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Abstract

We present an approach for the estimation of probability density functions (pdf) given
a set of observations that iz based on the use of feedforward multilayer neural networks,
The particular characteristic of the method is that the output of the network is not a pdf,
therefore, the computation of the integral of the output over the input domain is required.
Several modifications of the original approach [7] are proposed, most of them related to the
numerical computation of the integral and the employment of a preprocessing phase where
the network parameters are initialized using supervised training. Experimental results
using several test problems indicate that the proposed method is numerically stable and
very effective, providing in most cases more accurate estimations of the unknown densities
compared to the method of gaussian mixtures,

1 Introduction

Probability density function (pdf) estimation of a given set of observations constitutes a fun-
damental problem in pattern recognition data analysis and more recently data mining. Many
approaches have been developed that can be distinguished in parametric and nonparametric
techniques. Nonparametric techniques are model free and, in general, make use of the whole
set of observations to estimate the pdf at given point of the input space. Such techniques
include histograms, Parzen estimators and nearest neighbor estimators. Disadvantages of
such techniques are that they require the whole training set for each estimation and that they
are very sensitive to the values of some crucial parameters (eg. the window width in Parzen
technigues).

Parametric techniques assume that the unknown pdf follows a certain functional form
(model) with parameters that must be adjusted in order for the model to approximate the
distribution of the data. This adjustment is usually achieved through the maximization of
the likelihood of the data with respect to the parameters of the model. The most widely used



parametric approach for density estimation is based on gaussian mirtures, which assumes
that the model pdf is the weighted sum of gaussian distributions, with the model parameters
being the parameters (mean and covariance matrix) of each gaussian and the coefficients of
the weighted sum. The gaussian mixture model has been shown to exhibit the universal ap-
proximation property (ie as the number of gaussian components increases, it can approximate
any pdf to arbitrary accuracy) and efficient procedures for likelihood maximization have been
developed for this model (EM algorithm) [2, 11, 13]. It must be noted that, in analogy with
the case of gaussian mixtures, most parametric approaches assume that the model function
is a pdf by construction.

In [7] the use of multilayer Perceptrons (MLPs) as models for pdf estimation is proposed,
along with a training procedure for adjusting the parameters of the MLP (weights and bi-
ases) so that the likelihood is maximized. Moreover, theoretical results are presented in [8],
concerning the rate of convergence of such technigues.

The main difficulty with the employment of MLPs as a model for pdf estimation lies
in the fact that the output of an MLP is not a pdf, since its integral over the whole input
space does not sum to unity). Therefore, if N(z) > 0 is the output of the MLP for a given
point z of the input space, the actual pdf py(z) is given by: pn(z) = N(x)/ [ N(z)dz.
The numerical computation of the integral raises several difficulties that are not explicitly
addressed in [7], where no details are provided concerning numerical integration issues. In
many cases numerical problems appear that lead to unacceptable solutions as will be shown
in the paper.

In this work we elaborate on the use of MLPs as models for pdf estimation. The reason
lies on the wish to exploit the widely acknowledged function approximation capabilities of
MLPs and the possibility of fast implementation (either on parallel machines or on specialized
neuroprocessors). The use of a model function that is not a pdf gives the method greater
flexibility (as experiments indicate) in approximating unknown densities. For example, it is
widely known that the gaussian mixture approach encounters difficulties in approximating
the uniform distribution. On the other hand, the price paid by the MLP approach for the
increased flexibility is the incorporation of numerical integral computations in the likelihood
maximization procedure. We propose two basic mechanisms for making the method numeri-
cally stable and effective. The first is a preprocessing stage where supervised learning is used
to obtain a coarse approximation of the unknown pdf and "constrain” the network output
to the domain of interest. The second mechanism is the use of a moving grid for integral
computations, that is necessary to ensure the accuracy of the integration and that the min-

imization procedure will not provide unacceptable solutions. Moreover, we have conducted



comparative experiments with the gaussian mixture technique (where the EM algorithm is
used for training (2, 11]), which assure the flexibility of the MLP approach in approximating
pdfs of arbitrary shape.

