Scalable Invalidation-Based Processing of Queries
in Broadcast Push Delivery®

Evaggelia Pitoura
Department of Computer Science
University of Ioannina
GR 45110 Ioannina, Greece
Phone : + 30 (651) 97 311
Fax : + 30 (651) 48 131
email: pitoura@cs.uoi.gr

Abstract

Recently, push-based deliverv has attracted considerable attention as a means of
disseminating information to large client populations in both wired and wireless en-
vironments. In this paper, we address the problem of ensuring the consistency and
currency of client’s read-only transactions in the case of updates. Our approach is
hased on broadeasting invalidation reports and is scalable, i.e., its performance and
associated overhead is independent of the number of clients. Caching is also considered
to improve the latency of queries. Preliminary performance results show the relative
advantages of the proposed technigues,

Keywords: broadcast, push-based delivery, transaction management

1 Introduction

In traditional client/server systems. data are delivered on demand. A client explicitly
requests data items from the server. Upon receipt of a data request, the server locates
the information of interest and returns it to the client. This form of data delivery is
called pull-based. In wireless computing. the stationary server machines are provided with
a relative high-bandwidth channel which supports broadcast delivery to all mobile clients
located inside the geographical region it covers. This facility provides the infrastructure for
a new form of data delivery called push-based delivery. In push-based data delivery. the
server repetitively broadeasts data to a client population without a specific request. Clients
monitor the broadeast and retrieve the data items they need as they arrive on the broadcast
channel.

Push-based delivery is important for a wide range of applications that involve dissemi-
nation of information to a large number of clients. Dissemination-based applications include
information feeds such as stock quotes and sport tickets. electronic newsletters, mailing lists,

*University of Ioannina, Computer Science Department, Technical Report No: 88-021

road traffic management systems, and cable TV. Important are also electronic commerce
applications such as auctions or electronic tendering. Finally. information dissemination
on the Internet has gained significant attention (e.g., [9. 25]). Many commercial products
have been developed that provide wireless dissemination of Internet-available information.
For instance, the AirMedia’s Live Internet broadcast network [3] wirelessly broadcasts cus-
tomized news and information to subscribers equipped with a receiver antenna connected
to their personal computer. Similarly, Hughes Network Systems’ DirectPC [23] network
downloads content directly from web servers on the Internet to a satellite network and then
to the subseribers’ personal computer,

The concept of broadcast data delivery is not new. Early work has been contacted in the
area of Teletext and Videotex systems [5, 24]. Previous work also includes the Datacycle
project [10] at Bellcore and the Boston Community Information System (BCIS) [12]. In
Datacycle, a database circulates on a high bandwidth network (140 Mbps). Users query the
database by filtering relevant information via a special massively parallel transceiver. BCIS
broadcast news and information over an FM channel to clients with personal computers
equipped with radio receivers.

Recently, broadeast has received considerable attention in the area of mobile comput-
ing because of the physical support for broadcast in both satellite and cellular networks.
Broadcast delivery in mobile wireless computing poses a number of difficulties. Mobile
clients are resource-poor in comparison to stationary servers. Energy conservation is a ma-
jor concern. The communication environment is asymmetric, in that there is typically more
communication capacity from servers to clients than in the opposite direction.

In this paper. we address the problem of preserving the consistency of clients’ queries.
that is clients’ read-only transactions, when the values of the data that are being broadeast
are updated at the server. Qur approach is based on broadcasting invalidation reports.
Broadcasting additional information in the form of a serialization graph is also exploited
to increase the concurrency of the scheme in the expense of additional processing at both
the client and the server. Consistency is preserved without contacting the server thus
the approach is scalable; i.e., performance is independent of the number of clients. This
property makes the approach appropriate for highly populated service areas. The proposed
techniques are extended to support caching at the client. Preliminary performance results
show the relative advantages of the techniques presented in terms of the percentage of
acceptable queries.

The remainder of this paper is organized as follows. In Section 2. we introduce th
problem of supporting consistent read-only transactions in the presence of updates. In
Section 3, we present two invalidation-based schemes: one based on simply broadcasting
invalidation lists and one that in addition broadeasts serialization information. In Section 4,
we consider client disconnections, i.e.. non-continuous access to the broadecast, and discuss
possible extensions. Caching is considered in Section 5, while in Section §, we present
preliminary performance results. In Section 7, we discuss related work and in Section 8, we
offer our conclusions.

