assume that transaction identifiers are unigue within each broadcast cycle,
thus it suffices to allocate log(V) bits per transaction identifier when the beycle is known.
To distinguish between transactions at different beycles, a version number is broadcasted
indicating the beycle at which the transaction was committed; the size of such version
number is log(S) bits, since only the last S beyeles are relevant. The size of the broadeast
data is [W], while the size of the invalidation report is [ﬂ%’iﬂ'.. Since,
there are at most ¢ operations per transaction, each transaction participates in at most
¢ conflicts with other transactions. Thus, the difference from the previous graph has at
most N ¢ edges. The total size of the difference is: [“‘M“ﬂy[‘v]*’“? SitlostN)I - assuming
that we broadcast pair of conflicting transactions where the first transaction in the pair is
a newly committed transaction, and the second one any previously committed transaction
with which it conflicts. If we broadcast the control information at the end of the previous
beast, then the offset of each item from the beginning of each bcast remains fixed and a
locally stored directory can be used.

4 Caching

To reduce latency in answering queries, clients can cache items of interest locally. Caching
reduces not only the latency but also the span of transactions, since transactions find data
of interest in their local cache and thus need to access the broadcast channel for a smaller
number of cycles. When the items broadcasted are updated, the value of cached items
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become stale. We assume that each page, i.e., the unit of caching, corresponds to a bucket,
i.e., the unit of broadcast.

There are various approaches to communicating updates to the client. The two basic
techniques are invalidation and propagation. For invalidation, the server sends out messages
to inform the client of which pages are modified. The client removes those pages from its
cache. For propagation, the servers sends the updated values. The client replaces its old
copy with the new one.

Invalidation combined with a form of autoprefetching has been shown to perform well
in broadcast delivery [2]. At the beginning of each broadcast cycle (or at other pre-defined
points), the server broadcasts an invalidation report, which is a list of the pages that have
been updated. This report is used to invalidate those pages in cache that appear in the
invalidation report. These pages remain in cache to be autoprefetched later. In particular,
when the new value of an invalidated page appears in the broadcast, the client fetches the
new value and replaces the old one. Thus, a page in cache either has a current value (the
one in the current broadcast) or is marked for autoprefetching.

The cache invalidation report is similar to the invalidation report used in our query
processing schemes. However, the two reports differ in granularity. The cache invalidation
report includes the pages (or buckets) that have been updated, whereas the query-processing
invalidation report includes the data items that have been updated.

4.1 Extending Caching to Support Read-only Transactions

The proposed approaches can be readily extended to accommaodate caching at the client. We
assume that an appropriate technique, such as invalidation coupled with autoprefetching, is
used to maintain cache consistency. For the invalidation-only scheme, each read first checks
whether the item is in cache. If the item is found in cache and the page is not invalidated,
the item is read from the cache. Otherwise, the item is read from the broadcast. A simple
enhancement to the above scheme is to extend the cache so that along with each value
it also includes the beycle during which the value was inserted in the cache. Let R be a
query and u the first beycle at which an item £ € RS(R) is invalidated. Instead of aborting
R, R is marked abort and continues operation as long as old enough values for all future
reads can be found in cache. In particular, B continues its read operations as long as the
items it wants to read exist in the cache and have versions ¢ < u. We call this method
invalidation-only with versioned cache.

Theorem 4 The invalidation-only with versioned cache method produces correct read-only
transactions.

Proof. Let R be a committed query and u be the first beyele at which an item read by
R was invalidated. Let D5“~! be the database state broadcasted at beyele uw — 1. Then,
the values read by R correspond to the database state DS“~!. This holds because all the
values read by R till beycle u correspond to DS*~!, then a value is read only if the version
in cache is ¢ < u. This value is the value the itemn had at u — 1 otherwise it should have
been invalidated and a new version should have been autoprefetched. a

To support the multiversion broadeast method, the cache must also include the version
number for each item. Similarly for the SGT method, the cache must be extended to include
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for each item the last transaction that wrote it; information that is broadcasted anyway.
Each time an item is read from the cache, the same test for cycles as when the item is read
from the broadcast is executed.

4.2 Multiversion Caching

The client cache can be used to provide an alternative storage medium for older versions of
data items for those active transactions that may need to read them for concurrency control
purposes. We call this approach multiversion caching (MC). In multiversion caching, each
entry in the cache has a version associated with it that corresponds to the beyele when the
version was created. When an item is updated at the server, its cache entry is not updated,
instead a new entry is inserted in the cache for the new version. Thus, for a data item,
there may be multiple entries with different versions.