The remainder of the paper is organized as follows: Section 2 describes the basic approach
to pdf estimation using MLPs, while Section 3 deals with issues of numerical integration.
The proposed approach is described in detail in Section 4. Section 5 provides comparative
experimental results on several test problems and, finally, Section 6 provides conclusions and
future research directions.

2 The basic MLP approach to pdf estimation

The probability density function approximation capabilities of general multilayer feedforward
neural networks have been established by White [14]. The universal approximation property is
ensured by selecting a continuous, bounded nonconstant activation function for hidden units
and an increasing, nonnegative, locally Lipschitz continuous activation function for the output
unit. Moreover, it is argued that the normalization condition can be ensured by appropriately
selecting the bias of the output unit. A training approach for multilayer perceptrons based
on the minimization of the negative log-likelihood is described in [7).

The latter approach relies on the universal approximation capabilities of multilayer per-
ceptrons to estimate the logarithm of the density function. The network architecture consisted
of one hidden layer with logistic activation function and of one output unit with exponential
activation function. Training is performed through minimization of the negative log-likelihood
of the data with respect to the network parameters [7].

More specifically, let zx € R, (k = 1,...,n) be a set of n data points drawn independently
according to an unknown density g(z) we want to approximate. We assume that the density
function is defined on a compact subset S C R4,

Let also N(z,p) the output of a multilayer perceptron with d input units, arbitrary number
of hidden layers with sigmoidal units and an output unit with ezponential activation function.
In addition let p denote the vector of network parameters (weights and biases). Then the

function: N (z.p)
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constitutes the model pdf with parameter vector p that must be adjusted in order to minimize
the negative log-likelihood of the data. It is obvious that py(z,p) = 0 and [ pn(z,p)dz = 1.
It must be stressed that the computation of the integral is by no means a trivial task and

requires the employment of numerical integration techniques. This constitutes the main



burden for the application of MLPs to density estimation problems. It must also be noted
that in [7] no details are given concerning the methodology used for computing the integral.
For a given parameter vector p the negative log-likelihood of the set of n observations z;
is given by
L(p) = = logpn(zk,p) (2)
k=1

which using eq. (1) is also written as

L(p) = — > _log N(z,p) +nlogf N(z,p)dz (3)
k=1 N

For notation convenience let denote I(p) = log [¢ N(z, p)dz.

Training the neural network N(z,p) means finding the optimum parameter vector p* so
that L(p*) is minimum. This can be accomplished using gradient descent methods (e.g. back-
propagation or any of its variants), quasi-Newton methods, conjugate gradient methods etc
[1, 3, 5. In [7] the on-line backpropagation algorithm is employed. All the above minimiza-
tion approaches require the computation of the gradient 4L /8p; with respect to any network
parameter p;. This gradient computation naturally splits into two parts: 1) the computation
of the first term in the L(p) formula, which requires the well-known and easily computed
gradients ON(zy,p)/Op; and ii) the computation of the gradient 8I(p)/dp;, which depends
on the numerical method used for computing the integral and will be described next. It must
be noted that neither I(p) nor 81(p)/8p; depend on the data points .

3 Numerical Integration Issues

In numerical integration techniques, the value of the integral I{p) is approximated by a
weighted sum [ (p): .
I(p) = !ZGIN{FI:P} (4)
=1
where the points y; € S are called integration points and in general are distributed over the
whole domain S, while the parameters g; are called infegration coefficients and remain fixed,
as long as the integration points remain the same. The integration points can be considered
as forming a multidimensional grid covering the domain S. Both y; and a; depend on 5, the
grid density (specified by the user) and the selected numerical integration technique. In the
following we assume that S is a hyperrectangle in R? with minimum and maximum value
along each dimension i smin, and smay, respectively.
Among the various techniques for numerical integration we have selected the trapezoidal

rule, since it is the simplest and computationally less expensive technique both for obtaining
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the integration points and computing the integration coefficients [4]. This rule suggests that
the points y; correspond to the nodes of a grid obtained by dividing the interval e |
along each dimension i using equidistant points (with distance h; between successive points).
The h; value is user defined and specifies the density of the grid along dimension i. The trape-
zoidal rule, along with the integration points, specifies the integration coefficients through a
very simple formula that depends only on k; (i =1,....d) [4].