0o

broadeast-cvele_n+i browdeast-cycle_n >

Clients

Figure 1: Broadcast-based data delivery

2 Processing Queries at the Client

2.1 The Model

The server periodically broadeasts all data items to a large client population. Each period
of broadeast is called a broadeast eyele or beycle. while the content of the broadeast is called
a beast. Each client listens to the broadcast and fetches data as they arrive: clients cannot
make any direct requests for data (Figure 1). This way data can be accessed concurrently
by any number of clients without any performance degradation. However, access to data
is strictly sequential, since clients need to wait for the data of interest to appear on the
channel.

We assume that all updates are performed at the server. Clients access data from the
broadeast in a read-only manner. Any updates are applied at the server and disseminated
from there. Providing transaction support tailored to read-only transactions is important
for many reasons. First, a large number of transactions in dissemination systems are read-
only. Then, even if we allow update transactions at the client, it is more efficient to process
read-only transactions with special algorithms. That is because consistency of queries is
ensured without contacting the server. This is important because even if a backchannel
exists from the client to the server, this channel typically has small communication capacity.
Furthermore. since the number of clients supported is large. there is a great chance of
overwhelming the server with clients’ requests. In addition, avoiding contacting the server
decreases the latency of client transactions.

Clients do not need to continuously listen to the broadcast. Instead, they tune-in to
read specific items. Selective tuning is important especially in the case of portable mobile
computers, since they most often rely for their operation on the finite energy provided by
batteries and listening to the broadcast consumes energy. However. for selective tuning,
clients must have some prior knowledge of the structure of the broadcast that they can
utilize to determine when the item of interest appears on the channel. Alternatively, the
broadcast can be self-descriptive, in that. some form of directory information is broadeast
along with data. In this case, the client first gets this information from the broadcast and
use it in subsequent reads. Techniques for broadcasting index information along with data
are given in [14, 15, 13].

The smallest logical unit of a broadcast is called a bucket. Buckets are the analog to
blocks for disks. Each bucket has a header that includes useful information. The exact

content of the bucket header depends on the specific broadcast organization. Information
in the header usually includes the position of the bucket in the broadcast cycle as an offset
from the beginning of the broadcast cycle as well as the offset to the beginning of the next
broadecast cycle. The offset to the beginning of the next broadcast cycle can be used by the
client to determine the beginning of the next broadcast cycle when the size of the broadeast
is not fixed. Data items correspond to database records (tuples). We assume that users
access data by specifving the value of one attribute of the record. the search key. Each
bucket contains several items.

2.2 Updates and Broadcast

We assume that the server broadcasts the content of a database. A database consists of a
finite set of data items. A database state is typically defined as a mapping of every data
to a value of its domain. Thus. a databases state, denoted DS, can be defined as a set
of ordered pairs of data items in D and their values. In a database, data are related hy
a number of restrictions called integrity constraints that express relationships of values of
data that a database state must satisfv. A database state is consistent if it does not violate
the integrity constraints [8].

While data items are being broadcast, transactions are executed at the server that may
update the values of the items broadcast. We assume that the contents of the broadcast at
each cycle is guaranteed to be consistent. In particular, we assume that the values of data
items that are broadcast during each broadcast cycle correspond to the state of the database
at the beginning of the broadcast cycle, i.e., the values produced by all transactions that
have been committed by the beginning of the cycle. Thus, a read-only transaction that
reads all its data within a single cycle can be executed without any concurrency overhead
at all. We make this assumption for clarity of presentation. we later discuss how it can be
raised.

Since the set of items read by a transaction is not known at static time and access
to data is sequential. transactions may have to read data items from different broadcast
cycles, that is values from different database states. As a very simple example, say T be a
transaction that corresponds to the following program:

if a » 0 then read b else read c

and that b and ¢ precede a in the broadcast. Then, a client’s transaction has to read a first
and wait for the next cycle to read the value of b or ¢

We define the span of a transaction T, span(T), to be the maximum number of different
broadeast cycles from which T reads data. The above example shows that the order in
which transactions read data affects the response time of queries. A form of transaction
optimization that orders requests for data based on the order according to which they are
broadeast can be emploved to keep the transaction’s span small.

Since client transactions read data from different cycles, there is no guarantee that
the values they read are comsistent. We define the readset of a transaction T, denoted
Read_Set(T), to be the set of items it reads. In particular, Read_Set(T') is a set of ordered
pairs of data items and their values that T read. Our correctness criterion for read-only
transactions is that each transaction reads consistent data. Specifically, the readset of each

read-only transaction must form a subset of a consistent database state [21]. We assume
that each server transaction preserves database consistency. Thus, a state produced by a
serializable execution (i.e.. an execution equivalent to a serial one [8]) of a number of server
transactions produces a consistent database state. The goal of the methods presented in
this paper is to ensure that the readset of each read-only transaction corresponds to such a
state.