Multiversion caching can be used in conjunction with all previous schemes to increase
concurrency. We present such a multiversion caching method that combines invalidation-
only reports with versions. We assume that the cache replacement policy is such that:
for each data item, the versions cached are the most recent ones. Let R be a read-only
transaction, and ¢, the first beycle during which an item read by R was updated for the
first time. Similar to the multiversion broadcast method, in subsequent beycles, R reads
the largest version v of an item such that v < ¢,. If such a version is found in cache, then
it is read from the cache, otherwise the transaction is aborted.

Theorem 5 The multiversion cache method produces correct read-only transactions.

Proof. Let R be a read-only transaction, ¢, the first beyele during which an item read by
R was updated for the first time and D5% the database state broadcasted at beycle e.
We will show that the values read by R correspond to the database state DS®-! which is
consistent and thus R is correct. The items read before ¢, were not updated prior to o,
thus their values correspond to the database state D5%:-1. In subsequent beyles, R reads
the largest version v, such that v < ¢,. This value is the most recent value produced before
cycle ¢, that is the value that the item had at D&*-1, O.

With multiversion caching, the effective cache size is decreased, since part of the cache
i used to maintain old versions of items. However, for long-running transactions that read
old versions, there may be some speed-up, since older versions may be found in cache.
Whereas, 5 (the number of older versions broadcasted) in the multiversion broadcast, is a
property of the server, in multiversion caching, S (the number of versions kept in cache) is a
characteristic of each client. Transactions at different clients may have varying spans. In this
case, it is the client’s responsibility to adjust the space in cache allocated to older versions,
based on the size of its cache, the requirements and types of its read-only transactions, or
other local parameters. The increase in the broadcast size is that of the invalidation-only
method plus the additional space needed to broadcast version numbers.

There are various approaches to cache replacement in a multiversion cache. One is to
consider the different versions of an item as different items and replace the page with the
overall highest probability of being accessed, without taking into account versions. The one
we adopt is dividing the cache space into two parts: one that maintains current versions
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and one that maintains older ones. In this case, different cache replacement policies can
be used for each part of the cache. This approach provides also for adaptability, since the
percentage of cache allocated to older versions can be adjusted dynamically.

5 Performance Evaluation

In this section, we comparatively evaluate the techniques proposed with respect to various
parameters,

5.1 The Performance Model

Our performance model is similar to the one presented in [1]. The server periodically
broadcasts a set of data items in the range of 1 to BroadeastSize. We assume for simplicity
a flat broadcast organization in which the server broadeasts eyclicly the set of items.

The client accesses items from the range 1 to Read Range, which is a subset of the items
broadcasted (ReadRange < BroadeastSize). Within this range, the access probabilities
follow a Zipf distribution. The Zipf distribution with a parameter theta is often used to
model non-uniform access. It produces access patterns that become increasingly skewed as
theta increases. The client waits ThinkTime units and then makes the next read request.

Updates at the server are generated following a Zipf distribution similar to the read ac-
cess distribution at the client. The write distribution is across the range 1 to Update Range.
We use a parameter called Of fset to model disagreement between the client access pat-
tern and the server update pattern. When the offset is zero, the overlap between the two
distributions is the greatest, that is the client’s hottest pages are also the most frequently
updated. An offset of k shifts the update distribution k items making them of less interest
to the client. We assume that during each beycle, N transactions are committed at the
server. All server transactions have the same number of update and read operations, where
read operations are four times more frequent than updates, Read operations at the server
are in the range 1 to BroadeastSize, follow a Zipf distribution, and have zero offset with
the update set at the server.

The client maintains a local cache that can hold up to CacheSize pages. The cache
replacement policy is LRU: when the cache is full, the least recently used page is replaced.
When pages are updated, the corresponding cache entries are invalidated and subsequently
autoprefetched. Table 4 summarizes the parameters that describe the operation at the
server and the client, Values in parenthesis are the default.