Let 3 € S the integration points and a; ([ = 1.... ._M ) the corresponding integration
coefficients. Using eq. (4), the negative log-likelihood to be minimized (eq. (3)) takes the

form: -
L(p) = — 3 log N(z4,p) + nlog I(p) (5)
k=1
which gives
) . M
Lip) == log N(zx,p) +n log{z arN(y, p)) (6)
k=1 t=

Therefore the gradient of L(p) with respect to every parameter p; is given by:

aL{pta B, awnm M 9N(w.p)
ZNT}::F Zm dp; @

which is readily computed.
From the above observation it becomes obvious that the problem of pdf estimation using
MLPs (or any other neural architecture whose output is not a pdf per se) can be considered

as a training (ie minimization) problem with two sets of training points:
e the actual training points ¢, k = 1,...,n (specified by the problem]

e the integrafion training points y; [ =1,...,] M, that are determined by the integration
method of choice and depend on the domain S.

The freedom in selecting the integration points makes the problem particularly interesting as
it will be described below.

4 The proposed technique

4.1 Preprocessing

In order to apply the pdf estimation method, the input domain § must be specified first. Since
the only available information is the set of actual training points zy, it is natural to specify first

the hyperrectangle Ry where these points lie, ie. we compute the values min; = min; z; and



maT; = maxy Ty; and define Ry = {z = (zy,... ,md}T € R% min; < z; < maz;,¥i}. Then

we expand the space Ry in every dimension by a quantity 4, and define the domain § as
S={z=(x1,....,24)" € R% min; — § < z; < maz; + 6, Vi)

Outside S we assume that the pdf is zero (since no actual points exist) and the space between
Ry and S gives the pdf the necessary room for fading to the zero value.

A fundamental problem related with the use of MLPs is that, at the beginning of training
(where the parameters p; take small random wvalues in (=1, 1)), the output of an MLP is not
a local function. This means that the network output is not local and may have nonzero
value everywhere in R%. As a result, it is very difficult for the minimization procedure to
force the output of the network to be zero at the boundary of S. To overcome this problem
and to locate a good starting point (in terms of parameter values p;) for the minimization
of the likelihood L(p), we first perform supervised training of the MLP by constructing a
training set using some non-parametric technique for pdf estimation. This means that, for
each integration point 3 (I =1,...,] M), we use the actual points z; to estimate the pdf p(y;)
by a non-parametric technique. More specifically we have selected the Parzen estimation

method based on Gaussians [1]:

n _ i‘l
Z 1;2 exp(— |332J2y.!. ) (8)

where the only parameter to be adjusted is the value of o.
Using the above non-parametric specification, a training set with M pairs (y.6(y)) (I =
1,..., M) is constructed and is subsequently used to train the MLP through the normal

minimization procedure of the error function:

M

Z N(w.p) — Blw))? (9)

This preprocessing stage offers two benefits: i) the network output is constrained to the
input domain 5 since #(y;) = 0 for y; near the boundary of § and 1i) a good initial point is
provided for the minimization of the negative log-likelihood, since the network output after
this training phase resembles the unknown pdf to a degree depending on the accuracy of the
employved non-parametric pdf estimation method.

The choice for selecting the integration points y; for supervised training, instead of using
the actual points zj, was based on the fact that the points y are uniformly distributed
across the whole domain of interest 5, while points z; appear only inside the domain Ryx.

Moreover, in cases where there are regions inside Ry with no points z; (ie with zero pdf),



this information would not be incorporated into the training set, if points z; were used for
supervised preprocessing. An additional reason for preferring integration points i is that, in
general, they are fewer than the actual points. For example, in our experiments the number of
actual points was n = 5000, while the number of integration ranged from 50 to 225, depending
on the domain.