To guarantee correctness, additional control information is broadecast along with data.
Processing of control information is required at both the client and the server. The server
computes and broadcasts this information during each broadeast cycle. The client reads
this information from the broadcast channel and interpret it appropriately. The size of the
control information is an important measure of the efficiency of a transaction processing
scheme, since transmitting control information consumes bandwidth. Furthermore. the
volume of the broadcast data affects the response time of client transactions. Since access
to data is sequential, the larger the volume of the broadeast, the longer the clients need to
wait until the data of interest appear on the channel. Another requirement is minimizing
the overhead of processing this information at both the server and at the clients.

3 Invalidation-Based Query Processing

3.1 Invalidation-Only Scheme

Each beast is preceded by an invalidation report in the form of a list that includes all data
items that were updated during the previous broadcast cyele. For each active read-only
transaction R. the client keeps a set RS(R) of all data items that R has read so far. At the
heginning of each broadcast cycle. the client tunes in and reads the invalidation report. A
read transaction R is aborted if an item =z € RS(R) was updated, that is if © appears in
the invalidation report. Clearly,

Theorem 1 The invalidation only method produces correct read-only transactions.

Proof. Let ¢, be the cycle during which a committed read-only transaction R performed
its last read operation and D5% be the database state broadcasted at cycle c.. Then, the
values read by R correspond to the database state DS%. For the purposes of contradiction,
assume that a value of a data item = read by R corresponds to a database state broadceasted
at a previous cycle, then an invalidation report should have been transmitted for = and thus
It should have been aborted. O

As indicated by the proof above, in the invalidation-only scheme, a read-only transaction
R reads the most current values, that is the values produced by all transactions committed
at the beginning of the broadcast cycle at which R commits. The increase in the size of the
broadeast is equal to ud, where u is the number of items that were updated and d is the
size of the key.

Bounded-Inconsistency

One approach to increase concurrency and reduce the overhead of transmitting and pro-
cessing control information is to provide queries that can tolerate a degree of inconsistency.

There are many definitions of inconsistency and correspondingly different techniques for
enforcing them. We deseribe next two of them for illustration.

One formal characterization of inconsistency is provided by epsilon-serializability (ESR)
(20, 19]. In epsilon-serializability, each read-only transaction has an import-limit that spec-
ifies the maximum amount of inconsistency that it can accept. ESR associates an amount
of inconsistency with each inconsistent state defined as its distance from a consistent state.
It has meaning for any state that processes a distance function.

Let R be a read-only transaction and ey be the eycle at which R starts. The import limit
for R can be quantified on a per data item basis. Let x € RS(S), then the inconsistency
associated with x can be defined as the distance of the current value of z and the value
of r at ¢y say xp. R can tolerate reading xp, and thus import inconsistency equal to this
distance, if the distance is within a specified import limit. The inconsistency imported by R
depends on the number of concurrent updates, i.e., the number of server transactions that
commit while the read-only transaction R is in progress. One way to support this form of
imported inconsistency is to extend the validation report for a data item x to include the
number of transactions that have updated r during the previous broadcast cyele.

There are other ways to quantify import inconsistency [4]. For example, for a data item
z that takes numerical values, instead of transmitting an invalidation report each time it is
updated. we may transmit an invalidation report only when the difference of its new value
from the old one falls outside a specified range of values.

3.2 Serialization-Graph Testing

If additional information is broadcasted. it should be possible to accept more read-only
transactions. To this end, we develop a serialization graph testing (SGT) method. The
serialization graph for a history H. denoted SG(H). is a directed graph whose nodes are
the committed transactions in H and whose edges are all T; — T; (i # j) such that one
of T;'s operations precedes and conflicts with one of T; operations in H [8]. According to
the serialization theorem, a history H is serializable iff SG(H) is acyelic. We assume that
each transaction reads a data item before it writes it, that is. the readset of a transaction
includes its writeset. Then. in the serialization graph. there can be two types of edges T; —
T; between any pair of transactions T; and T;: dependency edges that express the fact that
T; read the value written by T; and precedence edges that express the fact that T; wrote an
item that was previously read by T;.

In brief, the SGT method works as follows. Each client maintains a copy of the serializa-
tion graph locally. The serialization graph at the server includes all transactions committed
at the server. while. in addition. the local copy at the client includes any active read-only
transactions that were issued at this site. At each cycle, the server broadcasts any updates
of the serialization graph. Upon receipt of the updates. the client integrates them into its
local copy of the graph. A read operation at a client is executed only if it does not create
a cycle in the local serialization graph.