5.2 Comparison of the Methods
5.2.1 Performance Results

Concurrency. Updates at the server may invalidate data values read by read-only transac-
tions and cause them to be aborted and reissued anew. Besides the multiversion broadcast
scheme, with which, all read-only transactions are accepted, the other schemes accept only
a percentage of the read-only transactions. To estimate this percentage, first we varied
the number of read operations per query (Figure 5(left)). Whereas the SGT method with
caching outperforms all other schemes, the invalidation-only scheme with versioned cache
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Figure 4: Performance Model Parameters

seems to offer an attractive alternative for queries with less than 30 reads, thus avoiding
the considerable overhead of the SGT method. Caching reduces the number of transactions
aborted since it reduces their span and thus the probability of invalidation. Then, we con-
sidered the overlap between the client read and the server update pattern (Figure 5(right).
As expected, when the overlap is the maximum, that is the client’s hot data are those that
are most frequently updated, all schemes have the highest abort rates. When the overlap
is small (less than 50%), the SGT methods accept all transactions.

Finally, we considered the number of updates (Figure 6). In this case, the invalidation-
only scheme with versioned cache outperforms all other schemes for a large number of
updates (over 1/4 of the BroadcastSize). This is because the possibility of cycles in the
serialization graph increases with the number of operations at the server. In general, the
SGT methods are less attractive than the invalidation-only methods when there is a lot of
activity in the server. Thus, while for a small number of operations at the server the SGT
methods more than double the number of queries that are accepted, when the number of
operations at the server increases, the increase of the accepted transaction decreases to 10%
(Figure ).

Broadcast Size. The increase of the size of the broadcast is an important measure of the
efficiency of the proposed schemes, since transmitting it consumes bandwidth. Furthermore,
the volume of the broadcast data affects the response time of client transactions. Since
access to data is sequential, the larger the volume of the broadcast, the longer the clients
need to wait until the data of interest appear on the channel. Figure 7 shows the increase
of the broadcast size as a function of the maximum transactions’ span and the number of
updates using the formulas developed in the previous sections.

Latency. We quantify latency, the mean duration of read-only transactions, as the mean
number of beycles per transaction. None of the methods, but multiversion broadcasting,
adds to the latency (besides the need to read control information at each beycle). For im-
plementing multiversion broadcasting, we use the overflow-bucket approach. This approach
imposes an increase in latency, since a number of read-only transactions have to wait for old

14



Tennuacons St (%]

= T T - T T T T
P -~ alidation-Giny — i Y imalidutan-Cnly — |
g Ireiibelation-OnkywDachi ---- o invalication-Only+Cacha -
Imtld}nin’n-ﬂnm'.rmm = L " lmmlw-&m\'mhmﬂ# =orii
# SAT+Cwzha -~ BET+Jache - -
a0 b e L b
.'f "
¥ L
P a , -x
Z Y T,
8- - B \ "'..__'x_\ .
Y ."\
e
- 4 s
H \ ——
/s £ -h.w
kg E E an %
F ™, : N,
’ i B
i “, L
&’ i ~ - .
13 " S L s -
s -
4 __,.""; T \\\\ T
l/ | R
a == 1 1 ke 1 1 a A i \F\I — _
] ] 13 2a 25 30 a3 i 45 50 Q e 100 138 %
M of Client Roads Offsat [0 max ovoriap, 259: ne averis)

Figure 5: Abort rate: (left) with the number of operations per query (right) with the offset

(deviation between the client-read and the server-write pattern)

£
- .
£ 7
-] v
e P o 7
E
.'rl 4
/ A
- /
i
PR
4 o
e I
-
a : . : . . : . .
Y 00 1m0 3% AW 4w MO

T
Hombee of Updatas

Figure 6: Abort rate with the number of updates

15



Pocentnge (%] ol aronss in Siee

T T T T T T T T E T v T T v T v T
Ivaaidaton-Only — . trvalidten-Onky ——
WVersion Broadoas] -7 Warson Brosdcast -
G T Methog-" - BGT Mathed -
MuFreamion Cachsip — Wiuteesion Caching —
- =

Prarcastiga |%} of Inersasa in Siza
&
T

P

T I 1 I I I

T an

U
=

2 ¥ & ] L] 7 & E) 20 a0 A 50 60
Traraacticn Span Bumbar ol Updaios

Figure T: Increase in the size of the broadcast: (left) with the transaction span (for U = 50
updates per beyele) (right) with the number of updates (for span = 3)

versions to appear at the end of the beast. Figure 8(left) shows latency with the number of
operations per read-only transaction. The deviation from the expected value (e.g., one half
of the read operations for the invalidation-only scheme) is due to the fact that we estimate
the latency of the accepted, i.e., non-aborted, transactions only. Figure 8(right) shows the
latency of the multiversion broadcasting with the offset. The smaller the overlap between
the server-update and the client-read pattern, the smaller the increase in latency.