It must be noted that the accuracy of the approximation is not crucial for the success of
the method, since the estimated probabilities p(y;) are not accurate. In addition, this is used
only as a preprocessing stage providing initial values for the network parameters that will
be improved further through the likelihood minimization which constitutes the main training
task. Moreover, this preprocessing offers the additional benefit that, from the effectiveness
of the training, one may draw conclusions concerning the architecture of the network (for
example the number of hidden units). If a specific number of hidden units is not adequate
to coarsely perform the above fit (ie to adequately minimize the error function E(p) (eq.
(9)), this is an indication that a higher number of hidden units is needed to approximate the

unknown pdf.

4.2 Intelligent integration point selection

As stated in the previous section, the accuracy with which the integral I{p) is computed
depends eritically on the number of the integration points M and the smoothness of the
integrated function. If the integration grid is sparse and narrow peaks occur in a space with
no grid points, then the peak is not taken into account in the numerical computation of the
integral, giving rise to erroneous integral computations. In general many training points are
required to cover the input space S, especially in cases where the input dimension d is high.
Since integration points are used as training points, the employment of many integration
points introduces a computational overhead to the method. Therefore efforts must be made
so that M remains as small as possible.

A thing that must be emphasized is the opposite contribution of the actual points and
the integration points in the computation of the objective function L. The minimization of L
drives the network output N(z, p) to be high at the actual training points xx and, at the same
time, to be low (close to zero) at the integration points ;. This means that the minimization
of the first sum in L guides the network to maximize its output for every actual training
point, while the presence of the second term (f ) prevents the network output from seeking
the obvious maximum at oo [7].

An ill-conditioned solution that is very often obtained from the minimization procedure

results from the case of inaccurate numerical integration mentioned previously: if many actual



E’S T | I T T
i i ariginal —
MLP -
025 -
02 b .
015 | Py : 1
ik : s ; |
T H kY
P
H 1 Ir i 1
0.05 F I Y -
i i
¥
a &
o = 1 i 1 1 1 L
5 B 2 0 2 4 5

Figure 1: An unacceptable approximation to the uniform pdf that is due to erroneous numer-
ical integration

training points exist inside a cell of the integration grid, then high peaks may be formed
inside this cell (where no integration points exist), due to the above mentioned force of the
minimization procedure to provide high values for the actual training points. Such peaks
do not contribute to the integral computation, therefore the likelihood function is falsely
computed and obtains large negative values. An example of such phenomenon is depicted in
Fig. 1 for the case where a uniform one-dimensional pdf is approximated. This behavior is
encountered frequently in the case where the integration grid is sparse (low density), but may
also happen even if the grid is dense, since it is always possible for more narrow peaks to be
constructed,

A way to tackle the above problem is to use an intelligent selection scheme for the inte-
gration points. We call this selection scheme the moving grid method, since at each epoch ¢
of the minimization algorithm (which may be either gradient descent or any other method)
we consider that the grid is randomly moving. This means that at each epoch ¢ every in-
tegration point y;(t) = (yn(t),...,ma(t))" is perturbed from its original position 1(0) by
setting: y;(t) = y(0) + di(t), where for each i the displacements d;(t) are randomly selected
in (—h;/2, h;/2) (using the uniform distribution). It must be noted that, at each epoch t, the



values of d;(t) are selected once for every i and are used for the update of all points y(t).
Therefore, for each £, the whole integration grid is moving by d;(t) along each dimension i.
Consequently, the relative distances among integration points y(f) remain fixed, thus the
integral parameters a; remain fixed and need not be computed at each epoch.

If N(z.p) is relatively smooth (does not form strange narrow peaks inside a grid cell),
the random displacement of the integration grid by a small amount at each epoch, affects
the value of the sum I(p) only at the boundary of S, since at the interior points the relative
distances between points do not change. But, as a result of the preprocessing stage, the
network output N(z,p) is close to zero near the boundary of S, therefore the integral value
seem to be insensitive to the perturbation values d;. The advantage of using the moving
grid approach is that we obtain a significant benefit: it is not possible for the peaks to
be constructed, since the integration points y; are constantly moving around their original
position, leaving no space for the formation of undesirable peaks. Therefore, the proposed
method leads to accurate numerical integration and yields accurate solutions. Of course,
accuracy depends on the density of the integration grid, but we have found experimentally
that using the above technique, it is possible to obtain solutions of acceptable accuracy even
with sparse integration grids, in cases where the pdf to be approximated is relatively smooth.