Implementation of the SGT Method

In the serialization graph testing (SGT) method, the server broadcasts at the beginning of
each beast the following control information:

e the difference from the previous serialization graph
In particular, the server broadcasts for each transaction T; that was committed during
the previous cycle, a list of the transactions with which it conflicts, i.e., it is connected
through a direct edge.

o an augmented invalidation report
The report includes all data written during the previous broadeast cycle along with
an identification of the first transaction that wrote each of them during the beycle.

In addition. the content of the broadeast is augmented so that the identification of the
last transaction that wrote a data item is broadcast along with the item.

Each client tunes in at the beginning of the broadcast to obtain the control information.
Upon receipt of the graph, the client updates its local copy of the serialization graph SG
to include any additional edges and nodes. Let SG' be the subgraph of SG that includes
only the transactions that were committed during cycle i. An interesting property is that:

Claim 1 There cannot be any incoming edges to transactions in SG* from transactions
commilfed in subsequent cycles m > i

This is true since all transactions in 5G* are committed prior to any transactions com-
mitted in subsequent eycles.

The client also adds precedence edges for all its active read-only transactions as follows.
Let R be such an active transaction and RS* be the set of items that R has read so far. For
each item = in the invalidation report such that z € RS, the client adds a precedence edge
R — Ty, where Ty is the first transaction that wrote z during the previous cycle. Although
R conflicts with all transactions that wrote = during the previous cycle, it suffices to add
just one edge to Ty since:

Claim 2 Let = € RS(R) and SG, be the graph that includes edges R — T for each T that
wrote = during beycle i — 1 and SG ¢ the subgraph of SG that includes only an edge R —
Ty, where Ty is the first transaction that wrote x during the beycle i — 1. SG, has a cycle
if and only if SGy has a cycle.

Proaf.

(«<) If SG; has a cycle then §G, has a cycle since SG; is a subgraph of 5G.

(=) Let SG, have a cycle. Assume for the purposes of contradiction that SGy is acyclic.
Then, the cycle of SG, must include an edge that does not belong to SGy. This must be
an edge R — T'. where T' is a transaction other than Ty that wrote . Since T' wrote x
after T}, there is an edge Ty — T. Thus, there is a path B = Ty — T" in SG;. By similar
arguments, we can replace any edge in a cycle of the SG, that does not exist in SG ¢ by a
corresponding path. Thus, SG; also has a cycle, a contradiction. O

When R reads an item y. a dependency edge T; — R is added in the local serialization
graph, where T} is the last transaction that wrote y. The read operation is accepted. only
if no cycle is formed. It can be shown with an argument similar to the one in the previous
claim that it suffices to add just an edge T; — R instead of adding edges T" — R from all
transactions T' that wrote y.

Claim 3 Let y € RS(R) and 5G, be the graph that includes edges T — R for each T that
wrote y and SG; be the subgraph that includes only an edge T} — R, where T is the last
transaction that wrote y. SG4 has a cycle if and only if SG; has a cycle.

We will prove that the SGT method detects all cycles that include a read-only transac-
tion R. We will use the following lemma:

Lemma 1 Let o be the broadeast eycle during which R performs its first read operation.

(a) During broadeast eycle m, the only types of eyeles that include R are of the form R
- T;, =+ Tiy, —+ ... T, = R, where for any consecutive T; € 5Gy and T;,, ., € 585G,
itholds o < k < 1.

(b} The SGT algorithm detects all such cycles.

Proaf.

(a) For R to be involved in a cycle, R must have both an incoming and an outgoing edge.
An outgoing edge B — Ti, € SG,, is to a transaction T}, that overwrote an item read by
R. thus n = o. From Claim 1, the edges among subgraphs of transactions committed at
different broadeast cycles go from transactions committed at previous cycles to transactions
committed at subsequent cycles. thus & < [. The outgoing edge T;, — R is from the last
transaction Tj, that wrote an item read by R.

(b) To prove that the SGT algorithm detects all such eycles, we must show that: (i) the local
serialization graph at the client includes all such cycles and, (ii) the SGT algorithm detects
them. (i) Since the server broadcasts all edges and nodes involving server transactions, it
suffices to show that all incoming and outgoing edges to R are included in the local graph.
From Claims 2 and 3, it suffices to include edges that involve Ty and T}, as the SGT does.
(ii) Since the graph at the server is acyclic, cycles may be created only when an incoming
or outgoing edge to R is added. We claim that such cycles may be formed only when an
incoming edge to R is added, that is only when an item is read. Assume for the purposes of
contradiction that the addition of an outgoing, i.e., precedence, edge R — T, can create a
cvele. Such edges are added at the beginning of each broadcast cycle k, for each transaction
T; € SGy, where T} is the first transaction that overwrote an item previously read by fA.
For a cyele to be formed, there must also be an edge T; — R, where from part (a). T; €
SG,, with m = k. that means that R read an item from the last transaction T; that wrote
this item during broadcast cycle m, which is impossible since no values produced during
broadcast cycles m geg k have been read yet.]