5.2.2 Other Issues

Currency and Consistency Read-only transactions can be classified based on their cur-
rency requirements [12]. Currency reguirements specify what update transactions are re-
flected by the data read by read-only transactions, The consisiency requirements specify the
degree of consistency required. Ensuring that the values of a transaction form a consistent
database state is a form of weak consistency. A stronger requirement is that each read-only
transaction is serializable along with all update transactions. In multiversion broadcast,
this state corresponds to that at the beginning of the read-only transaction, while in the
invalidation-only approach, the state corresponds to the current database state. In the
serializability method, the state is one in between these two states, in particular a state
produced by a serializable execution of a subset of transactions comumitted during the ex-
ecution of the read-only transaction. Finally, in multiversion caching, the state seen by
read-only transactions is the one when an item read by the transaction is invalidated for
the first time. Thus, the invalidation-only method provides the most current view of the
database, the serialization and the multiversion caching method a less current one, and the
multiversion method the oldest one.

Disconnections. The techniques presented also differ on whether they require active clients
to monitor the broadcast continuously. Raising the continuous monitoring requirement is
desirable in various settings. For example, in the case of mobile clients, their operation relies
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Figure 8: Duration of a transaction: (left) with the number of reads per read-only transac-
tion (right) with the offset

on the finite power provided by batteries, and since listening to the broadcast consumes
energy, selective tuning is required. Besides, access to the broadcast may be monetarily
expensive, and thus minimizing access to the broadcast is sought for. Finally, client dis-
connections are very common when the data broadcasted are delivered wirelessly. Wireless
communications face many obstacles because the surrounding environment interacts heavily
with the signal, thus in general wireless communications are less reliable and deliver less
bandwidth than wireline communications. In such cases, clients may be forced to miss a
number of broadcast cycles.

In the invalidation-only scheme, a client has to tune-in at each and every cycle to
read the invalidation report. Otherwise, it cannot ensure the correctness of any active
read-only transaction. On the other hand, in multiversion broadcast, client transactions
can refrain from listening to the broadcast for a number of cycles and resume execution
later as long as the required versions are still on air. In general, a transaction R with
span(R) = sp can tolerate missing up to § — sg broadcast cycles in any S-multiversion
broadcast. The tolerance of the multiversion scheme to intermittent connectivity depends
also on the rate of updates, i.e., the creation of new versions. For example, if the value
of an item does not change during k, £ > 5, cycles, this value will be available to any
read-only transactions for more than § cycles. The SGT method does not tolerate any
client disconnections. If a client misses a broadcast cycle, it cannot anymore guarantee
serializability. Thus, any active read transactions must be reissued anew. An enhancement
of the scheme to increase tolerance to disconnections would be to broadcast along with items
version numbers. Then, a read operation could be accepted as long as its version number
was smaller than the version of the last broadcast that the transaction has listen to. This
guarantees that the client has all the information required for cycle detection. In all the
schemes, periodic retransmission of control information would increase their tolerance to
intermittent connectivity. For instance. an invalidation report of the items updated during
the last w beycles may be broadcasted to allow clients to resynchronize. Finally, version
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Table 1: Comparison of the Proposed Approaches

caching improves the tolerance to disconnections, since a read-only transaction can proceed
as long as appropriate versions can be found in cache.

6 Related Work

Recently, there has been considerable interest on broadcast delivery (for a review, see for
example [11] and Chapter 4 of [17]). Updates have been mainly treated in the context of
caching. In this case, clients maintain a local cache of the data of interest. Invalidating
cache entries by broadcast is the focus of much current research, including [6], [2], [10], and
[15]. Updates are considered in terms of local cache consistency; there are no transaction
semantics.