Summarizing all the above issues, the proposed method for pdf estimation using MLPs is
specified as follows:

1. Initialization: set ¢ := 0, specify the domain S, the density of the integration grid

(h; values) and compute the integration points y;(0) and the integration coefficients a

2. Preprocessing:

e Compute fi(y;) using eq. (8).
e Train the MLP to minimize the error function E(p) (eq. (9)).

3. Repeat

o Sett:=t+1

Compute displacements d;(t) selected uniformly in (-h;/2,h;/2) i=1,...,d.

Compute the new integral points: yy(t) = yu(0) +di(f) for I = 1,... .M, & =
 fiarey

Compute the integral I(p) = =M, a;N(3i(t), p).

Compute the gradients for each parameter p;: dN(zy,p)/dp; (k = 1,...,n) and
AN (y(t),p)/op: (1 =1,....M).



o For each parameter p; set:

ki 1  ON(zx,p) , n <« ON(ult),p)

E‘pa. N(zk,p)  Opi Ip) = Ipi

o Using the gradient information, update the parameter vector p using either gradient

descent or quasi-Newton methods or conjugate gradient methods.
4. Until some termination criterion is satisfied

As in the case with ordinary supervised MLP training, several termination criteria may
be specified, for example, maximum number of epochs or convergence of the parameter vector

to a local minimum.

5 Examples

To assess the effectiveness of our approach we have conducted experiments with data drawn
independently from known distributions, which in turn we tried to approximate using the
described approach. After training, we tested the accuracy of the obtained solution with
respect to the one used to generate the data. For visualization purposes we have considered
one dimensional and two dimensional problems and for each problem we have also compared
our approach with results obtained from the use of the gaussian mixture technique trained
using the Expectation-Maximization (EM) algorithm [2, 11]. The latter constitutes the most
popular parametric technique for pdf estimation [1, 2, 13].

In all experiments we have considered an MLP with d input units, one hidden layer with
10 sigmoid logistic units and one output unit with exponential activation function (as in
[7]). Training in both the preprocessing stage and the likelihood minimization phase was
performed using the quasi-Newton BFGS method [3, 3], which is provided by the MERLIN
optimization environment [9] and has been found to be superior to gradient descent for MLP
training [6]. Training was stopped when convergence was achieved, ie. the infinite norm of
the difference in the value of L between two successive epochs was less than 0.01. Moreover,
after training, an additional integral computation is performed with many integration points,
to ensure accurate computation of the integral I. Then, for each point z, the corresponding
density value is py(z) = N(z)/I.

In all problems we have considered a training set with n = 5000 data points drawn inde-
pendently from the corresponding pdf to be approximated. Moreover, the value of parameter
o used in nonparametric estimation was set equal to (.1 in all cases. It must be noted that

we have also tested the Monte-Carlo method for numerical integration [10] using points se-
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Figure 2: The approximation of a gaussian mixture pdf with four kernels

lected from the initial pdf obtained after the preprocessing stage, but the number of required
integration points to achieve satisfactory accuracy was extremely high.

We have considered three one dimensional problems: i) a gaussian mixture pdf with four
kernels, ii) a uniform pdf and iii) a non-smooth pdf tested in [7]. In addition, we have
considered a two dimensional uniform pdf.

In all experiments, since we the original pdf g(x) is known, we computed the theoretically

optimal log-likelihood f;{:vl,. ..+ Zy) for the specific set of samples x (k= 1...., n) that we

have used in every problem:

L(zy,....za) = Y log(g(ar)) (10)
k=1

Moreover, in all experiments with the gaussian mixture method, we have used a mixture with

10 kernels (same as the number of hidden MLP units).