Theorem 2 The SGT method produces correct read-only transactions.
Proof. From Lemma 1. the SGT algorithm detects all cycles that involve R, thus from a

direct application of the serialization theorem, R is serializable with all server transactions,
thus A reads consistent data and is correct. O

Regarding the currency of read-only transactions, each read-only transaction R that
performs its first read at e; reads values that correspond to a database state between the
state at the beginning of broadcast cycle ¢y and the current database state.

8

Space Efficiency

Instead of keeping a complete copy of the serialization graph locally at each client. by
Lemma 1, it suffices to keep for each query R only the subgraphs SG with £ = c,. where
¢, is the beyele when the first item read by R is invalidated. i.e.. overwritten. Thus, if no
items are updated, there is no space or processing overhead at the client. Furthermore, at
most S subgraphs are maintained, where § is the maximum transaction span of the queries
at the client. By Lemma 1, we may also keep only the outgoing edges from R: there is no
need to store the incoming edges to K.

However, the volume of the control information that is broadcasted is considerable.
Let tid be the size of a transaction identifier. ¢ be the maximum number of transactions
committed during a broadcast cycle, and N be the maximum number of operations per
transaction at the server. We assume that transaction identifiers are unique within each
broadeast cycle, thus it suffices to allocate log(e) bits per transaction identifier. Then. when
there is a need to distinguish between transactions at different cycles, we also broadcast a
version number indicating the broadcast cycle at which the transaction was committed. The
size of the invalidation report is: u(i + log(e)). Since, there are at most IV operations per
transaction. each transaction may participate in at most N conflicts with other transactions.
Thus, the difference from the previous graph has at most ¢ N edges. The total size of the
difference is: eN|[2log(c) + 2v), assuming that along with each transaction we also broadeast
the broadcast cycle at which it was committed. Finally, the size of the broadcast is further
angmented, since along with each item. we must also broadcast the identifier of the last
transaction that wrote it.

4 Discussion

4.1 Disconnections

Listening to the broadcast consumes energy. In addition, access to the broadcast data may
be monetarily expensive. Thus, mobile clients may voluntary skip listening for a number
of broadeast cycles. Besides this voluntary form of disconnection, client disconnections
are very common when broadcast data are delivered wirelessly. Wireless communications
face many obstacles because the surrounding environment interacts heavily with the signal.
thus in general wireless communications are less reliable and deliver less bandwidth than
wireline communications. Thus, a desirable requirement from a broadcasting scheme is to
allow clients to continue their operation after periods during which the clients miss listening
to the broadcast signal.

The techniques presented require active clients to monitor the broadcast continuously.
In the invalidation-only scheme. a client has to tune-in at each and every cycle to read
the invalidation report. Otherwise, it cannot ensure the correctness of any active read-
only transaction. Similarly, the SGT method does not tolerate any client disconnection. If
a client misses a broadcast cycle, it cannot anymore guarantee serializability, Thus, any
active read transactions must be reissued anew. An enhancement of the scheme to increase
tolerance to disconnections would be to broadeast along with items version numbers. Then.
a read operation could be accepted as long as its version number was smaller than the

version of the last broadcast that the transaction has listen to. This guarantees that the
client has all the information required for cycle detection.

In all the schemes. periodic retransmission of control information would increase their
tolerance to intermittent connectivity. For instance, an invalidation report of the items
updated during the last w beyeles may be broadcasted to allow clients to resynchronize.

4.2 Extensions

Instead of the invalidation reports being broadcasted at the beginning of each broadcast
cycle. such reports can as well be broadcasted at other pre-specified intervals h. h < T
where T' is the length of the broadcast. In this case. the invalidation report must include
all items updated during h. The values broadcast correspond to the values produced by all
transactions committed by the beginning of the current interval.

Another way to extend the scheme is to increase its granularity., For example. invalida-
tion reports may include buckets instead of items. A bucket is considered updated when any
of the items that it includes has been updated. Instead of maintaining for each transaction
I the set of items it has read. the set of buckets is maintained. Then, a query is aborted if
one of the buckets it has read is subsequently updated. This scheme may lead to aborting
queries that normally should not have been aborted. since the invalidation of a bucket does
not necessarily means that the specific item read has also been updated. However, it accepts
only correct gqueries and imposes less overhead.

5 Caching

To reduce latency in answering queries, clients can cache items of interest locally. Caching
reduces not only the latency but also the span of transactions, since transactions find data
of interest in their local cache and thus need to access the broadcast channel for a smaller
mumber of cycles. When broadeast items are updated, the value of cached items become
stale. We assume that each page, i.e.. the unit of caching. corresponds to a bucket. i.e.. the
unit of broadcast.