A weaker alternative to serializability for transactions in broadcast systems is proposed
in [19]. In this work, read only transactions have similar semantics with weak transactions
in the conflict-serializability approach. However, the emphasis is on developing and formal-
izing a weaker serializability criterion rather than on protocols for enforcing them. Finally,
broadecast in transaction management is also used in the certification-report method [3].
Read-only transactions in the certification-report method are similar to read-only transac-
tions in the invalidation-only method. However, in the certification-report method, data
delivery is on demand, the broadcast medium is mainly used by the server to broadcast
concurrency control information to its clients.
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7 Conclusions and Future Work

We have presented a set of processing techniques that provide support for consistent queries
for broadcast push delivery in both wired and wireless settings with mobile or stationary
clients. The techniques are scalable in that their performance is independent of the number
of clients. We have compared the proposed techmiques both quantitatively and through
simulation and show their relative advantages.

There are various ways that the proposed techniques can be extended. First, instead of
the invalidation reports being broadcasted at the beginning of each broadcast cycle, such
reports can as well be broadcasted at other pre-specified intervals h, h < T, where T is the
period of the broadcast. In this approach, the values broadcasted correspond to the values
produced by all transactions committed by the beginning of the current interval, while the
invalidation reports include all items updated during k.

Second, there can be variations of the proposed schemes with regards to granularity. For
example, invalidation reports may include buckets instead of items. A bucket is considered
updated if any of its items has been updated. Instead of maintaining for each transaction
R the set of items it has read, the set of buckets is maintained. Then, a query is aborted if
one of the buckets it has read is subsequently updated. This scheme may lead to aborting
queries that normally should not have been aborted, since the invalidation of a bucket does
not necessarily means that the specific item read has also been updated. However, only
correct queries are accepted and the imposed overhead is limited. Similarly, in multiversion
broadcast, versions of buckets, as opposed to items, may be kept. With this approach, a
single pointer per bucket is maintained that points to older versions of the bucket. Such older
versions of buckets include older versions of those items of the bucket that were updated
during the S previous cycles.

Finally, the methods were presented for a flat broadcast organization, in which all items
are broadcasted with the same frequency. One possible extension is to consider a broadcast-
disk organization [1], where specific items are broadcasted more frequently than others,
i.e., are placed on “faster disks”. An interesting problem related to read-only transaction
processing is determining the optimal frequency for transmitting invalidation reports or
versions, e.g., placing older versions in slower disks.
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Appendix

Proof of Claim 2

(<) If SGy has a cycle then SG, has a cycle since SG; is a subgraph of 5G..

(=) Let §G, have a cycle. Assume for the purposes of contradiction that SGy is acyclic.
Then, the cycle of SG, must include an edge that does not belong to SGy. This must be
an edge R — T', where T" is a transaction other than T} that wrote z. Since T" wrote z
after Ty, there is an edge Ty — T'. Thus, there is a path R — Ty — T" in SG;. By similar
arguments, we can replace any edge in a cycle of the SG, that does not exist in SG; by a
corresponding path. Thus, SG also has a cycle, a contradiction. a

Proof of Lemma 1

(a) For R to be involved in a cycle, R must have both an incoming and an outgoing edge.
An outgoing edge R — T}, € SG" is to a transaction T;, that overwrote an item read by
R, thus n > o. From Claim 1, the edges among subgraphs of transactions committed at
different broadcast cycles go from transactions committed at previous cycles to transactions
committed at subsequent cycles, thus [ < m. The outgoing edge T;, — R is from the last
transaction T;, that wrote an item read by R.

(b) To prove that the SGT algorithm detects all such cycles, we must show that: (i) the local
serialization graph at the client includes all such cycles and, (ii) the SGT algorithm detects
them. (i) Since the server broadcasts all edges and nodes involving server transactions, it
suffices to show that all incoming and outgoing edges to R are included in the local graph.
From Claims 2 and 3, it suffices to include edges that involve T; and Tj, as the SGT does.
(ii) Since the graph at the server is acyclic, cycles may be created only when an incoming
or outgoing edge to R is added. We claim that such cycles may be formed only when an
incoming edge to R is added, that is only when an item is read. Assume for the purposes of
contradiction that the addition of an outgoing, i.e., precedence, edge B — T; can create a
cycle. Such edges are added at the beginning of each broadcast cycle k, for each transaction
T; €8 G*, where T; is the first transaction that overwrote an item previously read by R.
For a cycle to be formed, there must also be an edge T; — R, where from part (a), T €
5G9 with ¢ > k, that means that R read an item from the last transaction T; that wrote
this item during broadcast cycle ¢, which is impossible since no values produced during
broadcast cycles ¢ = K have been read vet. O
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