5.1 Gaussian mixture pdf

In this experiment we have generated samples using the following pdf:

g(z) = 0.2N(=5,2) + 0.4N(0,1) + 0.2N(1,0.5) + 0.2N(5,2)

11
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We considered a one-dimensional integration grid with M = 50 equidistant points in [—15, 15].
It is obvious that in this case the gaussian mixture method is expected to exhibit accurate
approximation behavior. As Fig. 2 indicates, the MLP approach also provides a very good
approximation to g{z). The value of L{zy,...,z,) was —12445 and the likelihood of the
obtained solutions was —12452 for the gaussian mixture model and —12461 for the MLP

model, ie very close to the optimal.

5.2 1-d Uniform pdf

In this case the pdf to be approximated was the one-dimensional uniform pdf in the interval
[—5,5]. We considered a one-dimensional integration grid with M = 50 equidistant points in
[-7.7].

It is known that the gaussian mixture method encounters difficulties in approximating
uniform pdfs. This difficulty was confirmed by our experiments (Fig. 3). On the contrary,
the solution provided by the MLP approach was an excellent approximation to g(z). The
value of .E'[I]_ ..... Ty) was —11512 and the likelihood of the obtained solutions was —11652

(far from the optimal) for the gaussian mixture model and —11518 (almost optimal) for the
MLP model.
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5.3 A non-smooth pdf
In this experiment the unknown pdf was the same as the one used in [7):

0 ifr>00rz>3+v2
glz) =4 (2 - z/2)/6.5523 fo<z <2 (11)
(2—(z—3)2)/6.5523 if2<z<3++2
We considered a one-dimensional integration grid with M = 50 equidistant points in
[-1,6]. Fig. 4 displays the solutions obtained using the gaussian mixture and the MLP
approach. It is clear that the MLP method is more effective in approximating g(xz). The
value of L(z1,..., Tp) was —7166 and the likelihood of the obtained solutions was —7195 for

the gaussian mixture model and —7171 (almost optimal) for the MLP model.

5.4 2-d Uniform pdf

The pdf to be approximated was a two-dimensional uniform pdf defined on the domain
[0,0.2] = [0,0.2]. We considered a two-dimensional integration grid with M = 225 grid points
obtained by dividing the interval [—0.1,0.3] on the x-axis and the interval [—0.1,0.3] on the

y-axis using 15 equidistant points for each axis.
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Figures 5 and 6 display the contour plots of the obtained solutions using the MLP and
the gaussian mixture method respectively. It is obvious that the gaussian mixture method
provides a solution of poor quality. On the other hand, the MLP approach is very effective and
is able to approximate the uniform pdf with very good accuracy. The value of L(zy, ..., 25)
was —16094 and the likelihood of the obtained solutions was —15532 for the gaussian mixture
model and —15953 for the MLP model.

From the above experiments, it is clear that the proposed MLP method is much more
effective in approximating pdfs with linear structure compared with the gaussian mixture
approach. In, addition, as indicated by the first experiment, it is almost equally effective in
approximating pdfs with gaussian shape. In what concerns execution time, the results are

comparable for both methods.

6 Conclusions

An effective approach has been presented for pdf estimation given a set of samples that is
based on the use of multilayer perceptrons. It must be noted that the approach is general and
any feedforward neural architecture (with universal approximation properties) can be used in
place of MLPs (for example RBF networks). As experiments indicate, the estimation method
is very flexible and exhibits in many cases superior approximation capabilities compared with
gaussian mixtures,

Current research focuses on the use of techniques for model selection, such as incremental
constructive techniques for adjusting the network architecture and pruning techniques for re-
ducing the number of parameters. We also study techniques for constructing integration grids
with adaptive density, based on density estimation results obtained from the preprocessing
stage. Another important issue of research is related with the hardware implementation of
the method, either on parallel machines or on neuroprocessors. Such an implementation is
particularly interesting in our case due to the computational overhead imposed by the integral
calculations.

Finally, we aim at testing the effectiveness of the proposed method on several real problems
where pdf estimation is required. In addition, we will focus on the application of the technique
to classification problems. This can be carried out in two ways: the straightforward one is
to construct one pdf for each class (using only the data belonging to the particular class)
and then perform decisions on new data by applying the Bayes rule to select the class with
maximum density. The second (and more challenging) is to define an error function based on
the pdf of each class and, instead of training the network through likelihood maximization,

to perform training by minimizing the probability of misclassification.
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