There are various approaches to communicating updates to the client. The two basic
techniques are invalidation and propagation. For invalidation. the server sends out messages
to inform the client of which pages are modified. The client removes those pages from its
cache. For propagation, the servers sends the updated values. The client replaces its old
copy with the new one.

Invalidation combined with a form of autoprefetching has been shown to perform well
in broadcast delivery [2]. At the beginning of each broadcast cycle (or at other pre-defined
points), the server broadeasts an invalidation report, which is a list of pages that have
been updated. This report is used to invalidate those pages in cache that appear in the
invalidation report. These pages remain in cache to be autoprefetched later. In particular,
when the new value of an invalidated page appears in the broadcast, the client fetches the
new value and replaces the old one. Thus, a page in cache either has a current value (the
one in the current broadcast) or is marked for autoprefetching.

The cache invalidation report is similar to the invalidation report used in our guery
processing schemes. However, the two reports differ in granularity. The cache invalidation

10

report includes the pages (or buckets) that have been updated, whereas the query-processing
invalidation report includes the data items that have been updated. As discussed, the query
processing techniques can be modified to work on pages or buckets rather on items. We
describe next how the techniques can be extended to work in conjunction with caching,
while keeping their granularity at the item level.

For the invalidation only scheme, each read first checks whether the item is in cache. 1fit
is found in cache and the page is not invalidated, then it is read from the cache. Otherwise.
the item is read from the broadcast.

To enhance the simple-invalidation scheme, the cache is extended so that along with
each value it also includes the beyele during which the value was inserted in the cache. Let
R be a query and u the first beyele at which an item « € RS(R) is invalidated. Instead of
aborting R, R is marked abort and continues operation as long as old enough values for all
future reads can be found in the cache. In particular, R continues its read operations as
long as the items it wants to read exist in the cache and have versions ¢ < u. We call this
method, simple-invalidation with versioned cache.

Theorem 3 The invalidation only method with versioned cache produces correct read-only
transactions.

Proof. Let R be a committed query and u be the first beycle at which an item read by
R was invalidated. Let DS% ! be the database state broadcasted at beycle u — 1. Then,
the values read by R correspond to the database state DS"~'. This holds because all the
values read by R till beyele u correspond to DS*~!, then a value is read only if the version
in cache is ¢ < u. This value is the value the item has at u — 1 otherwise it should have
been invalidated and a new version should have been autoprefetched. O

For the SGT method, the cache must be extended to include for each item the last
transaction that wrote it; information that is broadcasted anyway. Each time an item is
read from the cache. the same test for cycles as when the item is read from the broadcast
is executed.

6 Performance Evaluation

6.1 The Model

Our performance model is similar to the one presented in [1]. The server periodically
broadcasts a set of data items in the range of 1 to BroadcastSize. We assume for simplicity
a flat broadcast organization in which the server broadcasts cyclicly the set of items.

The client accesses items from the range 1 to Read Range, which is a subset of the items
broadeast (Read Range < BroadeostSize). Within this range. the access probabilities follow
a Zipf distribution. The Zipf distribution with a parameter theta is often used to model
non-uniform access. It produces access patterns that become increasingly skewed as theta
increases. The client waits ThinkTime units and then makes the next read request.

Updates at the server are generated following a Zipf distribution similar to the read ac-
cess distribution at the client. The write distribution is across the range 1 to Update Range.

11

Server Parameters Client Parameters

BroadeastSize 1000 ReadRange (range of client reads) 250
UpdateRangs 500 theta {zipf distribution parameter) 0.95
theta (zipt distibution parametsr) (95 - Think Time (me between client &
Offeet (update and reads in broadeast unirsh)
e o 0 - 230 {100

client-read access deviation} Mumber of Reads per Quey SLE0{010
ServerReadFange 10000 Cache

M {number of server imnsactions) 10 CacheSize 128
Offset (update and ; Cache replacemnt :

e 0 : LRU

server-rigd Aocess deviation) ICIEI!I-'-'-'}'

UpdateNumber 20 - 300 (100)

ReadMumber 4*UpdateMNumber

Figure 2: Parameters

We use a parameter called Of fset to model disagreement between the client access pat-
tern and the server update pattern. When the offset is zero, the overlap between the two
distributions is the greatest, that is the client's hottest pages are also the most frequently
updated. An offset of k shifts the update distribution k items making them of less interest to
the client. We assume that during each beyele, N transactions are committed at the server.
All server transactions have the same number of update operations and read operations,
where read operations is four times more frequent than updates. Read operations at the
server are in the range 1 to BroadeastSize, follow a Zipf distribution, and have zero offset
with the update set at the server.

The client maintains a local cache that can hold up to CacheStze pages. The cache
replacement policy is LRU: when the cache is full, the least recently used page is replaced.
When pages are updated, the corresponding cache entries are invalidated and subsequently
autoprefetched. Table 2 summarizes the model parameters. Values in parenthesis are the
default.

6.2 Experimental Results

To evaluate the various schemes. we considered the percentage of transactions that are
aborted. First we varied the number of read operations per query (Figure 3). Whereas the
SGT method with caching outperforms all other schemes, the invalidation-only scheme with
versioned cache seems to offer an attractive alternative for queries with less than 30 reads,
thus avoiding the considerable overhead of the SGT method. Caching reduces the number
of transactions aborted since it reduces their span and thus the probability of invalidation.

Then, we considered the number of updates (Figure 4). In this case, the invalidation-
only scheme with versioned cache outperforms all other schemes for a large number of
updates (over 1/4 of the BroadeastSize). This is because the possibility of cycles in the
serialization graph increases with the number of operations at the server. In general. the
SGT methods are less attractive than the invalidation-only methods when there is a lot of
activity in the server, Thus, while for a small number of operations at the server the 5GT
methods more than double the number of gueries that are accepted, when the number of
operations at the server increases, the increase of the accepted transaction decreases to 10%

12

L T T

e s Inveddeten-Only -
- Irvalidatign-Cnly ~Caghe-=---
i e Inwahidation-Only+version Gacha
G Lo BEAT4Cache ---
a0 - . | o -
Ky . H -
. i o
.-'r"

— _,""’
& Fi
g e/ y
g
3
B
-
o
= 40k 1
=
=

I |

20 =
a e 1 i L ' I L
5 10 15 20 i5 40 43 50

23 a0
wumber of Clent Reads

Figure 3: Number of Reads per Query

{Figure 4).

Finally, we considered the overlap between the client read and the server update pattern.
As expected, when the overlap is the maximum, that is the client’s hot data are those that
are most frequently updated, all schemes have the highest abort rates. When the overlap
is small (less than 50%). the SGT methods accept all transactions.

7 Related Work

Recently. there has been considerable interest on broadeast delivery (for a review, see for
example [11] and Chapter 4 of [18]). Updates have been mainly treated in the context of
caching. In this case, clients maintain a local cache of the data of interest. Invalidating
cache entries by broadecast is the focus of much current research including [7], [2]. and
[16]. Updates are considered in terms of local cache consistency: there are no transaction
semantics. In [17], we have first introduced the problem of maintaining the consistency of
queries. In the current paper, we present specific invalidation-based techniques. prove their
correctness, relate them to caching and present preliminary performance results.

A weaker alternative to serializability for transactions in broadcast systems is proposed
in [22]. In this work, read only transactions have similar semantics with weak transactions
in the conflict-serializability approach. However, the emphasis is on developing and formal-
izing a weaker serializability criterion rather than on protocols for enforcing them. Finally,
broadeast in transaction management is also used in the certification-report method [6].
Read-only transactions in the certification-report method are similar to read-only transac-
tions in the invalidation-only method. However, in the certification-report method. data
delivery is on demand, the broadcast medium is mainly used by the server to broadecast
concurrency control information to its clients.

13

Abpried Transaction (%)

Aboriod Trarsmclion (%)

100 T T T T T T T

InuEsdation-Sy-——

____———imaidatan-Onty-Cacha -

""" Invaliation-Oniy+Version Gacha

Bl SGT+Cacha - -

80 - e .
L
8o - q
40 - L -
20 L 1
n"'-l---..--l i i i i i i i
50 16 150 200 280 0 350 400 450 500

Number af Ligdeles

Figure 4: Number of Updates

Invalidaton-Only ——
Invatlidaman-Ony+Cache ----
Imvaldation-Cnly+\arsion C%EGH'?'

| R SGT+Cache - --

100 150
Ottset (0: mex ovedap. #50: no overlag)

Figure b: Offset, update and read access deviation

14

250

8

Conclusions and Future Work

We have presented a set of invalidation-based methods that provide support for consistent
queries. The methods are scalable in that their performance is independent of the number of
clients. The methods were presented for a flat broadcast organization, in which all items are
broadeasted with the same frequency. One possible extension is to consider a broadcast-
disk organization [1], where specific items are broadcasted more frequently than others,

Le..

are placed on “faster disks”. An interesting problem related to the query processing

methods is determining the optimal frequency for transmitting control information. We are
also investigating the deployment of multiversion schemes for increasing the concurrency of
queries.

References

[1]

(8]
(9]
[10]
1]

[12]

[13]

5. Acharva. R. Alonso, M. J. Franklin, and 5. Zdonik. Broadrcast Disks: Data Management
for Asymmetric Communications Environments. In Proceedings of the ACM SIGMOD Inil
Conference on Management of Data (SIGMOD 95), June 1995. Reprinted in Mobile Computing,
Imielinski and Korth, Eds., Kluwer Academic Publishers, 1996.

S. Acharva, M. J. Franklin, and 8. Zdonik. Disseminating Updates on Broadcast Disks. In FPro-
ceedings of the 22nd International Conference on Very Large Data Bases (VLDE 96). September
1996.

AirMedia. AirMedia Live. www_girmedia com.

R. Alonso, D, Barbara, and H. Garcia-Molina. Data Caching Issues in an Information Retrieval
Svstem. ACM Transactions on Database Systems, 15(3):350-384, September 1990.

A. H. Ammar and J. W. Wong. The Design of Teletext Broadeast Cycles. Performance
Frvaluation, 53(4). 1985.

D. Barbara. Certification Reports: Supporting Transactions in Wireless Systems. In Proceedings
of the IEEE International Conference on Distributed Computing Systems, 1997.

D. Barbard and T. Imielinski. Sleepers and Workaholics: Caching Strategies in Mobile En-
vironments. In Proceedings of the ACM SIGMQD Intl. Conference on Munagement of Data
(SIGMOD 94). pages 1-12, 1994,

P. A. Bernstein, V. Hadjilacos, and N. Goodman. Coneurrency Control and Recovery in Data-
base Systems. Addisson-Wesley, 1987,

A, Bestavros and €. Cunha. Server-initiated Document Dissemination for the WWW., [EEE
Data Engineering Bulletin, 19(3}, September 196.

T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee, W. Mansfield, J. Raitz, and A. Weinrib.
The Datacvele Architecture. Commuinications of the ACM, 35(12), December 1992,

M. J. Franklin and S. B. Zdonik., A Framework for Scalbale Dissemination-Based Systems. In
Proceedings of the OOFPSLA Conference, pages 94-103, 1997,

D. Gifford. Polvchannel Systems for Mass Digital Communication. Communications of the
ACM, 33(2), 1990.

T. Imielinski and J. C. Navas. Geographic Addressing, Routing, and Resource Discovery with
the Global Positioning System. Communications of the ACM, 1997. To appear.

15

[14]

[15]

16]

[17]

22]

23
24
23

T. Imielinski. 5. Viswanathan, and B. R. Badrinanth. Energy Efficient Indexing on Air. In
Proceedings of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD 94).
pages 25-36. 1994,

T. Imielinski, S. Viswanathan, and B. R. Badrinanth. Power Efficient Filtering of Data on
Air. In Proceedings of the the Jth International Conference on Extending Database Technology,
March 1994,

J. Jing, A. K. Elmargarmid, 5. Helal, and R. Alonso. Bit-Sequences: An Adaptive Cache
Invalidation Method in Mobile Client/Server Environments. ACM/Bualtzer Mobile Networks
and Applications, 2(2), 1997.

E. Pitoura. Supporting Read-Only Transactions in Wireless Broadcasting. In Proceedings of the
DEXAQE International Werkshop on Moebility in Databases and Distributed Systems. August
1998,

E. Pitoura and G. Samaras. Date Management for Mobile Computing. Kluwer Academic
Publishers, 1998,

C. Pu and A, Leff. Replica Control in Distributed Systems: An Asvnchronous Approach. In
Proceedings of the ACM SIGMOD, pages 377386, 1991,

K. Ramamritham and C. Pu. A Formal Characterization of Epsilon Serializability. [EEE
TRansactions on Knowledge and Data Engineering, 7(6):997-1007, 1995.

R. Rastogi. 5. Mehrotra, Y. Breithart, H. F. Korth, and A. Silberschatz. On Correctness of
Non-serializable Executions. In Proceedings of ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 97-108, 1993,

J. Shanmugasundaram, A. Nithrakasvap, J. Padhye, R. Sivasankaran, M. Xiong, and K. Ra-
mamritham. Transaction Processing in Broadeast Disk Environments. In 8. Jajodia and L. Ker-
schberg, editors, Advanced Transaction Models and Architectures. Kluwer, 1997

Hughes Network Systems. DirectPC Homepage. www.direcpe.com. 1997.
J. Wong. Broadcast Delivery, Proceedings of the IEEE, 76(12). December 1988,

T. Yan and H. Garcia-Molina. SIFT - A Tool for Wide-area Information Dissemination. In
Proceedings of the 1995 USENIX Technical Conference, 1995,

16

